3-Factors of 3-Factorization of $K_{3,3,3, \cdots, 3}$ with n Partite Sets for All Even Integers $n \geq 2$

M.D.M.C.P. Weerarathna, D.M.T.B. Dissanayake and A.A.I. Perera
Department of Mathematics, Faculty of Science, University of Peradeniya, Sri Lanka

Abstract

A factorization of a graph G is a set of spanning subgraph of G that are pairwise edge-disjoint and whose union is G. Factorization is one of the most active research areas in Graph Theory. In our previous work, 2 -factors of 2 -factorization of $K_{2,2,2, \cdots, 2}$ and $K_{2^{r}, 2^{r}, 2^{r}, \cdots, 2^{r}}$ has been constructed by using degree factors. In this work, by considering degree factorization, a theorem has been proved to obtain 3-factors of 3-factorization of the complete multipartite graphs $K_{3,3,3, \cdots, 3}$.

Keywords: Complete n-partite graph, Factors, Factorization.

I. INTRODUCTION

Graph Theory is an important area in mathematics with many applications. A graph is a structure with vertices and edges. A simple graph G consists of a non-empty finite $\operatorname{set} V(G)$ of elements called vertices (or nodes) and a finite set $E(G)$ of distinct unordered pairs of distinct elements of $v(G)$ called edges [7]. The concept of factorization was introduced by Kirkman in 1847. In graph theory, a factor of a graph G is a spanning sub-graph of G which is not totally disconnected. A graph factorization of G is defined as a partition of edges of G into disjoint factors. Akiyama and Kano introduced two different types of factors which are called degree factors and component factors. A factor F described in terms of its degrees will be called a degree factor. On the other hand, if the factor is described using some other graphical method, it is called a component factor. The degree factors have been used for our research (A factor described in terms of its degrees).[1,4]

Application of graph factorization are involved in travelling salesman problem, coding theory, time scheduling in Multihop Networks, cooperative localization, Round-Robing tournaments etc.

Definition 1

A graph $K_{3,3,3, \cdots, 3}$ isn-partite if its vertices can be partitioned into n-sets (each with 3 points) in such a way that no edge joins vertices in the same set.

Definition 2

A complete n-partite graph is a simple n-partite graph in which each vertex in one partite set is adjacent to all the vertices in the other partite sets.[7]

Definition 3.[1, p 59; 2, p 403].
A factor that is n-regular (degree of each vertex is n) is called an n-factor(or k-regular factors).

Definition 4.[3, p 403].
If a graph G can be represented as the edge-disjoint union of factors $F_{1}, F_{2}, \cdots, F_{n}$, then $\left\{F_{1}, F_{2}, \cdots, F_{n}\right\}$ is refered as a factorization of a graph G.

Definition 5

A tournament schedule is an arrangement of all pairs of teams into the minimum number of rounds so that every team plays against every other team once. Suppose that there are n teams in a competition. Then, the number of matches to be played is

$$
\begin{equation*}
{ }^{n} C_{2}=\frac{n(n-1)}{2} \tag{7}
\end{equation*}
$$

II. MATERIALS AND METHODS

Theorem: Acomplete multipartite graph with $2 n$ partite sets of the form $K_{3,3,3, \cdots, 3}$ has $\frac{{ }^{2 n} C_{2}}{n}=2 n-1,3$-factors for a 3factorization for $2 n$ partite sets.

Proof. Using Mathematical induction,
When $n=1 ; 2$ partite sets of the form $K_{3,3}$ has
$\frac{{ }^{2} C_{2}}{1}=(2-1)=1$; 3-factors of a3-factorization.
When $n=2 ; 4$ partite sets of the form $K_{3,3,3,3}$ has $\frac{{ }^{4} C_{2}}{2}=(4-1)=3$; 3-factors of a 3-factorization.

Assume that the result is true for $n=k ; K_{3,3,3, \ldots, 3}$
i.e. $2 k$-partite sets of the form $K_{3,3,3, \ldots, 3}$ have $\frac{{ }^{2 k} C_{2}}{k}=(2 k-1) ;$ 3-factors of a3-factorization.

Forn $=k+1$,
In each case, two newpartite sets are added to the previous multipartite graph. If one, $2 k$-partite set is fixed and is joined
with the added two newpartite sets, then there are ${ }^{2} C_{1}$ ways that they can be joined.

Therefore, $2(k+1)$ partite sets of the form $K_{3,3,3, \ldots, 3}$ have $(2 k-1)+{ }^{2} C_{1}=(2 k+1)$; 3-factors of a3-factorization.

Hence, the result is true for $n=k+1$. Hence, by mathematical induction the result is true for all $n \in \mathbb{N}$.

III. RESULTS AND DISCUSSION

Tournament scheduling technique has been used for this construction as follows:

Suppose there are n teams in a league, in a season, every team plays against every other team exactly once, then number of matches played is ${ }^{n} C_{2}=\frac{n(n-1)}{2}$. If n is even, $\frac{n}{2}$ in each round and $(n-1)$ rounds are required.

Considering n partite sets as $a_{1}, a_{2}, \cdots, a_{n}$, using the above technique, $\frac{n}{2} \quad$ pairs $a_{i} a_{i+1} ; i=1,2, \ldots,(n-1), \quad$ can be constructed and those can be considered as one 3 -factor of a3-factorization. According to this construction a_{i} can be paired with a_{j} where, $j=1,2, \ldots$, nexcept i. i.e. $(n-1)$ different ways. Hence, $(n-1)$ different 3 -factors can be obtained. Since $(n-1)$ rounds are required, $(n-1)$ number of 3-factors of 3-factorization can be obtained.

This has been illustrated by the following example, when $n=6$, a 3-factor of $K_{3,3,3,3,3,3}$ is given below.

Figure 1: A 3-factor of $K_{3,3,3,3,3,3}$ graph.

Labeling 6 partite sets as a, b, c, d, e, f, one 3-factor of 3factorization can be considered as $a b, c d, e f$ which corresponds to matches in one round. Paring a with b, c, d, e and f; and using tournament scheduling technique five, 3-factors of 3-factorization can be obtained.

IV. CONCLUSIONS

Most of the research work on factorization is on complete graphs and complete bipartite graphs. In our research,3factors of 3-factorizations for different values of n have been constructed using complete multipartite graphs $K_{3,3,3, \cdots, 3}$ with n partite sets. Furthermore, tournament scheduling technique can be used to obtain the number of 3-factors of 3factorization.As future work, try to generalize this work for $K_{3^{r}, 3^{r}, 3^{r}, \cdots, 3^{r}}$ with n partite sets for positive integers $r, n \geq 2$.

REFERENCES

[1] Akiyama, J. and Kano, M. (1985). Factors and Factorizations of Graphs, Journal of Graph Theory, Vol. 9, pp 1-42.
[2] Anstee, R. and Nam, Y. (1998). More sufficient conditions for a graph to have factors, Discrete Mathematics, Vol. 184, pp 15-24.
[3] Jonathan L.G. and Yellen J. (2003). Handbook of Graph Theory, CRC Press.
[4] Plummer, D.M. (2007). Graph Factors and Factorization: 19852003, ScienceDirect, Discrete Mathematics, Vol. 307, pp 791-821.
[5] Straight, H.J. (1993). Combinatorics, An Invitation, Cole Publishing Company, Pacific Grove, California.
[6] WeerarathnaM.D.M.C.P., Dissanayake D.M.T.B., Dehigama D.G.S.D. and Perera A.A.I. (2019). k-Factors of k-Factorization of $K_{2^{r}, 2^{r}, 2^{r}, \cdots, 2^{r}}$ with n-Partite Sets for $k=1,2$ and $n \geq 2, n, r \in$ \mathbb{Z}^{+},International Journal of Research and Scientific Innovation, Vol. VI, Issue IX, pp 34-38.
[7] Wilson, J.R.(1996). Introduction to Graph Theory, Longman.

