A Study of W_{6}-Curvature Tensor in Sasakian Manifold

Wilson Kamami Wanjiru
School of Mathematics, Jomo Kenyatta University of Science and Technology, Nairobi- Kenya.

Abstract

Pokhariyal have introduced W_{6} curvature tensors to study their properties. In this paper properties of $\boldsymbol{W}_{\boldsymbol{6}}$ curvature tensor are studied in Sasakian manifold. The following geometric properties are being studied; flatness, semi-symmetric, symmetric and recurrence on Sasakian manifold. The result show that W_{6}-semi symmetry and symmetric are $\mathbf{W}_{\mathbf{6}}$-flat manifold while $\mathbf{W}_{\mathbf{6}}$-recurrent manifold (under some condition) is symmetric and semi symmetric manifold.

I. INTRODUCTION

Let (M,F,T,A,g) be $(2 n+1)$-dimensional almost contact metric manifold consisting of a $(1,1)$ tensor field F, a vector field T, a 1-form A and a Riemannian metric g which satisfies:
$\mathrm{A}(\mathrm{T})=1$
(1.2) $\bar{X}+\mathrm{X}=\mathrm{A}(\mathrm{X}) \mathrm{T}$ where $\bar{X}=\mathrm{F}(\mathrm{X})$ and $\bar{T}=\mathrm{F}(\mathrm{T})$ then $\mathrm{A}(\bar{X})=0$ and $\bar{T}=0 \quad$ (Pokhariyal (1998))
(1.3) $\mathrm{g}(\bar{X}, \bar{Y})=\mathrm{g}(\mathrm{X}, \mathrm{Y})-\mathrm{A}(\mathrm{X}) \mathrm{A}(\mathrm{Y})$
$\mathrm{g}(\mathrm{X}, \mathrm{T})=\mathrm{A}(\mathrm{X})$ and $\mathrm{g}(\mathrm{X}, \bar{Y})=-\mathrm{g}(\bar{X}, \mathrm{Y})$
where X and Y are arbitrary vector fields on M .
An almost contact metric manifold is contact metric manifold if
(1.5) $\mathrm{dA}(\mathrm{X}, \mathrm{Y})=\mathrm{g}(\mathrm{X}, \bar{Y})$ and almost contact metric manifold is K-contact metric manifold if
$\nabla_{\mathrm{x}} \mathrm{T}=-\bar{X}$
where ∇ is levi-civita connection
An almost contact metric manifold isK-contact metric manifold in a sasakian manifold if
$\left(\nabla_{x} F\right) Y=g(X, Y) T-A(Y) X$
A sasakian manifold is a K -contact but the converse is only true if dimension is 3 .

A contact metric manifold is sasakian if and only if
$R(X, Y) T=A(Y) X-A(X) Y$
In sasakian manifold ($\mathrm{M}, \mathrm{F}, \mathrm{T}, \mathrm{A}, \mathrm{g}$) we easily get
$R(T, X) Y=g(X, Y) T-A(Y) X$
In generally in $(2 n+1)$ - dimensional sasakian
manifold with the structure ($\mathrm{F}, \mathrm{T}, \mathrm{A}, \mathrm{g}$) we have
(1.10)

$$
\operatorname{rank}(\mathrm{F})=\mathrm{n}-1
$$

$$
\begin{equation*}
R^{\prime}(X, Y, Z, U)=g(R(X, Y), Z, U) \tag{1.11}
\end{equation*}
$$

$$
=g(\{g(Y, Z) X-g(X, Z) Y\}, U)
$$

$$
=g(Y, Z) g(X, U)-g(X . Z) g(Y, U)
$$

$$
=\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \mathrm{A}(\mathrm{X}) \quad-\quad \mathrm{g}(\mathrm{X}, \mathrm{Z}) \mathrm{A}(\mathrm{Y})
$$

where R is Riemannian curvature tensor.

$$
\begin{equation*}
S(X, Y)=g(Q X, Y)=(n-1) g(X, Y)=\operatorname{Ric}(X, Y) \tag{1.12}
\end{equation*}
$$

Where Q is Ricci operator and Ric (X, Y) denote Ricci tensor

II. W_{6}-CURVATURE TENSOR IN SASAKIAN MANIFOLD

(2.1) $\mathrm{W}_{6}{ }^{\prime}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{U})=\mathrm{R}^{\prime}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{U})+\frac{1}{n-1}[\mathrm{~g}(\mathrm{X}, \mathrm{Y}) \operatorname{Ric}(\mathrm{Z}, \mathrm{U})-$ $\mathrm{g}(\mathrm{X}, \mathrm{U}) \operatorname{Ric}(\mathrm{Y}, \mathrm{Z})]$

Definition 2.1

A sasakian manifold M is said to be flat if the Riemannian curvature tensor vanishes identically i.e $\mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}=0$

Definition 2.2

A sasakian manifold M is said to be W_{6}-flat if W_{6} curvature tensor vanishes identically i.e $\mathrm{W}_{6}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}=0$

Theorem 2.3
A W_{6}-flat sasakian manifold is a flat manifold.
Proof
If our hypothesis is true then $W_{6}=0$ in
$W_{6}(X, Y) Z=R(X, Y) Z+\frac{1}{n-1}[g(X, Z) Y-S(Y, Z) X]$
Or
$W_{6}{ }^{\prime}(X, Y, Z, U)=R^{\prime}(X, Y, Z, U)+\frac{1}{n-1}[g(X, Y)$ Ric $(Z, U)-$ $\mathrm{g}(\mathrm{X}, \mathrm{U}) \operatorname{Ric}(\mathrm{Y}, \mathrm{Z})]$
Therefore, if sasakian manifold M is W_{6}-flat then

$$
\begin{aligned}
& (2.2) \quad 0=\mathrm{R}^{\prime}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{U})+\frac{1}{n-1}[\mathrm{~g}(\mathrm{X}, \mathrm{Y}) \operatorname{Ric} \quad(\mathrm{Z}, \mathrm{U})- \\
& \mathrm{g}(\mathrm{X}, \mathrm{U}) \operatorname{Ric}(\mathrm{Y}, \mathrm{Z})] \\
& \text { Or }
\end{aligned}
$$

$R^{\prime}(X, Y, Z, U)=\frac{1}{n-1}[g(X, U) \operatorname{Ric}(Y, Z)-g(X, Y) \operatorname{Ric}(Z, U)]$
Where in (1.12) we have $(\mathrm{n}-1) \mathrm{g}(\mathrm{X}, \mathrm{Y})=\operatorname{Ric}(\mathrm{X}, \mathrm{Y})$
Using (1.12) in equation (2.2), we get
$R^{\prime}(X, Y, Z, U)=\frac{1}{n-1}[g(X, U)(n-1) g(Y, Z)-g(X, Y)(n-$ 1) $g(Z, U)$]

$$
=\frac{n-1}{n-1}[g(X, U) g(Y, Z)-g(X, Y) g(Z, U)]
$$

Or
(2.3) $R^{\prime}(X, Y, Z, U)=[g(X, U) g(Y, Z)-g(X, Y) g(Z, U)]$

But in sasakian manifold we have
$R^{\prime}(X, Y, Z, U)=[g(Y, Z) g(X, U)-g(X, Z) g(Y, U)]$
Thus, for this to hold, we must have
$R^{\prime}(X, Y, Z, U)=0$ since
$[g(X, U) g(Y, Z)-g(X, Y) g(Z, U)] \neq[g(Y, Z) g(X, U)-$ $g(X, Z) g(Y, U)]$
hence the theorem proved

III. W_{6}-SEMI-SYMMETRIC SASAKIAN MANIFOLD

De and Guha(1992) gave definition of semi symmetric as
$R(X, Y) R(Z, U) V=0$

Definition 3.1

A sasakian manifold M is said to be W_{6}-semi symmetric if $\mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{W}_{6}(\mathrm{Z}, \mathrm{U}) \mathrm{V}=0$ (3.1)

Theorem 3.2

A $W_{6^{-}}$semi symmetric sasakian manifold is a $W_{6^{-}}$flat manifold.

Proof

If the sasakian space is $W_{6^{-}}$semi symmetric then $R(X, Y)$ $W_{6}(Z, U) V=0$
$R(X, Y) W_{6}(Z, U) V=g\left(Y, W_{6}(Z, U) V\right) X-g\left(X, W_{6}(Z, U) V\right) Y=$ 0

$$
\begin{array}{ll}
\Rightarrow & g\left(Y, W_{6}(Z, U) V\right) X-g\left(X, W_{6}(Z, U) V\right) Y=0 \\
\Rightarrow & W_{6}{ }^{\prime}(Y, Z, U, V) X-W_{6}{ }^{\prime}(X, Z, U, V) Y=0 \\
\Rightarrow & g\left(W_{6}{ }^{\prime}(Y, Z, U, V) X, T\right)-g\left(W_{6}{ }^{\prime}(X, Z, U, V) Y, T\right)=0 \\
\Rightarrow & W_{6}{ }^{\prime}(Y, Z, U, V) A(X) \quad-W_{6}{ }^{\prime}(X, Z, U, V) A(Y)=0 \\
& (3.2)
\end{array}
$$

But since $A(X) \neq 0$ and $A(Y) \neq 0$ then it follows that
$\mathrm{W}_{6}{ }^{\prime}(\mathrm{Y}, \mathrm{Z}, \mathrm{U}, \mathrm{V})=0$ and $\mathrm{W}_{6}{ }^{\prime}(\mathrm{X}, \mathrm{Z}, \mathrm{U}, \mathrm{V})=0$ hence the theorem proved.

IV. W_{6}-SYMMETRIC SASAKIAN MANIFOLD.

Chaki and Gupta (1963) gave the definition of a conformally symmetric manifold as
$\nabla_{\mathrm{u}} \mathrm{C}=0$ where C is conformal curvature tensor

Definition 4.1

A sasakian manifold M is said to be W_{6}-symmetric if ∇_{u} $\mathrm{W}_{6}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}=\mathrm{W}_{6}{ }^{\prime}(\mathrm{U}, \mathrm{X}, \mathrm{Y}) \mathrm{Z}=0 \quad(4.1)$

Theorem 4.2

A $\mathrm{W}_{6^{-}}$symmetric and W_{6} - semi symmetric sasakian manifold is a flat manifold.

Proof

If the sasakian space is a $\mathrm{W}_{6^{-}}$symmetric then it follows
$\nabla_{\text {u }} \quad W_{6}(X, Y) Z=R(X, Y) \quad W_{6}(Z, U) V-W_{6}(R(X, Y) Z, U) V-$ $\mathrm{W}_{6}(\mathrm{Z}, \mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{U}) \mathrm{V}-\mathrm{W}_{6}(\mathrm{Z}, \mathrm{U}) \mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{V}=0 \quad(4.2)$

Computing each of above four term and subject them to same conditions we have ;

$$
\begin{align*}
& \begin{array}{l}
\mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{W}_{6}(\mathrm{Z}, \mathrm{U}) \mathrm{V}=\mathrm{g}\left(\mathrm{Y}, \mathrm{~W}_{6}(\mathrm{Z}, \mathrm{U}) \mathrm{V}\right) \mathrm{X}-\mathrm{g}(\mathrm{X}, \\
\left.\mathrm{W}_{6}(\mathrm{Z}, \mathrm{U}) \mathrm{V}\right) \mathrm{Y}
\end{array} \\
& =\mathrm{W}_{6}^{\prime}(\mathrm{Y}, \mathrm{Z}, \mathrm{U}, \mathrm{~V}) \mathrm{X}-\mathrm{W}_{6}{ }^{\prime}(\mathrm{X}, \mathrm{Z}, \mathrm{U}, \mathrm{~V}) \mathrm{Y} \\
& \mathrm{~g}\left(\mathrm{R}(\mathrm{X}, \mathrm{Y}) \quad, \mathrm{W}_{6}(\mathrm{Z}, \mathrm{U}) \mathrm{V}, \quad \mathrm{~T}\right)=\mathrm{g}\left(\mathrm{~W}_{6}{ }^{\prime}(\mathrm{Y}, \mathrm{Z}, \mathrm{U}, \mathrm{~V}) \mathrm{X}, \mathrm{~T}\right)- \\
& \mathrm{g}\left(\mathrm{~W}_{6}{ }^{\prime}(\mathrm{X}, \mathrm{Z}, \mathrm{U}, \mathrm{~V}) \mathrm{Y}, \mathrm{~T}\right) \\
& =\mathrm{W}_{6}{ }^{\prime}(\mathrm{Y}, \mathrm{Z}, \mathrm{U}, \mathrm{~V}) \mathrm{A}(\mathrm{X})-\mathrm{W}_{6}{ }^{\prime}(\mathrm{X}, \mathrm{Z}, \mathrm{U}, \mathrm{~V}) \mathrm{A}(\mathrm{Y})
\end{align*}
$$

Again if
$W_{6}(X, Y) Z=R(X, Y) Z+\frac{1}{n-1}[g(X, Z) Y-S(Y, Z) X]$
Now
$W_{6}(R(X, Y) Z, U) V=R(R(X, Y) Z, U) V+\frac{1}{n-1}[g(R(X, Y) Z, V) U$ - S(U,V) R(X,Y)Z]

But

$$
S(U, V)=(n-1) g(U, V) \text { and } R^{\prime}(X, Y, Z, U)=g(R(X, Y) Z, U)
$$

SO
$W_{6}(R(X, Y) Z, U) V=R(R(X, Y) Z, U) V+\frac{1}{n-1}\left[R^{\prime}(X, Y, Z, V) U-\right.$ $(n-1) g(U, V) R(X, Y) Z]$

$$
=g(U, V) R(X, Y) Z-g(R(X, Y) Z, V) U+\frac{1}{n-1}
$$

$R^{\prime}(X, Y, Z, V) U-g(U, V) R(X, Y) Z$

$$
\begin{align*}
&=\frac{1}{n-1} \mathrm{R}^{\prime}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{~V}) \mathrm{U}-\mathrm{g}(\mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}, \mathrm{~V}) \mathrm{U} \\
&=\frac{1}{n-1} \mathrm{R}^{\prime}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{~V}) \mathrm{U}-\mathrm{R}^{\prime}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{~V}) \mathrm{U} \tag{4.4}
\end{align*}
$$

Also
$W_{6}(Z, R(X, Y) U) V=R(Z, R(X, Y) U) V+\frac{1}{n-1}[g(Z, V) R(X, Y) U$ - S(R(X,Y)U,V)Z]

$$
=\mathrm{g}(\mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{U}, \mathrm{~V}) \mathrm{Z}-\mathrm{g}(\mathrm{Z}, \mathrm{~V}) \mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{U}+\frac{1}{n-1}
$$

$[g(Z, V) R(X, Y) U-(n-1) g(R(X, Y) U, V) Z]$

$$
\begin{equation*}
=\frac{1}{n-1} g(Z, V) R(X, Y) U-g(Z, V) R(X, Y) U \tag{4.5}
\end{equation*}
$$

Also
$\mathrm{W}_{6}(\mathrm{Z}, \mathrm{U}) \quad \mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{V}=\mathrm{R}(\mathrm{Z}, \mathrm{U}) \quad \mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{V}+\frac{1}{n-1}[\mathrm{~g}(\mathrm{Z}$, $R(X, Y) V) U-S(U, R(X, Y) V) Z]$

$$
=\mathrm{g}(\mathrm{U}, \mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{V}) \mathrm{Z}-\mathrm{g}(\mathrm{Z}, \mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{V}) \mathrm{U}+\frac{1}{n-1}
$$

$g(Z, R(X, Y) V) U-g(U, R(X, Y) V) Z]$

$$
\begin{equation*}
=\frac{1}{n-1} \mathrm{~g}(\mathrm{Z}, \mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{V}) \mathrm{U}-\mathrm{g}(\mathrm{Z}, \mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{V}) \mathrm{U} \tag{4.6}
\end{equation*}
$$

Next in (4.2) we put (4.3), (4.4), (4.5) and (4.6) and we have
$=W_{6}{ }^{\prime}(\mathrm{Y}, \mathrm{Z}, \mathrm{U}, \mathrm{V}) \mathrm{A}(\mathrm{X})-\mathrm{W}_{6}{ }^{\prime}(\mathrm{X}, \mathrm{Z}, \mathrm{U}, \mathrm{V}) \mathrm{A}(\mathrm{Y})-\left\{\frac{1}{n-1}\right.$
$R^{\prime}(X, Y, Z, V) U-R \prime(X, Y, Z, V) U+\frac{1}{n-1} g(Z, V) R(X, Y) U-$
$\left.g(Z, V) R(X, Y) U+\frac{1}{n-1} g(Z, V) R(X, Y) U-g(Z, V) R(X, Y) U\right\}$
$=W_{6}{ }^{\prime}(\mathrm{Y}, \mathrm{Z}, \mathrm{U}, \mathrm{V}) \mathrm{A}(\mathrm{X})-\mathrm{W}_{6}{ }^{\prime}(\mathrm{X}, \mathrm{Z}, \mathrm{U}, \mathrm{V}) \mathrm{A}(\mathrm{Y})-\frac{2-n}{n-1}$
$[R '(X, Y, Z, V) U+g(Z, V) R(X, Y) U+g(Z, U) R(X, Y) V]=0$
But since $\quad \nabla_{\mathrm{x}} \mathrm{W}_{6}{ }^{\prime}(\mathrm{Y}, \mathrm{Z}, \mathrm{U}, \mathrm{V})=0$ and $\mathrm{g}(\mathrm{Z}, \mathrm{U}) \neq \mathrm{g}(\mathrm{Z}, \mathrm{V}) \neq 0$
$=R^{\prime}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{V})=0$
Thus follows the theorem.

Corollary 4.5.3

A $W_{6^{-}}$symmetric sasakian manifold is always W_{6} semi symmetric sasakian manifold

That is $\operatorname{for} \nabla_{\mathrm{X}} \mathrm{W}_{6}{ }^{\prime}(\mathrm{Y}, \mathrm{Z}, \mathrm{U}, \mathrm{V})=0$

$$
\Rightarrow \quad \mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{W}_{6}(\mathrm{Z}, \mathrm{U}) \mathrm{V}=0
$$

V. W_{6}-RECURRENT SASAKIAN MANIFOLD

We study some geometrical properties of W_{6}-curvature tensor on W_{6} recurrent sasakian manifold M .
$\nabla_{\mathrm{U}} \mathrm{W}_{6}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}=\mathrm{B}(\mathrm{U}) \mathrm{W}_{6}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}$
Where B is non-zero 1-form.
If we consider a sasakian manifold M which is W_{6} then we have Pokhariyal (1988)
$\nabla_{\mathrm{U}} \mathrm{W}_{6}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}=\mathrm{B}(\mathrm{U}) \mathrm{W}_{6}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}$
Then we know that
$\mathrm{W}_{6}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}=\mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}+\frac{1}{n-1}[\mathrm{~g}(\mathrm{X}, \mathrm{Z}) \mathrm{Y}-\mathrm{S}(\mathrm{Y}, \mathrm{Z}) \mathrm{X}]$

$$
\begin{align*}
=g(Y, Z) X & -g(X, Z) Y+\frac{1}{n-1}[g(X, Z) Y-(n-1) g(Y, Z) X] \\
& =g(X, Z) Y\left[\frac{1}{n-1}-1\right] \\
& =\frac{2-n}{n-1} g(X, Z) Y \tag{5.3}
\end{align*}
$$

$\mathrm{g}\left(\mathrm{W}_{6}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}, \mathrm{T}\right)=\mathrm{g}\left(\frac{2-n}{n-1} \mathrm{~g}(\mathrm{X}, \mathrm{Z}) \mathrm{Y}, \mathrm{T}\right)$
$\mathrm{W}^{\prime}{ }_{6}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{T})=\frac{2-n}{n-1} \mathrm{~g}(\mathrm{X}, \mathrm{Z}) \mathrm{A}(\mathrm{Y})$
Note $\mathrm{W}^{\prime}{ }_{6}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{T})=0$ if and only if $\mathrm{g}(\mathrm{X}, \mathrm{Z}) \mathrm{A}(\mathrm{Y})=0$.
Theorem 5.1
A W_{6} recurrent sasakian manifold $\mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{W}_{6}(\mathrm{Z}, \mathrm{U}) \mathrm{V}=0$ and 0
$=\frac{2-n}{n-1} \mathrm{~g}(\mathrm{X}, \mathrm{Z}) \mathrm{A}(\mathrm{Y})$ is symmetric and semi symmetric space.

Proof

From (5.1) we have $\nabla_{U} W_{6}(X, Y) Z=B(U) W_{6}(X, Y) Z$

$$
\nabla_{\mathrm{X}} \quad \mathrm{~W}_{6}(\mathrm{Z}, \mathrm{U}) \mathrm{V}=\mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{W}_{6}(\mathrm{Z}, \mathrm{U}) \mathrm{V}-\mathrm{W}_{6}(\mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}, \mathrm{U}) \mathrm{V}-
$$

$$
\begin{equation*}
\mathrm{W}_{6}(\mathrm{Z}, \mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{U}) \mathrm{V}-\mathrm{W}_{6}(\mathrm{Z}, \mathrm{U}) \mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{V} \tag{5.4}
\end{equation*}
$$

But we are given
$\mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{W}_{6}(\mathrm{Z}, \mathrm{U}) \mathrm{V}=0$
Now in (5.4) we have
$\nabla_{\mathrm{X}} \mathrm{W}_{6}(\mathrm{Z}, \mathrm{U}) \mathrm{V}=-\mathrm{W}_{6}(\mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}, \mathrm{U}) \mathrm{V}-\mathrm{W}_{6}(\mathrm{Z}, \mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{U}) \mathrm{V}-$
$W_{6}(Z, U) R(X, Y) V$
Recall in (5.3)
$\mathrm{W}_{6}(\mathrm{X}, \mathrm{Y}) \mathrm{Z}=\frac{2-n}{n-1} \mathrm{~g}(\mathrm{X}, \mathrm{Z}) \mathrm{Y}$
Expanding (5.5)
$W_{6}(R(X, Y) Z, U) V=\frac{2-n}{n-1} g(R(X, Y) Z, V) U$

$$
\begin{equation*}
=\frac{2-n}{n-1} \mathrm{R}^{\prime}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{~V}) \mathrm{U} \tag{5.6}
\end{equation*}
$$

$W_{6}(Z, R(X, Y) U) V=\frac{2-n}{n-1} g(Z, V) R(X, Y) U$
And
$W_{6}(Z, U) R(X, Y) V=\frac{2-n}{n-1} g(Z, R(X, Y) V) U$

$$
\begin{equation*}
=\frac{2-n}{n-1} \mathrm{R}^{\prime}(\mathrm{X}, \mathrm{Y}, \mathrm{~V}, \mathrm{Z}) \mathrm{U} \tag{5.8}
\end{equation*}
$$

Conbining (5.6),(5.7) and (5.8) in (5.5) we have
$\nabla_{\mathrm{X}} \mathrm{W}_{6}(\mathrm{Z}, \mathrm{U}) \mathrm{V}=-\frac{2-n}{n-1} \mathrm{R}^{\prime}(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{V}) \mathrm{U}-\frac{2-n}{n-1} \mathrm{~g}(\mathrm{Z}, \mathrm{V}) \mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{U}-$ $\frac{2-n}{n-1} R^{\prime}(X, Y, V, Z) U$

$\left.\mathrm{R}^{\prime}(\mathrm{X}, \mathrm{Y}, \mathrm{V}, \mathrm{Z}) \mathrm{U}\right]$
Terms in R^{\prime} cancels out since $R^{\prime}(X, Y, Z, V)=-R^{\prime}(X, Y, V, Z)$ hence we have
$\nabla_{\mathrm{X}} \mathrm{W}_{6}(\mathrm{Z}, \mathrm{U}) \mathrm{V}=\frac{n-2}{n-1}[\mathrm{~g}(\mathrm{Z}, \mathrm{V}) \mathrm{R}(\mathrm{X}, \mathrm{Y}) \mathrm{U}]$
Expanding (5.10) gives

$$
\begin{align*}
\nabla_{\mathrm{X}} \mathrm{~W}_{6}(\mathrm{Z}, \mathrm{U}) \mathrm{V}= & \mathrm{B}(\mathrm{X}) \mathrm{W}_{6}(\mathrm{Z}, \mathrm{U}) \mathrm{V} \\
& =\frac{n-2}{n-1} \mathrm{~g}(\mathrm{Z}, \mathrm{~V})[\mathrm{g}(\mathrm{Y}, \mathrm{U}) \mathrm{X}-\mathrm{g}(\mathrm{X}, \mathrm{U}) \mathrm{Y}] \tag{5.11}
\end{align*}
$$

Taking inner product of (5.11) with respect to T both sides yields

$$
\begin{align*}
& g\left[\nabla_{X} W_{6}(Z, U) V, T\right]=g\left[B(X) W_{6}(Z, U) V, T\right] \\
& \qquad=\frac{n-2}{n-1} g(Z, V)[g(Y, U) g(X, T)-g(X, U) g(Y, T)] \\
& \quad=\frac{n-2}{n-1} g(Z, V)[g(Y, U) A(X)-g(X, U) A(Y)] \tag{5.12}
\end{align*}
$$

The coefficient $g(Z, V)$ from the initial given condition is equal to zero hence

$$
\begin{equation*}
\nabla_{\mathrm{X}} \mathrm{~W}_{6}(\mathrm{Z}, \mathrm{U}) \mathrm{V}=\mathrm{B}(\mathrm{X}) \mathrm{W}_{6}(\mathrm{Z}, \mathrm{U}) \mathrm{V}=0 \tag{5.13}
\end{equation*}
$$

This completes the theorem.

REFERENCES

[1]. SASAKI, S.,On differential manifolds with certain structures which are closely related to almost contact structure I,Tohoku Math J.12,(1960),456-476
[2]. YANO, K.,Differential Geometry on complex space,Pergamon Press,(1964),181-197
[3]. POKHARIYAL, G.P AND MISHRA, R.S.,Curvature tensors and their realistic significance, Yokohana Math J. 18 ,(1970),105-108
[4]. POKHARIYAL, G.P,Curvature tensors and their realistic significance(II),Yokohana Math J. 19 no.2,(1971),97-103
[5]. MISHRA, R.S.,Almost complex and almost contact submanifold,N.S. 25 ,(1972),419-433
[6]. POKHARIYAL, G.P,Curvature tensors and their realistic significance(III),Yokohana Math J. 21 no.2,(1973), 115-119
[7]. POKHARIYAL, G.P,Study of new curvature tensor in Sasakian manifold tensor,N.S36,(1982),222-226
[8]. POKHARIYAL, G.P,Relative Significance of curvature tensors,Math\& Math Sci. 05 no 1,(1982),133-139
[9]. POKHARIYAL, G.P,On Symmetric Sasakianmanifold,Kenya J. Sci. ser. A 9(1-2),(1988),39-42
[10]. MATSUMOTO,K. AND MIHAI, I.,On certain transformation in a Lorentzian Para sasakian manifold,Tensor,N.S.47(1988),189-197
[11]. YAMATA, M.,On an n-Einstein Sasakian manifold satisfyimg the certain conditions.Tensor,N.S 49,(1990),305-309
[12]. POKHARIYAL, G.P,Curvature tensors in Lorentzian Para Sasakianmanifold,Journal of South Africa,19(1996)
[13]. NJORI, P.W. AND MOINDI, S.K. AND POKHARIYAL, G.P.,A study of W8-Curvature tensor in Sasakianmanifold,PJMMS 20(2017),1-11

