
International Journal of Research and Scientific Innovation (IJRSI) | Volume VI, Issue V, May 2019 | ISSN 2321–2705

www.rsisinternational.org Page 28

Text Generation Using Recurrent Neural Networks
Zishen Thajudheen, Amit N Subrahmanya, Aditya Singh, Akshit Jhamb, Vinay Hegde

Computer Science and Engineering, R.V College of Engineering, Bangalore, India

Abstract—Language Modelling is the core problem for a number
of natural language processing tasks such as text generation. In
this project, we try to create a language model at a character
level for generating natural language text by implement and
training state-of-the-art Recurrent Neural Network. No text
generation model has been designed for Kannada. With the help
of transliteration it is possible to build a text generation model
for Kannada. We plan to build this model and analyse its
strengths and weaknesses. In this paper we aim to demonstrate
the power of large RNNs by applying them to the task of
predicting the next character in a stream of text. This is an
important problem because a better character-level language
model could improve compression of text files. We can evaluate
the syntactic and semantic sense of the generated phrases.

Keywords— include at least 5 keywords or phrasesText
generation, Transliteration, character prediction, Machine
Learning, Recurrent Neural Network (RNN).

I. INTRODUCTION

ith the latest advancements in the field of deep learning
many tasks of Natural Language processing are

becoming easier and effortless to solve. One such task of
Natural Language processing is text generation. Text
generation is effectively a language modelling problem.
Language modeling is a fundamental problem in Natural
Language processing tasks such as text summarization.

Text, a stream of characters lined one after the other. It is
particularly difficult to work with generation of text as we
need to train the model on the characters and the trained
model needs to be very accurate. Even an error of a particular
character in the stream of characters could make the whole
sentence irrelevant. Text generation using recurrent neural
network is working with novels written by authors and
sonnets and poems.

The main motivation behind developing this model is to
maintain the writing style of the author which cannot be
replicated very easily. People are generally writing with
emotion and are motivated by some personal experience and
it is very hard to replicate the same using a computer. This
model does not summaries the text it is trained on. Rather it
writes a whole new chapter or poem based on the writing
style of the author.

In this paper, we propose a neural network that can
successfully generate text. The model can be a character-to-
character or word-to-word model. We built, trained and tested
character-to-character model and compared the effectiveness
and accuracy with word-to-word model. Another barrier we
plan to surpass with this model is to have text generation in a

language other than English. With the help of encoding
characters to numbers and working on the same the model
can be trained to write text in a different language like
Kannada.

The rest of this correspondence is organized as follows. The
paper explains the background of Recurrent Neural Network
Model, transliteration and LSTM (Long Sort Term Memory)
in section 2. Section 3 presents our proposed method. In
section 4, the results of our proposed method for are
compared to existing method. All improvements possibly
made is mentioned in section 5.

II. BACKGROUND

Recurrent Neural Network is a class of artificial neural
network that exhibits dynamic behavior. RNNs can process
sequence of inputs by using their internal states and that is
why this model is used in text generation, speech recognition,
etc. Recurrent Neural Networks differ from feed forward nets
because they include a feedback loop, whereby output from
previous step is fed back to the network to affect the outcome
of the current step and so forth for each subsequent step.

For example, if a net is exposed to a word letter by letter, and
it is asked to guess each following letter, the first letter of a
word will help determine what a recurrent net thinks the
second letter will be, etc. RNN is the neural network model
used because the model needs to predict a word based the all
the previous words read. That is we need to consider history
which is either very difficult or impossible to implement using
other neural networks.

Transliteration is another major process used by this model.
Transliteration is a process of converting a word from one
language to another. To understand better consider a word
needs to be transliterated from language x to language y.
Unlike translation, transliteration gives an idea of how the
word will be pronounced in language x but will be written
using alphabets in language y.

RNN with LSTM (Long Short Term Memory) is used in this
model. LSTM is used so that it can process multiple data
points which is ideal for models working on text and speech.
It has a forget gate, input and output gate. LSTM is used to
solve the gradient descent problem. Gradient descent problem
is a problem that occurs with neural network. That is the
gradient tends to get smaller and smaller as we go back in the
neurons. It becomes difficult to train based on earlier neurons
as they become so small (negligible) compared to the recent
weights of the latest neurons. This problem of vanishing
gradient can be solved using LSTM.

W

International Journal of Research and Scientific Innovation (IJRSI) | Volume VI, Issue V, May 2019 | ISSN 2321–2705

www.rsisinternational.org Page 29

III. ARCHITECTURE AND IMPLEMENTATION

For text generation we propose a RNN model with Long Sort
Term Memory (LSTM). LSTM RNN is used to solve the
gradient descent problem. Compared to other neural
networks, RNN’s have hidden states which help them process
past information. This is particularly important considering
text generation as we need to process past information to
predict new text into consideration and with LSTM the model
is capable of long term dependencies. The proposed system
has three stages

A. Preprocessing the dataset

Preprocessing the dataset includes various steps. Data
cleaning is a process wherein which you remove irrelevant
data from the data set such as roman numbers, non-
alphabetical characters etc. With these make sure that the
whole data is properly punctuated.

Tokenization is the next part of data cleaning where we
tokenize the cleaned data. In character-to-character model we
split the whole text into characters and tokenization is done.
In word-to-word model we split it word by word.

Padding is a process wherein redundant data is added to the
tokens so that all the tokens be of the same size. After
padding is done all the tokens must be assigned to unique
numbers. Considering the model is a neural network model it
is always easier to work with numbers. Since we are working
with numbers and converting back to relevant characters
language is generally not a barrier. Thus building a model for
text generation for Kannada characters should not be an issue.

B. Training the data

We deal with training a model where the input are characters
of a novel. The amount of input present in the model is very
high and as a result a system with a decent GPU will speed up
the training process. The data was collected from various
sources. Most of them are classical texts that are cleaned by
the model. Different models are trained and tested
considering accuracy and speed into consideration and the
best model is considered.

C. Generating text

Finally the trained model is used for generation of text. A few
sequence of characters are given as input and based on these
characters and trained model the text are generated. Various
models were considered. All of these were trained and then
finally the one which had the required efficiency was
selected.

For text generation in Kannada we use the process of
transliteration. Since we developed a model for text
prediction in English we use the same model for text
generation in Kannada. A small code was written which acts a
dictionary that transliterates English to Kannada. A unique
English alphabet was assigned to every Kannada character.
Same letters of English characters with different cases (upper

and lower case) were assigned to different Kannada
characters. Some rules of Kannada language were also taken
into consideration when transliterating English to Kannada.
The Kannada text is the given as input to this program which
transliterates all Kannada characters to English. After this
process we then use the same model designed for English to
this transliterated text file. The model then trains and the
required text is generated. Once the text is generated the
model then gives this English text as input to the dictionary
program that transliterates text back to Kannada. Once they
are converted this text is given as output. The output is fairly
accurate and was able to replicate the writing style of the
Kannada authors too.

IV. FIGURES

Fig 1: Recurrent neural network structure

Figure 1 represents the basic structure of a recurrent neural
network. The neuron is NN and inputs move from A to output
B. A recurrent neural network is basically multiple instances
of the same network passing something to the successor. So if
you open up the neural network structure below it opens up to
a chain like structure. This is the basic structure of RNN
which had a huge success when working with text, speech
and other kinds of data.

International Journal of Research and Scientific Innovation (IJRSI) | Volume VI, Issue V, May 2019 | ISSN 2321–2705

www.rsisinternational.org Page 30

Fig 2: NN size vs Accuracy graph

For an epoch of 200 and depth of 3 the model was varied of
the neural netwrok size (NN size) and the accuracy of the
model was noted down as shown in Figure 2. Accuracy was
calculated by matching the words predicted by the model
along with the words available in the dictionary. The dropout
value was 0.2 . As it can be noticed that ad NN size increases
the accuracy of the model also increases. Accuracy can also
reach 100% but the more important thing here is to make sure
that the words generated by the model should make logical
sense. In the graph above the blue line is the accuracy
measured for a shakespeare sonnet text file used. The text file
was cleanedby removing the roman numerals from the text
file. The second text file used are trump tweets of the year
2018. With both these text files the accuracy finally achieved
was awlays greater than 90%.

Fig 3: Depth vs accuracy graph

Figure 3 is the depth vs accuracy graph as shown. Here the
accuracy does increase as depth increases but not in all
instances. So it is clear than it is not necessary that when
depth and neural network size increases, accuracy will also
increase. Thus we need to keep on training different
architectures and then come to the conclusion of the most
efficient model both in acuuracy of word correctness as well
as how much sense the sentence as a whole would make. For
calculation of depth we consider the same files as considered
for NN size vs accuracy graph. Epoch of 40 and NN size of

200 were kept constant and we kept on increasing the depth of
the model. The figure 2 is the representation of the same.

Fig 4: Architecture of the model

Figure 4 is the basic architecure of one of the trained models.
Dropout of 0.2 is kept to avoid overtraining. Neural Network
depth of 400. Significant amount of time was taken to train
this model. Training did use GPU but still did take some time.
Resulted in an accurate model which predicted text properly.

85

90

95

100

105

200 250 300 400

Ac
cu

ra
cy

 in
 p

er
ce

nt
ag

e

Neural Network Size

NN size v Accuracy

Accuracy Sonnet Accuracy Trump

89
90
91
92
93
94

2 3 4 5

Ac
cu

rc
y

in
 p

er
ce

nt
ag

e

Neural Network Depth

Chart Title

Accuracy Sonnet

International Journal of Research and Scientific Innovation (IJRSI) | Volume VI, Issue V, May 2019 | ISSN 2321–2705

www.rsisinternational.org Page 31

V. RESULTS

Various corpus were taken and cleaned by the model. Many
classical novels, poems etc. were cleaned and trained on the
final model. With all the corpus the text generated by the
model is able to capture the writing style of the authors to an
extent. The resultant sentences generated by the model had no
mistakes and all the words generated did fit together for the
sentence to have a meaning.

Input text were both taken in English as well as Kannada. For
both these languages the model was able to fare great results.
Small changes were to be made to the model which was
trained in Kannada datasets to incorporate the language rules
present in Kannada which is absent in English.

Comparing the character-to-character model (proposed model)
to word-to word model, the training time was comparable
between the two if they are trained with the assistance of a
GPU.

Comparing the final result the character-to-character model
was able to generate better results with the same corpus. More
sensible words were generated by character-to-character
model.

Since we worked on both character-to-character model and
word-to-word model, a faster way for better output was to
take the input character and use the character-to-character
model to predict a word and then use the word-to-word model
to predict the rest of the sentence. On doing so we noticed a
fairy accurate result. On top of that it was significantly fast in
predicting the sentence too.

In the text generation model build, there is scope for 4
outputs. 4 predictions are made by the model based on the
input. The user is free to select whichever output he wants.
The accuracy of the prediction decreases as we chose the 4th
output as compared to the first output. It is to be noted that all
4 outputs generated by the model are from 4 different models.
Thus a variety of outputs will be generated and the end user
can choose whichever they feel is relevant to them.

VI. FUTURE WORK

In future work the model could consider all the grammar rules
of Kannada that is not present in English. Include all synaptic
and semantic rules while transliterating Kannada to English.
There are quite a lot of rendering to be done when converting
English back to Kannada. All of these rendering were not
considered. By including all these rendering the final output
will be a bit more accurate than it is right now.

Since we were limited by the GPU available (we used GTX
1050ti) by extensive training of the model with a powerful
GPU could increase the accuracy higher (currently we
achieved 95%) and thus will provide better results.

Coming up with a new and improved way to calculate the
accuracy of the model so that rather than just considering the
spelling correctness of the word the accuracy also includes

to what level the sentences as a whole which has been
generated do make sense. Detailed analysis needs to be done
to make sure proper use of grammar has been followed by
the model predicted output. Based on this analysis further
improvements can be bought into the model to further
increase the accuracy and if possible the time taken to
predict the sentence generated based on the input.

ACKNOWLEDGEMENT

Our thanks to the Dr. Vinay Hegde for the tremendous
guidance and support that he has provided towards this
project. Providing us with relevant information and insight
which helped us build our model effectively and efficiently.
Our sincerest gratitude to him for not only lending a helping
hand but also providing the required dataset on which the
model works without which this project wouldn’t be possible.

REFERENCES

[1] Jia Wei; Quiang Zhou; YiciCai; Poet-based Poetry Generation:
Controlling Personal Style with Recurrent Neural Networks;
International Conference on Computing, Networking and
Communications (ICNC); 2018

[2] Zejian Shi; Minyong Shi; Chunfang Li; The prediction of
character based on recurrent neural network language model;
 IEEE/ACIS 16th International Conference on Computer and
Information Science (ICIS); 2017

[3] Kyuyeon Hwang; Wonyong Sung; Character-level language
modeling with hierarchical recurrent neural networks; IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP); 2017

[4] Tzu-Hsuan Tseng; Tzu-Hsuan Yang; Chia-Ping Chen; Verifying
the long-range dependency of RNN language models;
International Conference on Asian Language Processing (IALP);
2016

[5] Martin Sundermeyer; Hermann Ney; Ralf Schlüter; From
Feedforward to Recurrent LSTM Neural Networks for Language
Modeling; IEEE/ACM Transactions on Audio, Speech, and
Language Processing; Volume 23; Issue 3; March 2015

[6] IlyaSutskever; James Martens; E Hinton Geoffrey; Generating
Text with Recurrent Neural Networks; Proceedings of the 28th
International Conference on Machine Learning (ICML-11);
 2015.\

[7] Zachary C. Lipton, John Berkowitz, Charles Elkan; A Critical
Review of Recurrent Neural Networks for Sequence Learning;
Cornell University; arXiv:1506.00019

[8] Wim De Mulder, Steven Bethard, Marie-Francine Moens; A
survey on the application of recurrent neural networks to statistical
language modeling; Published in Computer Speech & Language
2015

