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Abstract—Language Modelling is the core problem for a number 
of natural language processing tasks such as text generation. In 
this project, we try to create a language model at a character 
level for generating natural language text by implement and 
training state-of-the-art Recurrent Neural Network. No text 
generation model has been designed for Kannada. With the help 
of transliteration it is possible to build a text generation model 
for Kannada. We plan to build this model and analyse its 
strengths and weaknesses. In this paper we aim to demonstrate 
the power of large RNNs by applying them to the task of 
predicting the next character in a stream of text. This is an 
important problem because a better character-level language 
model could improve compression of text files. We can evaluate 
the syntactic and semantic sense of the generated phrases. 

Keywords— include at least 5 keywords or phrasesText 
generation, Transliteration, character prediction, Machine 
Learning, Recurrent Neural Network (RNN). 

I. INTRODUCTION 

ith the latest advancements in the field of deep learning 
many tasks of Natural Language processing are 

becoming easier and effortless to solve. One such task of 
Natural Language processing is text generation. Text 
generation is effectively a language modelling problem. 
Language modeling is a fundamental problem in Natural 
Language processing tasks such as text summarization.  

Text, a stream of characters lined one after the other. It is 
particularly difficult to work with generation of text as we 
need to train the model on the characters and the trained 
model needs to be very accurate. Even an error of a particular 
character in the stream of characters could make the whole 
sentence irrelevant. Text generation using recurrent neural 
network is working with novels written by authors and 
sonnets and poems.  

The main motivation behind developing this model is to 
maintain the writing style of the author which cannot be 
replicated very easily. People are generally writing with 
emotion and are motivated by some personal experience and 
it is very hard to replicate the same using a computer. This 
model does not summaries the text it is trained on. Rather it 
writes a whole new chapter or poem based on the writing 
style of the author.  

In this paper, we propose a neural network that can 
successfully generate text. The model can be a character-to-
character or word-to-word model. We built, trained and tested 
character-to-character model and compared the effectiveness 
and accuracy with word-to-word model. Another barrier we 
plan to surpass with this model is to have text generation in a 

language other than English. With the help of encoding 
characters to numbers and working on the same the model 
can be trained to write text in a different language like 
Kannada. 

The rest of this correspondence is organized as follows.  The 
paper explains the background of Recurrent Neural Network 
Model, transliteration and LSTM (Long Sort Term Memory) 
in section 2. Section 3 presents our proposed method. In 
section 4, the results of our proposed method for are 
compared to existing method.  All improvements possibly 
made is mentioned in section 5. 

II. BACKGROUND 

Recurrent Neural Network is a class of artificial neural 
network that exhibits dynamic behavior. RNNs can process 
sequence of inputs by using their internal states and that is 
why this model is used in text generation, speech recognition, 
etc. Recurrent Neural Networks differ from feed forward nets 
because they include a feedback loop, whereby output from 
previous step is fed back to the network to affect the outcome 
of the current step and so forth for each subsequent step.  

For example, if a net is exposed to a word letter by letter, and 
it is asked to guess each following letter, the first letter of a 
word will help determine what a recurrent net thinks the 
second letter will be, etc. RNN is the neural network model 
used because the model needs to predict a word based the all 
the previous words read. That is we need to consider history 
which is either very difficult or impossible to implement using 
other neural networks. 

Transliteration is another major process used by this model. 
Transliteration is a process of converting a word from one 
language to another. To understand better consider a word 
needs to be transliterated from language x to language y. 
Unlike translation, transliteration gives an idea of how the 
word will be pronounced in language x but will be written 
using alphabets in language y. 

RNN with LSTM (Long Short Term Memory) is used in this 
model. LSTM is used so that it can process multiple data 
points which is ideal for models working on text and speech. 
It has a forget gate, input and output gate. LSTM is used to 
solve the gradient descent problem.  Gradient descent problem 
is a problem that occurs with neural network. That is the 
gradient tends to get smaller and smaller as we go back in the 
neurons. It becomes difficult to train based on earlier neurons 
as they become so small (negligible) compared to the recent 
weights of the latest neurons. This problem of vanishing 
gradient can be solved using LSTM. 

W
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III. ARCHITECTURE AND IMPLEMENTATION 

For text generation we propose a RNN model with Long Sort 
Term Memory (LSTM). LSTM RNN is used to solve the 
gradient descent problem. Compared to other neural 
networks, RNN’s have hidden states which help them process 
past information. This is particularly important considering 
text generation as we need to process past information to 
predict new text into consideration and with LSTM the model 
is capable of long term dependencies. The proposed system 
has three stages 

A. Preprocessing the dataset 

Preprocessing the dataset includes various steps. Data 
cleaning is a process wherein which you remove irrelevant 
data from the data set such as roman numbers, non-
alphabetical characters etc. With these make sure that the 
whole data is properly punctuated. 

Tokenization is the next part of data cleaning where we 
tokenize the cleaned data. In character-to-character model we 
split the whole text into characters and tokenization is done. 
In word-to-word model we split it word by word. 

Padding is a process wherein redundant data is added to the 
tokens so that all the tokens be of the same size. After 
padding is done all the tokens must be assigned to unique 
numbers. Considering the model is a neural network model it 
is always easier to work with numbers. Since we are working 
with numbers and converting back to relevant characters 
language is generally not a barrier. Thus building a model for 
text generation for Kannada characters should not be an issue. 

B. Training the data 

We deal with training a model where the input are characters 
of a novel. The amount of input present in the model is very 
high and as a result a system with a decent GPU will speed up 
the training process. The data was collected from various 
sources. Most of them are classical texts that are cleaned by 
the model. Different models are trained and tested 
considering accuracy and speed into consideration and the 
best model is considered.  

C. Generating text 

Finally the trained model is used for generation of text. A few 
sequence of characters are given as input and based on these 
characters and trained model the text are generated. Various 
models were considered. All of these were trained and then 
finally the one which had the required efficiency was 
selected. 

For text generation in Kannada we use the process of 
transliteration. Since we developed a model for text 
prediction in English we use the same model for text 
generation in Kannada. A small code was written which acts a 
dictionary that transliterates English to Kannada. A unique 
English alphabet was assigned to every Kannada character. 
Same letters of English characters with different cases (upper 

and lower case) were assigned to different Kannada 
characters. Some rules of Kannada language were also taken 
into consideration when transliterating English to Kannada. 
The Kannada text is the given as input to this program which 
transliterates all Kannada characters to English. After this 
process we then use the same model designed for English to 
this transliterated text file. The model then trains and the 
required text is generated. Once the text is generated the 
model then gives this English text as input to the dictionary 
program that transliterates text back to Kannada. Once they 
are converted this text is given as output. The output is fairly 
accurate and was able to replicate the writing style of the 
Kannada authors too. 

IV. FIGURES 

 
Fig 1: Recurrent neural network structure 

Figure 1 represents the basic structure of a recurrent neural 
network. The neuron is NN and inputs move from A to output 
B. A recurrent neural network is basically multiple instances 
of the same network passing something to the successor. So if 
you open up the neural network structure below it opens up to 
a chain like structure. This is the basic structure of RNN 
which had a huge success when working with text, speech 
and other kinds of data. 
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Fig 2: NN size vs Accuracy graph 

For an epoch of 200 and depth of 3 the model was varied of 
the neural netwrok size (NN size) and the accuracy of the 
model was noted down as shown in Figure 2. Accuracy was 
calculated by matching the words predicted by the model 
along with the words available in the dictionary. The dropout 
value was 0.2 . As it can be noticed that ad NN size increases 
the accuracy of the model also increases. Accuracy can also 
reach 100% but the more important thing here is to make sure 
that the words generated by the model should make logical 
sense. In the graph above the blue line is the accuracy 
measured for a shakespeare sonnet text file used. The text file 
was cleanedby removing the roman numerals from the text 
file. The second text file used are trump tweets of the year 
2018. With both these text files the accuracy finally achieved 
was awlays greater than 90%. 

 
Fig 3: Depth vs accuracy graph 

Figure 3 is the depth vs accuracy graph as shown. Here the 
accuracy does increase as depth increases but not in all 
instances. So it is clear than it is not necessary that when 
depth and neural network size increases, accuracy will also 
increase. Thus we need to keep on training different 
architectures and then come to the conclusion of the most 
efficient model both in acuuracy of word correctness as well 
as how much sense the sentence as a whole would make. For 
calculation of depth we consider the same files as considered 
for NN size vs accuracy graph. Epoch of 40 and NN size of 

200 were kept constant and we kept on increasing the depth of 
the model. The figure 2 is the representation of the same. 

 
Fig 4: Architecture of the model 

Figure 4 is the basic architecure of one of the trained models. 
Dropout of 0.2 is kept to avoid overtraining. Neural Network 
depth of 400. Significant amount of time was taken to train 
this model. Training did use GPU but still did take some time. 
Resulted in an accurate model which predicted text properly. 
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V. RESULTS 

Various corpus were taken and cleaned by the model. Many 
classical novels, poems etc. were cleaned and trained on the 
final model. With all the corpus the text generated by the 
model is able to capture the writing style of the authors to an 
extent. The resultant sentences generated by the model had no 
mistakes and all the words generated did fit together for the 
sentence to have a meaning. 

Input text were both taken in English as well as Kannada. For 
both these languages the model was able to fare great results. 
Small changes were to be made to the model which was 
trained in Kannada datasets to incorporate the language rules 
present in Kannada which is absent in English.  

Comparing the character-to-character model (proposed model) 
to word-to word model, the training time was comparable 
between the two if they are trained with the assistance of a 
GPU. 

Comparing the final result the character-to-character model 
was able to generate better results with the same corpus. More 
sensible words were generated by character-to-character 
model. 

Since we worked on both character-to-character model and 
word-to-word model, a faster way for better output was to 
take the input character and use the character-to-character 
model to predict a word and then use the word-to-word model 
to predict the rest of the sentence. On doing so we noticed a 
fairy accurate result. On top of that it was significantly fast in 
predicting the sentence too. 

In the text generation model build, there is scope for 4 
outputs. 4 predictions are made by the model based on the 
input. The user is free to select whichever output he wants. 
The accuracy of the prediction decreases as we chose the 4th 
output as compared to the first output. It is to be noted that all 
4 outputs generated by the model are from 4 different models. 
Thus a variety of outputs will be generated and the end user 
can choose whichever they feel is relevant to them.  

VI. FUTURE WORK 

In future work the model could consider all the grammar rules 
of Kannada that is not present in English. Include all synaptic 
and semantic rules while transliterating Kannada to English. 
There are quite a lot of rendering to be done when converting 
English back to Kannada. All of these rendering were not 
considered. By including all these rendering the final output 
will be a bit more accurate than it is right now. 

Since we were limited by the GPU available (we used GTX 
1050ti) by extensive training of the model with a powerful 
GPU could increase the accuracy higher (currently we 
achieved 95%) and thus will provide better results.  

Coming up with a new and improved way to calculate the 
accuracy of the model so that rather than just considering the 
spelling correctness of the word the accuracy also includes 

to what level the sentences as a whole which has been 
generated do make sense. Detailed analysis needs to be done 
to make sure proper use of grammar has been followed by 
the model predicted output. Based on this analysis further 
improvements can be bought into the model to further 
increase the accuracy and if possible the time taken to 
predict the sentence generated based on the input. 
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