Design and Fabrication of Combination Fixture for Reducing Production Time in Pump Manufacturing

D. Anandakumar¹, V. Saravanan² and S.A Vasudevan³

¹,²,³ Department of Mechanical Engineering, EASA College of Engineering and Technology, Coimbatore - 641105, Tamil Nadu, India

Abstract—In most of pump manufacturing industries, three fixtures are used for performing machining operations like milling, drilling and tapping on the components such as rear cover, front cover, suction bracket and casing. They lead to increase loading time, setting time, machining time and unloading time. To reduce the production time significantly, the three fixtures are replaced by a single fixture in this present work. The new fixture and supporting plates have been designed with the help of SOLID WORKS software. By means of this fixture, total production time is reduced to 78.6% and hence production rate is also improved significantly.

Keywords—Casing, Suction bracket, Combination fixture, Production time, Production rate

I. INTRODUCTION

Fixture is a part of a machine which holds the work piece during operation with various technical and special arrangements. It is developed with various principles based on the machine, type of component and machining parameters like feed, speed and depth of cut. It is a device for locating, holding and supporting a work piece during a manufacturing operation. It is designed for applications where the cutting tools cannot be guided as easily as a drill. It can be used in almost any operation that requires a precise relationship in the position of a tool to a work piece. Fixtures are essential elements of production processes as they are required in most of the automated manufacturing, inspection, and assembly operations [1-4].

Modern era production demands computer operated machine tools for higher production reliability and accuracy [5-6]. It necessitates the use of jigs and fixture for easy loading and unloading of work piece hence saving time to increase the productivity. Jigs are used for directing tool in correct position and fixture normally mounted on machine table provide secure locating and supporting work piece during machining operation [7]. Locating refers to dimensional and positional relationship between work piece and cutting tool. Various forces acting upon work piece during machining operation demands clamping in position once work piece is correctly located.

Most fixturing systems reviewed in this paper had been developed for a specific purpose. Satya pal Vaghela and Abhishek Singh [8] have developed a fixture set up for rear cover in agriculture tractor and reduced cycle time and increased productivity. Jakukore and Raut [9] have developed rotary cage fixture having ability to rotate about its axis and able to fix the component at any angle for heavy component. Vinay et al [10] have designed a fixture for mounting sub assemblies to perform tack welding. Kumara and Mohan Ram [11] have designed and fabricated a lathe fixture for brake drum manufacturing companies. Patel et al [12] have designed a fixture for machining gear shifting fork. Abhilash Reddy et al [13] have optimized the fixture for Rock drill to reduce the machining cost of the component and the labour work. Soni and Mane [14] have made an attempt to design a fixture for cylinder liners honing operation to improve productivity and reduce the rejection rate on honing machine. Dongre et al [15] have analyzed the jigs and fixture used in the chassis bracket of Baja car RE60. Perez et al [16] have produced an inspection fixture for a coordinate measuring machine to reduce time and cost associated to the inspection process. Stephen Antony Predeep et al [17] have developed a adjustable type of drill bush, which enhanced the holding of work piece with variable dimension.

The authors [18, 19] have described the various developments in fixture design and the directions for future research initiatives. Bi and Zhang [20] have introduced a flexible fixture design based on the flexibility strategies. Nanthakumar and Prabakaran [21] have proposed a method to design and fabricate the multipurpose jig and fixture for the complete machining operations in a single machining centre. Adejuyigbe et al [22] have developed a heuristic algorithm to select suitable jigs and fixtures by considering the different configurations of the work piece. Nalbandh and Rajyaguru [23] have optimized fixture design through genetic algorithm in terms of fixture layout, clamping position and part deformation. Vishnupriyan et al [24] have suggested a Genetic Algorithm (GA) based optimization method to arrive a layout of error containing locators for minimum machining error satisfying the tolerance requirements and providing deterministic location.

Okpala and Okechukwu [25] have identified the numerous advantages associated with the use of jigs and fixtures in manufacturing. Leaney et al [26] have described the use and deployment of virtual fixtures, jigs and gauges to locate, align and measure features in simulation models used in the dimensional variation analysis (DVA) of assembly systems. Krishnakumar and Melkote [27] have reported that dimensional accuracy of a workpiece was influenced by the fixture layout selected for the machining operation. Choudhuri and De Meter [28] have applied locator tolerance analysis to reveal some important insights into the relationship between
machined feature geometric error, locator design, and locator tolerance scheme. Tseng [29] have made a feature-based fixturing based on the 3-2-1 and the 4-2-1 fixture design principles to analyze the supporting, locating, and clamping parameters.

Even though numerous fixtures have been suggested for various purposes, a fixture for combining many operations in manufacturing industries is found to be minimal. Therefore, a combination fixture has been designed and fabricated for the reduction of production time in the pump manufacturing in this study.

II. PUMP COMPONENTS

In most of Indian pump manufacturing industries, three fixtures are used for performing machining operations like milling, drilling and tapping on the pump components like rear cover, front cover, casing and suction bracket. The components of a submersible pump are shown in Figure 1 and the details of the components are given in Table 1.

![ASM SP Rear Cover](image1)
![ASM SP Front Cover](image2)
![ASM Rear Cover](image3)
![TVJ Delivery Casing](image4)
![TVJ N Casing](image5)
![Suction Bracket](image6)

Figure 1. Pump Components

Table 1. Details of the Pump Components

<table>
<thead>
<tr>
<th>S. No</th>
<th>Components</th>
<th>Seating Size (mm)</th>
<th>Maximum OD of Component (mm)</th>
<th>Total Length of Component (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ASM SP Rear Cover (1)</td>
<td>138</td>
<td>156</td>
<td>71</td>
</tr>
<tr>
<td>2</td>
<td>ASM SP Rear Cover (2)</td>
<td>138</td>
<td>186</td>
<td>52</td>
</tr>
<tr>
<td>3</td>
<td>ASM SP Front Cover (3)</td>
<td>138</td>
<td>186</td>
<td>66</td>
</tr>
<tr>
<td>4</td>
<td>ASM SP Front Cover (4)</td>
<td>138</td>
<td>195</td>
<td>71</td>
</tr>
<tr>
<td>5</td>
<td>ASM SP Front Cover (5)</td>
<td>138</td>
<td>187</td>
<td>74</td>
</tr>
<tr>
<td>6</td>
<td>ASM SP Front Cover (6)</td>
<td>138</td>
<td>181</td>
<td>74</td>
</tr>
<tr>
<td>7</td>
<td>ASM SP Front Cover (7)</td>
<td>138</td>
<td>181</td>
<td>74</td>
</tr>
<tr>
<td>8</td>
<td>ASM SP Front Cover (8)</td>
<td>138</td>
<td>212</td>
<td>75</td>
</tr>
<tr>
<td>9</td>
<td>ASM SP Front Cover (9)</td>
<td>138</td>
<td>197</td>
<td>72</td>
</tr>
<tr>
<td>10</td>
<td>ASM SP Front Cover (10)</td>
<td>138</td>
<td>156</td>
<td>72</td>
</tr>
<tr>
<td>11</td>
<td>ASM SP Front Cover (11)</td>
<td>138</td>
<td>156</td>
<td>72</td>
</tr>
<tr>
<td>12</td>
<td>ASM SP Front Cover (12)</td>
<td>138</td>
<td>232</td>
<td>99.5</td>
</tr>
<tr>
<td>13</td>
<td>ASM Rear Cover (1)</td>
<td>175</td>
<td>229</td>
<td>57</td>
</tr>
<tr>
<td>14</td>
<td>ASM Rear Cover (2)</td>
<td>175</td>
<td>229</td>
<td>57</td>
</tr>
<tr>
<td>15</td>
<td>ASM J Rear Cover (3)</td>
<td>178</td>
<td>200</td>
<td>61</td>
</tr>
<tr>
<td>16</td>
<td>ASM J Rear Cover (4)</td>
<td>178</td>
<td>200</td>
<td>61</td>
</tr>
<tr>
<td>17</td>
<td>TVJ Delivery Casing</td>
<td>122</td>
<td>216</td>
<td>92</td>
</tr>
<tr>
<td>18</td>
<td>TVJ N Casing</td>
<td>140</td>
<td>232</td>
<td>49</td>
</tr>
<tr>
<td>19</td>
<td>Suction Bracket</td>
<td>37</td>
<td>50</td>
<td>144</td>
</tr>
</tbody>
</table>

III. DESIGN AND FABRICATION OF COMBINATION FIXTURE

3.1 Material Specification of Fixture Parts

- Material: Mild steel
- Grade: IS 2062
- Product form: Forging as per drawing
- Treatment condition: Normalised
- Finishing: As per IS 3469
- Chemical composition:
 - Carbon (C) = 0.25%
 - Manganese (Mn) = 1.5%
 - Sulphur (S) = 0.05%
 - Phosphorus (P) = 0.05%
 - Silicon (Si) = 0.4%
- Hardness: 110 – 170 BHN
- Ultimate tensile strength: 410 - 530 N/mm2

3.2 Design Parameters

- Height of the centre plate: 268 mm
- Width of the centre plate: 299 mm
- Thickness of the centre plate: 24 mm
- Length of the base plate: 453 mm
- Width of the base plate: 299 mm
- Thickness of the base plate: 23 mm
Height of the cylinder vertical plate : 211 mm
Width of the cylinder vertical plate : 180 mm
Thickness of the cylinder vertical plate: 20 mm
Length of the cylinder gazette plate : 211 mm
Width of the cylinder gazette plate : 46 mm
Thickness of the cylinder gazette plate: 18 mm
Length of the gazette plate : 294mm
Width of the gazette plate : 70mm
Thickness of the gazette plate : 20mm

3.3 Block Diagram

Based on the dimensions of the pump components, a combination fixture was designed [30, 31] with the following parts, which are clearly indicated in the block diagram shown in Figure 2.

3.4 CAD Model

The seating plates for clamping the pump components were developed with SOLID WORKS software. The CAD models of seating plates are shown in Figure 3. CAD model for all parts required for combination fixture was developed with the help of SOLID WORKS software. All models were assembled using assembly design module. Assembled view of combination fixture is shown in Figure 4.

3.5 Fabrication

Pneumatic cylinder, gazette plates, base plates, cylinder supporting rods, cylinder vertical plates and supporting plates were fabricated. A combination fixture shown in Figure 5 was developed by assembling the above said components. It was used for clamping the pump components and performing machining operations like drilling, tapping and milling were carried out on the pump components with the help of a CNC machining centre.
IV. RESULTS AND DISCUSSION

A comparison was made on production time of pump components with and without combination fixture and given in Table 2 and Table 3 respectively. The comparison of production time is shown in Figure 6. The benefits of the combination fixture is given in Table 4.

![Figure 5. Combination Fixture](image)

![Figure 6. Comparison of Production Time](image)

Table 2. Production Time (without combination fixture)

<table>
<thead>
<tr>
<th>Component Name</th>
<th>Processes</th>
<th>Machine Type</th>
<th>Setting Work</th>
<th>Setting Time (Min)</th>
<th>Machining Time (Min)</th>
<th>No. of Component s</th>
<th>Production Time (Min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASM SP Rear & Front Cover</td>
<td>Drilling, Tapping</td>
<td>CNC</td>
<td>Fixture changing, pneumumatic clamping, tool setting & program setting</td>
<td>40</td>
<td>2.55</td>
<td>12</td>
<td>70.60</td>
</tr>
<tr>
<td>ASM Rear Cover</td>
<td>Milling, Drilling, Tapping</td>
<td>CNC</td>
<td></td>
<td>40</td>
<td>4.10</td>
<td>4</td>
<td>56.40</td>
</tr>
<tr>
<td>TVJ Delivery Casing</td>
<td>Milling, Drilling</td>
<td>Conventional</td>
<td></td>
<td>120</td>
<td>2.22</td>
<td>1</td>
<td>122.22</td>
</tr>
<tr>
<td>TVJ N Casing</td>
<td>Milling, Drilling</td>
<td>Conventional</td>
<td></td>
<td>120</td>
<td>2.22</td>
<td>1</td>
<td>122.22</td>
</tr>
<tr>
<td>Suction Bracket</td>
<td>Milling, Drilling</td>
<td>CNC</td>
<td></td>
<td>60</td>
<td>2.58</td>
<td>1</td>
<td>62.58</td>
</tr>
<tr>
<td>Total Production Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>434.02</td>
</tr>
</tbody>
</table>

Table 3. Production Time (with combination fixture)

<table>
<thead>
<tr>
<th>Component Name</th>
<th>Processes</th>
<th>Machine Type</th>
<th>Setting Work</th>
<th>Setting Time (Min)</th>
<th>Machining Time (Min)</th>
<th>No. of Component s</th>
<th>Production Time (Min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASM SP Rear & Front Cover</td>
<td>Drilling, Tapping</td>
<td>CNC</td>
<td>Only changing the seating plate</td>
<td>10</td>
<td>2.15</td>
<td>12</td>
<td>35.80</td>
</tr>
<tr>
<td>ASM Rear Cover</td>
<td>Milling, Drilling, Tapping</td>
<td>CNC</td>
<td></td>
<td>10</td>
<td>3.20</td>
<td>4</td>
<td>22.80</td>
</tr>
<tr>
<td>TVJ Delivery Casing</td>
<td>Milling, Drilling</td>
<td>CNC</td>
<td></td>
<td>10</td>
<td>1.38</td>
<td>1</td>
<td>11.38</td>
</tr>
<tr>
<td>TVJ N Casing</td>
<td>Milling, Drilling</td>
<td>CNC</td>
<td></td>
<td>10</td>
<td>1.40</td>
<td>1</td>
<td>11.40</td>
</tr>
<tr>
<td>Suction Bracket</td>
<td>Milling, Drilling</td>
<td>CNC</td>
<td></td>
<td>10</td>
<td>1.53</td>
<td>1</td>
<td>11.53</td>
</tr>
<tr>
<td>Total Production Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>92.91</td>
</tr>
</tbody>
</table>

Table 4. Benefits of Combination Fixture

<table>
<thead>
<tr>
<th></th>
<th>Before</th>
<th>After</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production Time (min)</td>
<td>434.02</td>
<td>92.91</td>
<td>Time of 341.11 minutes is saved and 78.6% productivity is increased</td>
</tr>
<tr>
<td>Rejection Rate</td>
<td>4 No's / Month</td>
<td>0 No's / Month</td>
<td>Zero Rejection</td>
</tr>
<tr>
<td>Operator’s Comfortability</td>
<td>Multiple fixtures</td>
<td>A combination fixture with seating plates</td>
<td>Operator’s fatigue is reduced</td>
</tr>
</tbody>
</table>
V. CONCLUSION

This paper outlines the design and development of a combination fixture for industrial applications. It shows that the loading and unloading of components are so easy and also number of the operations like milling, boring, drilling and tapping can be done in a single set up. The combination fixture leads to reduction in production time, reduction in production cost, flexibility in machining and overall improvement of the product quality.

ACKNOWLEDGEMENTS

The authors sincerely thank Mr. T. D. ESHWARANMOORTHY, Chairman, and our principal Dr Z. ROBERT KENNEDYEASA College of Engineering and Technology, Coimbatore, India for his support in preparing this article successfully.

REFERENCES

