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ABSTRACT 

A new family of continuous distribution called Pareto-Gumbel is developed using the transform-

Transformer techniques. We theoretically combine two distributions (Pareto and Gumbel) to form a new 

probability distribution called Pareto-Gumbel Distribution (PGD) to checkmate the limitations of the two 

distribution in order to address the shortcomings of the respective distributions. The Pareto distribution is often 

used to model the tails of another distribution, and the shape parameter ξ relates to tail-behavior, distributions 

with tails that decrease exponentially are modeled with shape ξ = 0,while distributions with tails that decrease 

as a polynomial are modeled with a positive shape parameter, distributions with finite tails are modeled with a 

negative shape parameter and Gumbel Extreme Value distribution, are widely applied for extreme value 

analysis and this distribution has certain drawbacks, because it is a non-heavy-tailed distribution and is 

characterized by constant skewness and kurtosis. The Gumbel distribution remains one of the mostly used 

statistical distributions in the frequency analysis of extreme events. This aspect is mainly due to the simple 

parameter estimation expressions, as well as the simple and accessible expression of the Statistical properties, 

the main advantage of the Gumbel distribution is the simplicity and accessibility of expressions and 

relationships. It is essential to understand that most distributions described in the literature were developed 

using transformed transformer (T-X) method. This method was proposed by Alzaatreh, et al., (2013), 

Adewusi, et al., (2019) and Ajewole et al (2025). This study develops a new family of continuous distribution 

called the Pareto-Gumbel, which had been developed by combining Pareto and Gumbel distribution using T-X 

techniques to form Pareto-Gumbel distribution. Several expressions for distribution theory and properties were 

explored and obtained; the maximum likelihood estimation approach was used to estimate the distribution 

parameters, with simulations conducted to assess the asymptotic behavior of these estimates. 

Keywords: Pareto-Gumbel, Transform-Transformer techniques, Statistical properties, Skewness, Kurtosis 

Maximum Likelihood Estimation. 

INTRODUCTION 

The Pareto distribution is used in describing social, scientific, quality control, actuarial and geophysical 

phenomena in a society. It is widely known for modelling phenomena where a small proportion of 

occurrences account for the majority of the effect. The distribution is often linked to the Pareto Principle, 

also called the 80/20 rule, which states that roughly 80% of effects come from 20% of causes. Empirical 

observation showed that this 80-20 distribution fits a wide range of cases, including natural phenomena  and 

human activities.  It is often used to model the tails of other distributions, It is specified by three parameters: 

location, μ, scale, β, and shape ξ. Sometimes it is specified by only scale and shape parameters and sometimes 

only by its shape parameter. Some literatures give the shape parameter K= − ξ in generalized extreme value 

distributions. It is equivalent to the exponential distribution when both μ = 0 and ξ = 0, and it is equivalent to 

the Pareto distribution when μ = β /ξ and ξ >0. Distributions with tails that decrease exponentially are modeled 

with shape ξ = 0, while distributions with tails that decrease as a polynomial are modeled with a positive shape 

parameter, distributions with finite tails are modeled with a negative shape parameter. Pareto distribution does 

not necessarily  mean that the input and output must be equal to 100 percent and its distribution continually 

present a critical limitation in characterizing data of discrete forms and it assumes that the distribution of 

causes and effect is static and unchanging (`Dunindu Tennakon 2023).The Gumbel distribution (also known as 

the type-I generalized extreme value distribution) is used to model the distribution of the maximum (or the 
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minimum) of a number of samples of various distributions. The potential applicability of the Gumbel 

distribution to represent the distribution of maxima relates to extreme value theory, which indicates that it is 

likely to be useful if the distribution of the underlying sample data is of the normal or exponential type. The 

Gumbel extreme value distribution, are widely applied for extreme value analysis and Gumbel distribution has 

certain drawbacks because it is a non-heavy-tailed distribution and is characterized by constant skewness and 

kurtosis. The applicability of the Gumbel distribution is diverse, being mainly used for frequency analysis of 

maximum flows, maximum precipitation and the construction of intensity duration frequency curves. The 

advantage of the Gumbel distribution is the simplicity and accessibility of expressions and relationships, 

regarding the disadvantages, it can be stated that the main disadvantage of the limited flexibility of this 

distribution in modeling various skewness, which generally leads to the limitation of the application of this 

distribution. It is a distribution whose statistical indicators have constant values, it is essential to understand 

that most distributions described in the literature were developed using transformed transformer (T-X) method. 

This method was proposed by Alzaatreh, et al., (2013), also Adewusi, et al., (2019), and Ajewole et al (2025), 

other researches are: Akarawak et al (2017), introduced Gamma- Rayleigh distribution as the new member of 

the Gamma -X family of generalized distribution. The Transformed-Transformer method was used to combine 

the Gamma and Rayleigh distributions. Oguntunde et.al (2015) introduces a three parameter probability model 

called weibull -exponential distribution using the weibull generalized family of distribution. Yazar et.al 

(2015). In their study, a family of generalized gamma distributions, T -gamma family, is introduced using the 

T -R{Y} framework. Marcelo. et.al (2015), developed a four-parameter model within this class named the 

exponentiated generalized Gumbel distribution using T-X techiques.  Mohieddine and Ayman (2018). 

Introduced a new two-parameter lifetime distribution, called a new generalized of the exponential-logarithmic 

distribution. Adamidis K. et.al (2005) developed on an extension of the exponential-geometric distribution. 

Almetwally M. et.al (2020) 

METHODS 

In this study, we proposed and explored a new distribution called Pareto-Gumbel distributions using the T-X 

techniques  

Theorem 1: Let 𝑋  be continuous independent random variable such that;  , ,X Pd x     follows an Pareto 

distribution and, let ( )f x  and ( )F x  be the probability density function and cumulative distribution function of 

Pareto distribution given as: 

    1
, ,f x x

  
 

   0, 0, 0x                     (1) 

Cumulative distribution function for Pareto distribution is given as: 

 , , 1F x
X




 
 

   
 

 0, 0, 0x                      (2) 

Theorem 2: Let 𝑋  be continuous independent random variable such that;  , ,X Gd x     follows  Gumbel 

distribution and, let ( )f x  and ( )F x  be the Probability density function and Cumulative distribution function 

of Gumbel distribution given as: 

 
 1 zz e

e


 

    where 
x

z





               (3) 

Cumulative Distribution function  

 x
e

e





 


                     (4) 
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The Formulation of the New Pareto-Gumbel Distribution 

Theorem 3 

Let X  be a continuous independent random variable such that  , ,X PG x    and let  f x  and  F x  be 

the Probability density function and Cumulative density function of Pareto-Gumbel distribution given as; 

.  2 1x  , , 0x              (5) 

Proof 

  1
f x

x








 0, 0                                        (6)  

and    
1

1 1r t t 


   0, 0                    (7)  

     log 1t F x                                             (8) 

Putting equation 7 into equation 8 using T-X techniques 

   
1

1log(1 ( )r x F x 


                                                        (9) 

=   1log(1 ( )F x                                                 (10) 

 
 

 1

f x
g x

F x



   1log( ( )i F x                                              (11) 

 
1

1

log(1 x

x

x
e

e




 

 

  
 

 

 
                                              (12) 

 
1

1 log(1 xx e


  
 

                                                 (10) 

 
1

1 0x x


  
 

                                                           (12) 

 
1

1x x


  
 

  
                                                (13) 

1x       . 1      
2

x                                                             (14) 

1 1x     . 
2

x       1                                                  (15) 

PG    .   
2 1x  , , 0x                                                            (16) 

Equation (16) is the PDF of the new PG. The distribution has two parameters namely:    (Shape),   (scale)  

Statistical properties 

In this section, the statistical properties of Pareto-Gumbel, particularly the first four moments, variance, and 

coefficient of variation, moment generating function, characteristic function, skewness, and kurtosis are 

obtained.  
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B. Moment  

Theorem 2: If X  is a random variable distributed as an PG  , ,x    having parameter ,   , then the 𝑟𝑡ℎ  

non-central moment of X is given by: 
21








                                                    

Proof: 

'

0

( ; , , , )r

r x f x dx   


                            (17)  

     

      2 1

0

.x x




 dx                                                             (18)  

    

    

2 1

2

0
1

x






 
                   (19)

 

     

2 1

1

x






 
 

  

                          (20)  

    

   '

r    
21







                                                                                                              

(21) 

Substituting  r =1, 2, 3 and 4 in equation (10 ) we obtain the first (mean), second, third and the fourth 

moments by for PG: we obtain the variance by the association 

 
2

2 1    

(ii) Mean = '

r 
21








                          (22) 

  (iii)           2 = 22








                (23) 

 
2

2 1( )V x                      (24) 

  

2

2 22 1

  

 

  
  

  
                (25) 

(iv)           
 

   

  

2
2 2 2 2

2
2 2

1 2

2 1
V x

     

 

    
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  
 
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Then the 3rd and the 4th moment is given as: 

(v)
3   

23








                                       (27) 

(vi)
4  = 24








   respectively                                                (28) 

C. Moment generating function 

Theorem 3: If X  is a continuous random variable distributed as an PG ( ; , )x   , then the moment generating 

function is given as  
1

x

t
M t

u

   


 

   

 
0

M ( ) ( ; , )tx tx

x t E e e f x dx 


             (29)   

  

      

2 1

0

txe x dx 


 

                          (30)  

 

Let 2 1u tx   2 1ux tx   , 
2 1 tx

x
u

  
  then 

1du
udu dx

dx u
    ,

du
dx

u
 so that (30) is reduced to 

2

0

1
.

t
u u





 

ue  du                                  (31) 

 
1

x

t
M t

u

   
                                 (32) 

D. Characteristic Function (CF) 

Theorem 5: If X  is a random variable distributed as an PG  , ,x    , then the characteristics function ( )x it  

is defined as  
1

x

it
t

u




  
  

Proof:  

          

 
0

( ) ( ; , )itx itx

x it E e e f x dx  


             (33) 

         

( )x it 

 

2 1

0

itxe x dx 


 

            (34) 

Let 2 1u itx    , 2 1ux     2 1ux it    ,
2 1 it

x
u

  
   
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1du
udu dx

dx u
    ,

du
dx

u
   

2

0

1 it

u

 




  
   ue  

du

u
                                          (35) 

2

0

. 1 uit
e du

u

 
  
                                          (36) 

2. 1 it

u

   
                                         (37) 

 
1

x

it
t

u




  
                                         (38) 

E. Coefficient of Variation (C.V) is a standardized measure of dispersion of a probability distribution and is 

given as:  

      
/

1

.
y

C V
x

 

 


 


              (39) 

     

CV 

  

   

    

1
22 2 2 2

2 22 2

1 2

12 1

 
     

 

 
   

  
 

           (40) 

CV 
    

   

 
12

2 2 2 2 2 2

1
2 22

1 2 1

2 1

 



     

 

 



   
 

 
           (41)

   

F. Skewness and Kurtosis 

Skewness is a measure of the asymmetry of the probability distribution of a real-valued random variable about 

its mean and is given as: 

   

' ' ' '33

3 3 1 2 1

3 3 3

3 2( )E x
SK

    

  

 
  
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     
33 2

2

3 X

X

X X X   



 

              (43) 

   
  
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   
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2 1

1 2 

 

     

  
 
   
 

  

 
Kurtosis is a descriptor of the shape of a probability distribution and is given as; 

   

' ' ' '2 ' '44

4 1 3 1 2 14

4 4 4

4 6 3( )E x
K

     

  

  
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 



 



   
 
  
         (46)

 
 

G. Cumulative Distribution Function (CDF) 

The cumulative distribution function of a random variable X evaluated at x is the probability that X will take a 

value less than or equal to x and is defined as; 

 
0

( ) ( ; , , )

x

F x P X x f x dx                       (47) 

Theorem 6: If 𝑋 is a continuous random variable from the Pereto Gumbel, the cumulative density function 

(CDF) is defined by  

 F x   
21 x     , , 0x           (48) 

Proof: 

 
x

o

F x     
2 1x   dx  , , 0x   

                (49)  

  

  
2 1

0

x
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2 1 1
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                                (51) 

2

2

0

x

x



 
 
  

                                (52) 

2

2
0

x

x








 
 

                               (53) 

2

2
0x








 
 

                                (54) 

2

2
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PDF   ξ 

 

Fig 1.  PDF plots of PGD ξ 

CDF 

 

Fig 2.  CDF plots for PGD  

From figure 1: The plot reveals various possible shapes of the PGD density function, including 

(approximately) symmetric, skewed, and unimodal were produced. It can be seen that the tail of the 

distribution is longer and shorter on both right side and left side for different combinations of the values of the 

parameters. This demonstrates the great flexibility of the PG distribution, which makes it suitable for various 

real data  and  CDF plot  shown in Figure 2 that PGD starts from zero on the y axis and tend to 1 on x axis , 

which is an indication that the PGD is a valid distribution because it satisfies the basic property of a valid 

probability distribution which states that the probability of any event is greater than or equal to zero and the 

sum of the cumulative probabilities of events is equal to one 

https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI) 

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XII Issue VII July 2025 

 

 

 

Page 260 www.rsisinternational.org 

 
 

 

H. Reliability Function 

The reliability function also known as survival function is a function that measures the likelihood that a 

patient, device, or other object of interest will survive beyond a specific time range and is defined as: 

( ) 1 ( )S x F x          (57) 

where ( )F x is the cumulative distribution function of X, substituting, 

( )S x    
211 x                                  (58) 

I. Hazard Function 

The hazard function also called the force of mortality, instantaneous failure rate, instantaneous death rate, 

or age-specific failure rate is the instantaneous risk that the event of interest happens, within a very narrow 

time frame and is defined as; 

    

( )
( )

( )

f x
h x

S x
                                                               (59)  

      where ( )f x  and ( )S x are pdf and survival function of PG then,

      

 

( )h x 

2

2

1

11

x

x

 

 



 

 

 
   Hazard function of PG         (60) 

J. The Maximum Likelihood Estimator 

Theorem 7: Let nxxx ,......, 21  be a random sample of size n from Pareto-Gumbel distribution (PG) with pdf  

     2 21 1
, , ...... nL x x x

                                      (61) 

By taking the natural logarithm of (61), the log-likelihood function is obtained as; 

 log L    2log 1n      
                          

(62) 

Therefore, the MLE which maximizes (3.35) must satisfy the following normal equations; 

log
log 0

d L n
X

d



 


           (63) 

2

logd L n

d



 





          (64) 

Therefore 

0
n n

 


             (65) 

Differentiating equation (62) with respect to 𝛼 , λ and 𝜃 give the maximum likelihood estimates of the model 

parameters that generate the solution of the nonlinear system of equations. The parameters can be estimated 

numerically by solving (63), (64), and (65), while solving it analytically is very cumbersome and tasking. The 
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numerical solution can also be obtained directly using some data sets in Python but there are other 

programming languages that could do the work. 

Table 1:  Empirical means and standard deviations (in parentheses) for PGD distributions. 

Parameters n = 20 n=50  n=100  

,                      

1,0.5,0.5, 1.1527 0.288 1.0551 0.7736 1.0721 0.7111 

-0.551 -0.2057 -0.2887 -0.3372 -0.3222 -0.2466 

0.5,0.5,0.5, 0.5267 0.5426 0.5011 0.5129 0.3755 0.612 

-0.2622 -0.3451 -0.1254 -0.1771 -0.1111 -0.1288 

2,2,2 2.0666 1.6561 2.0116 1.5552 2.0154 1.5531 

-0.2655 -0.2205 -0.2712 -0.1725 -0.3113 -0.1252 

3,0.1,2 3.0265 0.0656 3.0055 0.1011 3.114 0.1025 

-0.2647 -0.1157 -0.2002 -0.0281 -0.1157 -0.0222 

1,2,3 1.2061 1.5588 1.0516 2.0235 1.0512 1.6555 

-0.2122 -0.2654 -0.2507 -0.2012 -0.2077 -0.153 

4,3,2 4.0175 3.0045 4.015 3.0126 4.0156 3.0162 

-0.1576 -0.1574 -0.0516 -0.0515 -0.0347 -0.0624 

Simulations were conducted to assess the accuracy of the maximum likelihood estimators (MLEs) for the 

parameters of the PGD distribution. The aim is to determine whether the MLEs consistently converge toward 

the actual parameter values as the sample size increases. In this simulation study, 1000 samples were generated 

using sample sizes ranging from 20, 50, and 100 for PGD distributions. The performance of estimates is 

evaluated based on their bias of the MLEs of the model parameter for the simulation study; the empirical 

means and standard deviation of the parameters were obtained as follows in Table 1 

The simulation study demonstrates that with larger sample sizes, the empirical means approach the true 

parameter values more closely and the estimates become more consistent, as indicated by the decreasing 

standard deviations. These findings strongly suggest that the maximum likelihood method is highly effective 

for estimating the Pareto-Gumbel Distribution (PGD) parameters 

CONCLUSION 

A new distribution was developed called Pareto-Gumbel distribution using T-X techniques. The newly 

developed distribution as two parameters. We explored and generated several expressions for distribution 

theory and properties including the first four moment, moment generating function, characteristics function 

cumulative distribution function skewness, kurtosis ,Hazard function, Reliability function and the maximum 

likelihood estimation approach was use to estimate the  parameters of the distribution, and  simulation  

demonstrating that, as sample sizes increase, the empirical means converge to the true parameter values, and 

biases and mean squared errors (MSEs) approach zero. Additionally, the standard deviations decreased in all 

cases with larger sample sizes, confirming that the pareto-Gumbel distribution provides stable and reliable 

parameter estimates. 
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