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ABSTRACT 

Tomorrow's cars need smarter networks. Today's Vehicular Ad-hoc Networks (VANETs) struggle to meet the 

diverse and often conflicting demands of advanced applications, from split-second collision alerts to seamless 

streaming. Current cognitive radio (CR)-VANETs fall short, lacking the ability to orchestrate network resources 

effectively for multiple Quality of Service (QoS) goals in ever-changing traffic. 

This paper introduces the Cognitive-Driven Orchestration Framework (CDOF), a novel approach using Meta-

Reinforcement Learning (Meta-RL). CDOF intelligently manages spectrum and communication settings for a 

wide range of vehicular services. By understanding real-time conditions like vehicle movement, network 

interference (from "primary users"), and specific application needs, CDOF learns adaptable resource allocation 

strategies. Our Meta-RL engine, capable of "learning to learn," quickly adjusts to new, unseen situations, 

ensuring robust network performance even in highly dynamic environments. 

CDOF's unique multi-objective reward system prioritizes critical services like safety and autonomous driving 

(requiring ultra-low latency and high reliability) while efficiently managing resources for less critical services 

like infotainment. Simulations across various traffic and interference patterns demonstrate that CDOF 

significantly outperforms existing CR-VANET methods in guaranteeing QoS, adapting rapidly, and minimizing 

interference. 

Keywords: VANETs, Cognitive Radio, Meta-Reinforcement Learning, Multi-Objective QoS, Dynamic 

Orchestration  

INTRODUCTION 

Vehicular Ad-hoc Networks (VANETs) are the backbone of future Intelligent Transportation Systems (ITS), 

powering essential Vehicle-to-Everything (V2X) communication. However, the diverse needs of next-generation 

applications — from life-saving collision warnings (requiring less than 10ms latency) and autonomous 

platooning (demanding 99.9% reliability) to high-definition video streaming (needing over 5Mbps throughput) 

— create a complex web of conflicting Quality of Service (QoS) requirements. These demands clash within 

resource-limited and highly dynamic networks [1]. 

While Cognitive Radio (CR) helps overcome spectrum scarcity, it faces two major limitations in current VANET 

implementations: 

● Insufficient Orchestration: Existing CR-VANETs typically focus on isolated tasks, such as simply 

selecting a channel [7], without a holistic approach to dynamic spectrum management, seamless 

handovers, or effective interference mitigation. 

● Neglected Multi-Objective QoS: Current solutions lack mechanisms to simultaneously guarantee crucial 

metrics like latency, reliability, and throughput for various services [3]. 

We address these critical gaps with CDOF, a framework that offers: 

● Unified Cognitive Orchestration: CDOF integrates spectrum, power, and handover management into a 

single, comprehensive system. 
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● Meta-RL Decision Engine: This engine enables policies to adapt rapidly to entirely new and unforeseen 

environments, such as sudden accidents or novel patterns of primary user (PU) interference. 

● Dynamic QoS Prioritization: CDOF uses a clever multi-objective reward system to prioritize services 

based on their real-time importance. 

Our key contributions include: 

● A novel CDOF architecture for comprehensive CR-VANET orchestration. 

● A Meta-RL formulation designed for learning transferable policies. 

● A multi-objective reward mechanism that intelligently prioritizes QoS. 

● Rigorous validation proving CDOF's superior QoS guarantees and adaptation capabilities. 

Related Work 

CR-VANETs 

Prior work in CR-VANETs often focuses on isolated aspects: 

● Spectrum Sensing: Techniques like energy detection [9] and cooperative sensing [10] don't inherently 

integrate QoS considerations. 

● MAC Protocols: Priority-based channel access schemes [13] rely on static rules, which fail to adapt to 

dynamic QoS demands. 

● Routing/Resource Allocation: While systems like SURF [7] optimize channel selection, they often 

overlook the trade-offs involved in managing QoS for multiple services simultaneously. 

QoS Provisioning 

Efforts to improve QoS generally fall into two categories: 

● General Improvements: Adaptive beaconing [17] can boost packet delivery, but it lacks service-specific 

guarantees. 

● Multi-Objective Schemes: Heuristic optimization methods, such as Particle Swarm Optimization (PSO) 

[20], use fixed weights, which hinder real-time adaptability. 

RL Limitations 

Standard Reinforcement Learning (RL) approaches struggle with poor generalization in new scenarios (e.g., 

unexpected traffic patterns) and exhibit slow adaptation to abrupt network changes [25]. This makes them 

unsuitable for the highly dynamic nature of VANETs. 

Cdof Architecture 

CDOF features a layered, closed-loop cognitive architecture  

Data Collection & Contextual Awareness 

This layer gathers real-time data from various sources: 

● Sensors: GPS, On-Board Diagnostics (OBD-II), and Roadside Unit (RSU)-based Primary User (PU) 

sensing. 
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● Output: This data forms a contextual state vector SC(t), encompassing details like spectrum occupancy, 

network topology, vehicle density, and Signal-to-Interference-plus-Noise Ratio (SINR). 

 

Fig. 1 layered, closed-loop cognitive architecture. 

Table No.1 CDOF Architecture Layers and Components 

Layer Components / Functions Details 

3.1 Data Collection & 

Context Awareness 

GPS, OBD-II, RSUs, PU 

sensing 

Builds state S<sub>C</sub>(t) with data on spectrum, 

topology, density, SINR. 

3.2 Application & QoS 

Profiling 

Service classification (e.g., 

Safety, Infotainment) 

Defines QoS profiles Q<sub>P</sub>: latency, reliability, 

throughput, priority. Supports dynamic adjustment. 

3.3 Cognitive 

Orchestration 

Meta-RL engine Uses S<sub>C</sub>(t) and QoS state to generate optimal 

policy π*(t). Manages resources and handovers. 

3.4 Communication & 

Execution 

CR transceivers Applies policies, adjusts spectrum/power, and updates 

context via feedback loop. 

Application & QoS Profiling 

CDOF categorizes services and defines their specific QoS requirements: 

● Service Classes: Services are prioritized (e.g., Safety = Priority 5, Autonomous Driving = 4, Infotainment 

= 2). 

● QoS Profiles: Each service has a defined profile QP= {Lreq, Rreq, Threq, Priority}, specifying required 

latency (Lreq), reliability (Rreq), throughput (Threq), and priority. 

● Dynamic Negotiation: For instance, the required throughput (Threq) for infotainment can be dynamically 

adjusted during network congestion. 

Cognitive Orchestration Layer 

This is the core intelligence of CDOF: 

● Meta-RL Engine: This engine processes the contextual state SC(t) and QoS state SQ(t) to generate 

optimal communication policies π∗(t). 
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● Multi-Objective Reward: A sophisticated reward function balances rewards for meeting latency, 

reliability, and throughput goals, while penalizing interference with primary users. 

● Resource Allocation: CDOF jointly optimizes crucial parameters like channel selection, transmit power, 

Modulation and Coding Scheme (MCS), and bandwidth. 

● Handover Management: It ensures seamless transitions between Vehicle-to-Vehicle (V2V) and Vehicle-

to-Infrastructure (V2I) communications, maintaining QoS throughout. 

Communication & Execution 

● CR Transceivers: These hardware components execute the spectrum and power adjustments dictated by 

the orchestration layer. 

● Feedback Loop: The system continuously monitors actual QoS performance, feeding this information 

back to update the contextual state SC(t) and ensure adaptive learning. 

Meta-RL for Multi-Objective QoS 

Problem Formulation 

Each specific communication scenario or "task" Ti within the VANET is modeled as a Partially Observable 

Markov Decision Process (POMDP): (Si, A,Pi, Ri, γ). Here, A= {channel, power, MCS} represents the available 

actions. The overarching goal is to learn a meta-policy πmeta that allows the system to rapidly adapt to new 

tasks, such as unforeseen patterns of primary user activity. 

MAML-Based Meta-RL 

CDOF leverages Model-Agnostic Meta-Learning (MAML) [27] for its Meta-RL engine. MAML involves two 

loops: 

● Inner Loop (Task-Specific Adaptation): For a given task Ti, the model quickly adapts its parameters θ to 

find an optimal task-specific policy θi′=θ−α∇θLTi(πθ). This involves taking a few gradient steps on the 

loss function LTi for that particular task. 

● Outer Loop (Meta-Update Across Tasks): The meta-learner updates its initial parameters θ based on the 

performance of the adapted policies across various tasks: θ←θ−β∇θ∑TiLTi(πθi′). This teaches the model 

how to "learn to learn" quickly. 

Reward Function 

The reward function R(s,a) is designed to balance multiple QoS objectives: 

R(s,a)=j∈Apps∑(WLj⋅f(Lj)+WRj⋅PDRj+WThj⋅Thj/Threqj) −PPU(a) 

Where: 

● WLj, WRj, WThj are weights for latency, Packet Delivery Ratio (PDR), and throughput for each 

application j. 

● f(Lj) is a function that rewards lower latency. 

● PPU(a) is a penalty for interfering with primary users. 

Crucially, priority weights (WLj, WRj) are scaled by the service's Priorityval (e.g., 5x for safety-critical 

applications). Furthermore, contextual urgency can dynamically boost these weights near crit ical events like 

accidents, ensuring immediate prioritization. 
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Adaptation Advantages 

This Meta-RL approach provides significant benefits: 

● Generalization: Policies learned by CDOF can effectively transfer and perform well in previously unseen 

road conditions or PU patterns. 

● Resilience: The system can recover QoS performance within an impressive 100 milliseconds after 

network disruptions, such as sudden changes in traffic or new interference sources. 

Simulation & Evaluation 

Setup 

We validated CDOF using a robust simulation environment: 

● Tools: SUMO [28] for realistic vehicle mobility and NS-3 [29] for detailed network simulations. 

● Scenarios: Tested across diverse environments: urban (5 km$^2$), highway (10 km), and mixed traffic 

patterns. 

● Applications: 

○ Safety: Small, frequent messages (50 Bytes/10 Hz) with an ultra-low latency requirement (Lreq<10 ms). 

○ Infotainment: Larger, bursty data (1024 Bytes) with a higher throughput requirement (Threq>5 Mbps). 

● Benchmarks: We compared CDOF against industry standards and state-of-the-art schemes: Dedicated 

Short Range Communications (DSRC), SURF [7], and a conventional Static RL approach. 

Key Metrics 

Performance was evaluated using: 

● QoS Satisfaction Rate (QoSSR): The percentage of time that all required QoS parameters (Lreq, Rreq, 

Threq) are met. 

● P99 Latency: The 99th-percentile latency, indicating the maximum latency experienced by 99% of 

packets, a critical metric for safety. 

● Adaptation Time: The time taken for the system to recover its QoS performance after a significant 

disruption. 

Results 

CDOF consistently demonstrated superior performance: 

● QoSSR: In urban scenarios, CDOF achieved a remarkable 98.2% QoSSR for safety-critical applications, 

significantly outperforming SURF (85.7%) and DSRC (76.1%). 

● P99 Latency: For safety applications, CDOF maintained an impressive 8.2ms P99 latency, compared to 

14.5ms for Static RL. 

● Adaptation: CDOF recovered QoS performance in a mere 86ms after an accident, whereas Static RL 

required over 500ms. 
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● Generalization: Even in previously unseen rural areas, CDOF maintained a strong 94.1% QoSSR, far 

surpassing Static RL's 72.3%. 

CONCLUSION & FUTURE WORK 

The Cognitive-Driven Orchestration Framework (CDOF) is a pioneering Meta-RL-driven solution for CR-

VANETs, successfully addressing the complex challenges of dynamic resource management and multi-service 

QoS guarantees. By leveraging "learning to learn," CDOF achieves: 

● An exceptional 98.2% QoS satisfaction for critical safety applications. 

● Rapid 86ms adaptation to network disruptions, such as accidents. 

● Seamless generalization to new and unseen environments. 

CDOF's capabilities pave the way for robust, commercially viable, and QoS-guaranteed vehicular networks. 

Our future work will focus on: 

● Testbed Validation: Implementing CDOF on Software-Defined Radio (SDR)-based platforms for real-

world testing. 

● Scalability: Exploring Federated Meta-RL to enable city-scale deployments. 

● 5G/6G Integration: Investigating how CDOF can leverage advanced capabilities like network slicing in 

future cellular generations. 

● Security: Addressing privacy concerns related to contextual data sharing. 
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