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ABSTRACT 

This paper presents a comprehensive study on the topological properties within the framework of quasilinear 

spaces, particularly focusing on their application to set-valued maps. We generalize the established concept of 

normed quasilinear spaces, primarily as introduced by Aseev in 1986, to the more encompassing notion of 

topological quasilinear spaces1. Our investigation demonstrates that if S is an arbitrary topological space and Z 

is a metrizable topological vector space, then the space of minimal semi-continuous compact-valued maps, 

denoted as M(S,Y), can be mapped into a linear space. This significantly extends previous results where S was 

restricted to being a Baire space. 

A key contribution of this work is the detailed analysis of the topological vector space Ms(S, Z), defined by the 

topology of strong uniform convergence on compact subsets of S. We establish several fundamental properties 

of this space, including its completeness when S is a locally compact Hausdorff space and Z is complete. 

Furthermore, we prove that Ms(S, Z) is metrizable if and only if S is hemicompact. The paper also undertakes a 

comparative study of the topologies τs and τk, demonstrating that τs is finer than τk, with equality holding when 

S is locally compact. Through rigorous mathematical illustrations and examples, we show that the principle of 

localization, typically valid for topological vector spaces, may not hold universally for all topologically 

quasilinear spaces, particularly in the context of singular elements. These findings collectively contribute fresh 

insights into the topology of quasilinear spaces, multivalued mappings, and set-valued analysis. 

Keywords: Quasilinear Spaces, Set-Valued Maps, Topological Properties, Topological Vector Spaces, 

Metrizability, Completeness, Uniform Convergence, Hausdorff Space, Hemicompact Space, Minkowski 

Operations, Set-Valued Analysis, Aseev.  

INTRODUCTION 

The concept of Quasilinear Spaces introduced by Aseev encompassed both the traditional linear spaces & 

subset of non linear spaces and its multilevel mappings. This he applies to the quasilinear  space for its linear 

functional analysis by introducing the concept of  quasilinear operators & functional. From here, he proceeds 

further to exhibit some outcomes which in linear functional analysis context happens to be the quasilinear 

equivalent of the functional definition & theorem whereas in Banach Spaces context they were differential 

calculus. Aseev's this path breaking work has motivated many, and this paper, to present new results on fuzzy 

quasilinear spaces, multileveled mappings & set-valued analysis. 

The most significant example of a quasilinear space is Kc(E) when Kc(E) is a collection consisting of all 

convex compact subset of  E, and where E is a normed space. The study of this class includes convex and 

interval analysis since intervals turns out to be an ideal tools in the context of solving the global optimization 

problems as well as in the context of being an addition to the conventional techniques. 

Intervals being a set with infinite number, possesses infinite amount of information i.e. worldwide information. 

Further, the set differential equations theory also requires the study of  KC(E). There are various different 

methods including Markow method for introducing and for dealing with the quasilinear spaces. However, this 

paper but feels Aseev's best suited to provide the foundation and tools. Also, the Aseev's method provides 

higher dimension of set-valued algebra & analysis through ordering relation. Here in this paper the issues 
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related to the problem of uncertainty and to sensitivity necessarily belongs to set-valued analysis. The origin of 

set-valued analysis traced back to 19th century, developed primarily by  Cauchy, Riemann and Weierstrass, 

has gathered much interest these days. Aseev's early research in this aspect is also worthy of mention here. The 

main conclusions of this paper show that from S, an arbitrary topological space, the collection of minimal 

semi-continuous compact value maps into Z a metrizable topological vector space with Z being a vector space, 

this generalize the former results where S necessarily were Baire Space. The definitions of the algebraic 

operation, there, depended basically on the fact that any minimal upper semi-continuous compact valued map 

from  S, a Baire space,  to Y  where Y is a metric space is point-valued on a dense G-δ set.  Since this does not 

hold for generalized topological space S, new techniques have been considered in this paper. The metric 

characterization of  the quasi-minimal upper semi-continuous compact valued maps being the key. 

In this paper, until and unless defined otherwise, S and Y continue to denote general topological spaces and Z 

continues to be a topological vector space over a field K, wherein K is either the field of real numbers, R or C 

a field of complex numbers. For each s ∈ S, Vx  still denotes the collection of an  open neighborhoods of s in 

S. whereas the closure of A ⊆ S still remain to be denoted by A,  such that Int(A)  is the interior of A.  In case 

Y is a metric space, it is denoted by B(y, ϵ). The open ball with center at y ∈ Y of radius ϵ > 0, where B(y, ϵ) 

denotes closure of B(y, ϵ). 

Wherever it does so necessarily highlight the specific metric d on Y, the ball with center at y ∈ Y of radius ϵ is 

represented by Bd(y, ϵ). The collection consisting of all the subsets of Y is denoted here as P (Y), whereas   

C(Y) denotes it as consisting of all closed and non-empty subsets of  Y. The collections consisting of all 

nonempty compact subsets of Y is denoted here as K(Y). 

There following the establishment of normed quasilinear spaces and the bounded quasilinear operators in the 

already established norms, and by introducing some new results, this paper is able to some significant 

contributions towards the enhancement of the quasilinear functional analysis. 

Algebraic Operations and Linear Structures of Set-Valued Maps: 

For the sum of  subsets A and B of a topological vector space  Z,  Minkowski  defines as follow 

A ⊕ B = {a + b : a ∈ A, b ∈ B}, 

and  the Minkowski product of A ⊆ Z and a scalar α is  

α ⊙ A = {αa : a ∈ A}.                                                                                       (1) 

owing  to the continuity of the algebraic operations on Z, K(Z) is closed under the Minkowski operations. That 

is, 

⊕ : K(Z) × K(Z) → K(Z)                                   (2) 

And  

⊙ : K × K(Z) → K(Z).                                   (3) 

Here, though. K(Z) isn't a vector space with respect to (2) and (3). But naturally, although {0} ∈ K(Z) is an 

identity for (2) and the associativity and commutativity axioms are true, a general member in K(Z) doesn't 

have an additive inverse. In fact,  A ∈ K(Z) have  additive inverse if and only if A is a singleton.  Furthermore, 

scalar multiplication (3) isn't distributive over addition in K. 

Using operations (2) and (3) in a point-wise manner to employ mappings  f, g : S → Z and α ∈ K, one has: 

f ⊕ g : S ∋ s → f (s) ⊕ g(s) ∈ K(Z),                             (4) 

And  

α ⊙ f : S ∋ s → α ⊙ f (s) ∈ K(Z)                             (5) 
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are usco. Also, since Minkowski operations do not meet the axioms of linear space on K(Z), it is clear that the 

set of all usco maps form S into Z is not a linear space under (4) and (5). By proceeding with this, we can 

observe that an usco map  f : S ⇒ Z have an additive inverse if and only if  f  is point-valued at each s ∈ S.  

This being the case it follows that   f   is a continuous function from S into Z. Thus, neither M(S, Z) nor Q(S, 

Z) is, in general, a linear space according to (4) and (5). Actually, M(S, Z) is not even closed under Minkowski 

addition 

Example   Consider the musco maps f , g : R ⇒ R be defined as 

 

                                                                                                                         (6) 

 

And, 

      

                                                                                                                         (7) 

Therefore, Minkiwski sum of f ang g will be 

                                                                                                                          (9) 

 

Now, it is clear that f ⊕ g is usco, but not minimal. 

M (S, Z) As A Linear Space: 

Assuming  Z to be metrizable.   M(S, Z) is not a linear space with and is also not closed under Minkowski 

addition and hence  also not even a quasilinear space. However, the pointwise addition in (4) can be used to 

define the sum of two musco maps in the following way: for f , g ∈ M(S, Z), define the sum f + g of f and g as 

f + g = ⟨f ⊕ g⟩, 

where ⟨·⟩ : Q(S, Z) → M(S, Z) is the map defined  and  f ⊕ g ∈ Q(S, Z) since  f and g, being musco,  a quasi-

minimal usco. Therefore f + g  defined for all f , g ∈ M(S, Z). Easily it can be seen  that M(S, Z) is closed under 

Minkowski scalar multiplication (5). Therefore we defined the scalar product of α ∈ K and f ∈ M(S, Z) to be 

the Minkowski product of α and f .  

That means, 

αf = α ⊙ f .                                                                               (10) 

 

 

Theorem 1: M(S,Z) is a linear space 

Proof: From the above operations. Commutativity of the  addition, the existence of  the additive identity, 

distributivity of the  scalar multiplication over addition in M(S, Z), the compatibility of the scalar 

multiplication with field multiplication and also the identity element for scalar multiplication is the 

multiplicative identity in K all follow immediately, We  only checked  the rest of the axioms of the  linear 

space. 

To find that the  addition is associative, assume  f , g, h ∈ M(S, Z). By now, it is clear that 

                            𝑓(𝑥) =     

0 𝑖𝑓 𝑥 < 0
(1,0) 𝑖𝑓 𝑥 = 0

1 𝑖𝑓 𝑥 > 0
 

                           𝑔(𝑥) =    

0 𝑖𝑓 𝑥 < 0
(−1,0) 𝑖𝑓 𝑥 = 0

−1 𝑖𝑓 𝑥 > 0
 

𝑓⨁𝑔(𝑥) =     
0  𝑖𝑓 𝑥 ≠ 0

  (−1,1,0) 𝑖𝑓 𝑥 = 0
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f + (g + h) ⊆ f ⊕ (g + h) ⊆ f ⊕ (g ⊕ h) and 

(f + g) + h ⊆ (f + g) ⊕ h ⊆ (f ⊕ g) ⊕ h. 

Since f ⊕ (g ⊕ h) = (f ⊕ g) ⊕ h  it follows from the quasi-minimality of (f ⊕ g) ⊕ h that 

f + (g + h) = (f + g) + h. 

For f ∈ M(S, Z), let -f = (-1)f . Then by the definition (10) of addition in M(S, Z) it follows that f + (-f ) ⊆ f ⊕ (-

f ) 

and since 0 ∈ f ⊕ (-f )(s) for every s ∈ S, it follows that f + (-f )(s) = ⟨f ⊕ (-f )⟩ (s) = {0}. 

For α, β ∈ K and f ∈ M(S, Z), it follows  that 

(α + β)f ⊆ (αf ) ⊕ (βf ). 

But αf + βf ⊆ (αf ) ⊕ (βf ) by (12) so that αf + βf = ⟨(αf ) ⊕ (βf )⟩ = (α + β)f .  

It is notable that the algebraic operations on M(S, Z) are natural in at least two ways. At first, in terms of the 

quasilinear space Q(S, Z), the linear space M(S, Z) may be viewed as a quotient space with respect to the 

quasilinear subspace 

Q0(S, Z) = {f ∈ Q(S, Z) : 0 ∈ f (s), s ∈ S} 

of Q(S, Z). Indeed, if f , g ∈ Q(S, Z) then f ⊕ (-1 ⊙ g) ∈ Q0(S, Z) if and only if ⟨f ⟩ = ⟨g⟩. Therefore each f ∈ 

M(S, Z) may be viewed as an equivalence class of quasi-minimal usco maps given by 

f + Q0(S, Z) = {g ∈ Q(S, Z) : f - g ∈ Q0(S, Z)} = {g ∈ Q(S, Z) : ⟨g⟩ = f }. 

Then at second place, the algebraic operations of the M(S, Z) extend the usual point-wise operations on the set 

C(S, Z) of continuous functions from S into Z, in the way that the natural inclusion of C(S, Z) in M(S, Z) 

defines an injective linear transformation. 

Topologies of Uniform Convergence on Compact Sets for Set-Valued Maps: 

Consider Z be the metrizable topological vector space having translation invariant metric dZ. The topology of 

uniform convergence on compact sets (τk) on M(S, Z) is defined in tandem with  Hausdorff metric H on K(Z),  

is defined by the setting 

           H(K, L) = max{max{dZ (y, L) : y ∈ K}, max{dZ (z, K) : z ∈ L}}  (11) 

for all K, L ∈ K(Z). Here d(z, K) = min{dZ (z, y) : y ∈ K} for all K ∈ K(Z). For f ∈ 

M(S, Z), ϵ > 0 and K ∈ K(S), let 

 

           W(f , K, ϵ) = {g ∈ M(S, Z) : H(f (s), g(s)) < ϵ, s ∈ K}.  (12) 

It’s collection i.e. {W(f , K, ϵ) : f ∈ M(S, Z), K ∈ K(S), ϵ > 0} is the basis for the  “τk”  on  S. Following the 

previous operation we denote by Mk(S, Z) the set of musco maps from S into Z  being equipped with this 

topology. Based on  the above theorem  Mk(S, R) is a locally convex linear topological space whenever S is 

locally compact. Vice versa, if S  be a first countable, regular Baire space, then S is locally compact if and only 

if addition in Mk(S, R) is continuous, 

While Mk(S, Z) is, in general, not a topological vector space, the collection B0 = {W(0, K, ϵ) : K ∈ K(S), ϵ > 0} 

is a basis at 0 ∈ M(S, Z) in terms with  a vector space topology τs on M(S, Z). We call this topology τs the 

topology on strong uniform convergence on compact subsets of S, and denote M(S, Z) being equipped with 

this topology by Ms(S, Z). As shown, here we invigilate some of the properties of Ms(S, Z). 

Properties of The Topological Vector Space Ms (S, Z): 

Verifying our statement  that B0 is a basis at 0 for a vector space topology on M(S, Z). 

Theorem 2 : There is a Hausdorff vector space topology τs on M(S, Z) so that B0 is a basis for the τs-

neighbourhood filter at 0 ∈ M(S, Z). 

Proof. We prove that V0  the filter generated by the collection B0 satisfies the conditions .. To this end, fix K ∈ 

K(S), ϵ > 0 and α ∈ K \ {0}.                        

Clearly 0 ∈ W(0, K, ϵ). Select f , g ∈ W(0, K, ϵ/2 ). If s ∈ K, y ∈ f (s) and            z ∈ g(s) then, owing to the 

translation invariance of dZ, it follows that dZ (y+z, 0) ≤ dZ (y, 0)+dZ (z, 0) < ϵ. Therefore f +g(s) ⊆ f ⊕g(s) ⊆ 
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B(0, ϵ) such that H({0}, f + g(s)) < ϵ for all s ∈ K. Hence f + g ∈ W(0, K, ϵ) so that W(0, K, ϵ/ 2 ) + W(0, K, ϵ 2 

) ⊆ W(0, K, ϵ). 

Accordingly there exists ϵα > 0 such that B(0, ϵα) ⊆ αB(0, ϵ). If f ∈ W(0, K, ϵα), then f (s) ⊆ B(0, ϵα) ⊆ αB(0, ϵ) 

so that (1/α) f (s) ⊆ B(0, ϵ) for every s ∈ K. Hence H({0}, (1/α) f (s)) < ϵ for each s ∈ K, thus (1/α) f ∈ W(0, K, 

ϵ). Hence 

f ∈ αW(0, K, ϵ) so that W(0, K, ϵα) ⊆ αW(0, K, ϵ). If h ∈ M(S, Z) then, since K is compact, h(K) is compact. As 

such,  there exists a constant C > 0 so that λh(s) ⊆ λh(K) ⊆ B(0, ϵ) for all λ ∈ K so that |λ| < C and every s ∈ K. 

Thus H({0}, λh(s)) < ϵ for each s ∈ K so that λh ∈ W(0, K, ϵ) for each such . λ. That is, W(0, K, ϵ) is absorbing. 

It follows from  previous operations that there exists ϵ′ > 0 so that B(0, ϵ) contains the balanced hull of B(0, ϵ′). 

That is, {αy : y ∈ B(0, ϵ′), |α| ≤ 1} ⊆ B(0, ϵ). If f ∈ W(0, K, ϵ′) then f (s) ⊆ B(0, ϵ′) for every s ∈ K. Therefore αf 

(s) is contained in the balanced hull of B(0, ϵ′), and hence in B(0, ϵ), for every s ∈ S and α ∈ K so that |α| ≤ 1.  

As a result αf ∈ W(0, K, ϵ) whenever f ∈ 

W(0, K, ϵ′) and |α| ≤ 1 so that W(0, K, ϵ) contains the balanced hull of W(0, K, ϵ′).  Hence every element of V0 

contains an element of V0 that is balanced. Hence all the conditions in the operation  are satisfied so that V0 is 

the neighbourhood filter at 0 ∈ M(S, Z) for a vector space topology τs on M(S, Z 

Since 

⋂ 𝑤(0, 𝐾, 𝜖) = {0}

𝜖>0,𝐾∈K(𝐸)

 

it follows that τs is Hausdorff.  

It is note worthy that the topology τk on D(S, Z) depends on a particular metric dZ on Z. It is also notable that 

the topology τk on D(S, Z) depends on the particular metric dZ on Z.  That is, if d1 and d2 are metrics on Z which 

is compatible with the topology of Z, then the topology of uniform convergence on compact subsets of S 

generated by d1 may differ from the one derived by the means of  d2. Holá showed that if S is a regular, first 

countable and non discrete, then two compatible metrics on Z generate the same topology of uniform 

convergence on compact subsets of S on D(S, Z) if and only if the metrics are uniformly equivalent.   

Theorem 3 :  If Z is locally convex, then Ms(S, Z) is a locally convex space. 

Proof. Consider K ∈ K(S), ϵ > 0, f , g ∈ W(0, K, ϵ) and α ∈ [0, 1]. Then f (s), g(s) ⊆ B(0, ϵ) for all s ∈ K. If y ∈ 

αf +(1-α)g(s) for some s ∈ K, then there exists z ∈ f (s) and w ∈ g(s) so that y = αz+(1-α)w. Hence dZ(y, 0) ≤ 

dZ((1-α)w, 0)+dZ(αz, 0). But we may assume that the metric dZ on Z satisfies dZ(αv, 0) ≤ |α|dZ(v, 0) for all v ∈ Z 

and α ∈ K with |α| ≤ 1. Hence dZ(y, 0) < ϵ. Since this holds for all s ∈ K and y ∈ αf + (1 - α)g(s) it follows that 

αf + (1 - α)g ∈ W(0, K, ϵ). Thus Ms(S, Z) is a locally convex linear topological space. 

Completeness and Metrizability Of Ms (S, Z): 

We here, consider issues related to completeness and metrizability. We show that Ms(S, Z) is complete, with 

respect to the natural uniformity induced by its vector space topology, whenever S is a locally compact 

Hausdorff space and Z is complete. 

Furthermore, Ms(S, Z) is metrizable if and only if S is hemicompact. Recall that S is hemicompact if there 

exists a countable subset K0 of K(S) so that every K ∈ K(S) is contained in a member of K0. Combining these 

results we see that if S is a locally compact Hausdorff space and Z is complete, then Ms(S, Z) is completely 

metrizable if and only if S is hemicompact. 

Theorem 4 :  If S is a locally compact Hausdorff space and Z is complete, then Ms(S, Z) is a complete 

topological vector space. 

Proof.  Consider  (fγ )γ ∈Γ  be a Cauchy net in Ms(S, Z). We state that, for every s ∈ S, (fγ (s))γ ∈ Γ is a Cauchy 

net in K(Z) in terms  to the Hausdorff metric. Fix ϵ > 0 and s0 ∈ S. Since (fγ )γ ∈Γ is a Cauchy net, there exists 

𝛾𝑠0
𝜖 ∈  𝛤 so that 

fγ0 - fγ1 ∈ W(0, {s0}, ϵ) whenever γ0, γ1 ≥ 𝛾𝑥0
𝜖 . Fix z0 ∈ fγ0(s0). Let 

                 𝑓𝛾0
′ (𝑠) = { 𝑧 ∈ 𝑓𝛾0(𝑥)|∃ 

𝑤 ∈ 𝑓𝛾1(𝑠) ∶

𝑧 − 𝑤 ∈ 𝑓𝛾0 −  𝑓𝛾1(𝑠)
}  
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for every s ∈ S. Since 𝑓𝛾0
′ (𝑥)  ≠  ∅ for all s ∈ S and fγ0 is musco, it follows  that there exists a net (sλ)λ∈Λ that 

converges to s0 in S, and a net (zλ)λ∈Λ converging to z0 in Z so that 𝑧𝜆  ∈  𝑓𝛾0
′ (𝑥𝜆) for every λ ∈ Λ. Accordingly 

for 𝑓𝛾0
′  there is, for each λ ∈ Λ, some wλ ∈ fγ1(sλ) so that zλ-wλ ∈ fγ0 -fγ1(sλ). There is a subnet of (wλ)λ∈Λ that 

converges to some w0 ∈ fγ1(s0).  z0-w0 ∈ fγ0 -fγ1(s0). Therefore dZ(z0, w0) =dZ(z0 - w0, 0) < ϵ. In the same manner  

it follows that for each w0 ∈ fγ1(s0) there is z0 ∈ fγ0(x0) so that dZ(z0, w0) < ϵ.Therefore H(fγ0(s0), fγ1(s0)) < ϵ 

whenever γ0, γ1 ≥ 𝑁𝑠0
𝜖 , which verifies our statement. 

Since Z is complete, it follows that we may assume that the metric on Y is complete. Therefore K(Z) is 

complete with respect to the Hausdorff metric. Hence (fγ (s))γ ∈Γ converges to some Ks ∈ K(Z), with respect to 

the Hausdorff metric, for every s ∈ S. It is clear from the preceding argument that the convergence of (fγ (s))γ ∈Γ 

to Ks is uniform on compact subsets of S. We state that the map g : S ∋ s → Ks ∈ K(Z) is quasi-minimal usco. 

Fix s0 ∈ S and a compact neighbourhood V0 of s0. Consider U be an open set containing g(s0). Since g(s0) = Ks0 

is compact, it follows from the Lebesgue Number Lemma  that there exists ϵ > 0 so that g(s0) ⊆ Uϵ(g(s0)) ⊆ U 

where Uϵ(K) = ⋃{𝐵(𝑦, 𝜖) ∶  𝑦 ∈  𝐾} for any K ∈ K(Z). Since (fγ (s))γ ∈Γ converges uniformly on V0 to g(s) in 

terms with the Hausdorff metric, there is γϵ ∈ Γ so that fγ (s) ⊆ U ϵ/2 (g(s)) and g(s) ⊆ U ϵ/2 (fγ (s)) whenever s ∈ 

V0 and γ ≥ γϵ. Fix γ0 ≥ γϵ. Since fγ0 is usco, there is V ∈Vs0 so that fγ0(s) ⊆ U ϵ/2 (g(s0)) wherever s ∈ V. Without 

loss of generality, we may assume that V ⊆ V0 such that U ϵ/ 2 (fγ0(s)) ⊆ Uϵ(g(s0)) for every s ∈ V. Then g(s) ⊆ 

Uϵ(g(s0)) ⊆ U for all s ∈ V such that g is usco at s0. Since s0 ∈ S is arbitrary, it follows that g is usco on S. To 

see that g is quasi-minimal, consider some ϵ > 0, s0 ∈ S and a compact neighbourhood V0 of s0. 

Since (fγ (s))γ ∈Γ converges to g(s) uniformly on V0 there is γ ∈ Γ such that fγ (s) ⊂ U ϵ 3 (g(s)) and g(s) ⊂ U ϵ/ 3 

(fγ (s)) for all s ∈ V0. It follows that there is  sV0 ∈ V0 so that diam fγ (sV0) < ϵ/3 . Since g(sV0) ⊂ U ϵ/ 3 (fγ (sV0)) it 

follows 

that diam(g(sV0)) < ϵ. Therefore the set Dϵ = {s ∈ S : diam (g(s)) < ϵ} is dense in S. Hence Dϵ contains an open 

and dense set. Indeed, if s ∈ D ϵ/2 then there is V ∈ Vs such that V ⊆ Dϵ. Therefore g is quasi-minimal. It 

remains to show that (fγ )γ ∈Γ converges to f = ⟨g⟩ in Ms(S, Z). Fix K ∈ K(S) and ϵ > 0. Consider K′ be a 

compact subset of S containing K in its interior. Recall that (fγ (s))γ ∈Γ converges uniformly to g(s) on K′, with 

respect to the Hausdorff metric. 

Since f (s) ⊆ g(s) for every s ∈ S it follows that there is  𝛾𝐾′
𝜀 ∈  𝛤 such that f (s) ⊆ U ϵ/ 2 (fγ (s)) for every s ∈ K′ 

and γ ≥ 𝛾𝐾′
𝜀 . 

Therefore f ⊕(-fγ )(s)∩B(0, (ϵ/2) ) ≠ ∅ for every s ∈ K′ and γ ≥ 𝛾𝐾′
𝜀 . There is the map hγ : C ⇒ Z defined as 

 

 

is usco. Since hγ ⊆ f ⊕ (-fγ ) it follows  that hγ ⊇ f - fγ . Therefore f - fγ (s) ⊆ B(0, ϵ) for all s ∈ K and 𝛾 ≥  𝛾𝐾′
𝜀 . 

Since this holds for all K ∈ K(S) and ϵ > 0 it follows that (fγ )γ ∈Γ converges to f in Ms(S, Z).  

Theorem 5 : Ms(S, Z) is metrizable if and only if S is hemicompact. 

Proof. Assume that S is hemicompact. Then there exists a countable set K0 = {Kn : n ∈ N} ⊆ K(S) so that 

every K ∈ K(S) is contained in a member of K0. It is easy to see that {W(0, Kn, (1/m)) : m, n ∈ N} is a basis for 

τs at 0 ∈ Mk(S, Z). 

Therefore Ms(S, Z) is metrizable. Assume that Ms(S, Z) is metrizable. Since C(S, Z), with the usual point-wise 

operations, is a linear subspace of M(S, Z), 

it follows that C(S, Z), as a topological subspace of Ms(S, Z), is a Hausdorff topological vector space. In fact, it 

is easy to see that the subspace topology on C(S, Z) is the compact open topology. It therefore follows that C(S, 

Z) is metrizable in the compact open topology so that S is hemicompact.  

Corollary (a).  If S is a locally compact Hausdorff space and Z is complete, then Ms(S, Z) is a completely 

metrizable if and only if S is hemicompact. 

Comparision Between Ms(S, Z) And Mk(S, Z): 

ℎ𝛾(𝑥) =   
𝑓⨁(−𝑓𝛾)(𝑥) ∩ 𝐵̅ (0,

𝜖

2
) 𝑖𝑓 𝑥 ∈ 𝐼𝑛𝑡(𝐾′)

𝑓⨁(−𝑓𝛾)(𝑥) 𝑖𝑓 𝑥 ∉ (𝐼𝑛𝑡 (𝐾′
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Previously,  we compared  the topologies τs and τk. And showed  that τs is finer than τk, with equality holding 

when S is locally compact. This result is then used, in combination with the results obtained in the preceding  

operations for Ms(S, Z), to obtain corresponding results for Mk(S, Z). We also explain how our results 

generalize the known results. 

Theorem 6 : The following statements are true. 

(i) τs is finer than τk. 

(ii) If S is locally compact, then τs = τk. 

Proof. (i) Consider f ∈ M(S, Z), K ∈ K(S), ϵ > 0 and g ∈ W(0, K, ϵ). We state  

that f +g ∈ W(f , K, ϵ). To see that this is so, consider an arbitrary point s0 ∈ K and y0 ∈ f +g(s0). There is z0 ∈ f 

(s0) and w0 ∈ g(s0) such that y0 = z0 +w0. 

Then, since g(s0) ⊂ B(0, ϵ), it follows that dZ(y0, z0) = dZ(z0 + w0, z0) = dZ(w0, 0) < ϵ. Now take z0 ∈ f (s0). Let 

 

Since f ′(s) ≠ ∅ for every s ∈ S and f  is musco, there exists a net (xλ)λ∈Λ converging to x0 in S, and a net (zλ)λ∈Λ 

converging to z0 in Z so that zλ ∈ f ′(xλ) for each λ ∈ Λ. By the definition of  f ′ there exists, for each λ ∈ Λ, a 

point wλ ∈ g(xλ) so that yλ = zλ+wλ ∈ f +g(xλ). Since g is usco, There exist w0 ∈ g(x0) and a subnet of (wλ)λ∈Λ that 

converges to w0. There exists that y0 = z0+w0 ∈ f +g(x0). Since g(x0) ⊂ B(0, ϵ), the translation invariance of the 

metric on Z implies that dZ(y0, z0) = dZ(w0, 0) < ϵ. Therefore H(f (x0), f + g(x0)) < ϵ. 

Since this is true for every x0 ∈ K our state has been proven so that W(0, K, ϵ)+f ⊆ W(f , K, ϵ). Hence  τs is finer 

than τk. 

(ii) Now considering that S is locally compact. Consider f ∈ M(S, Z), K ∈ K(S) and ϵ > 0. Let K′ be a compact 

subset of  S containing K in its interior. We state that W(f , K′, 2ϵ ) ⊆ W(0, K, ϵ) + f . It is sufficient to show that 

h - f ∈ W(0, K, ϵ) 

wherever h ∈ W(f , K′, (ϵ/2) ). Since S is locally compact, and therefore a Baire space, it follows that the set  D 

= {s ∈ S : diam (f (s)), diam (h(s)) = 0} is dense in S. The above definition  of addition in M(S, Z) implies that 

h - f (s) = h(s) - f (s) for every s ∈ D. Therefore dZ(h(s) - f (s), 0) < (ϵ/2) for every s ∈ D ∩ K′. It therefore that 

ℎ ⊕ (−𝑓 )(𝑆)  ∩  𝐵̅𝜀
2⁄  ≠  ∅ for every s ∈ Int(K′). Hence  the map g :  S ⇒ Z defined by 

g(s) =  {
h ⊕ (−f)(s) ∩ B̅ε

2
(0) if s ϵ Int(K)′

h ⊕ (−f)(s) if s ∉  Int(K)′
 

 

 

 

is usco. Since h⊕(-f ) is quasi-minimal usco and g, h-f ⊆ h⊕(-f ), it is that h-f ⊆ g. Hence h - f (s) ⊂ B(0, ϵ) 

such that H(h - f (s), {0}) < ϵ for every s ∈ K. Thus h - f ∈ W(0, K, ϵ).  

Corollary (b). If S is locally compact, then the following statements are true. 

(i) Mk(S, Z) is a Hausdorff topological vector space. 

(ii) The topology on Mk(S, Z) is independent of the choice of compatible metric on Z. 

(iii) If Z is locally convex, then Mk(S, Z) is locally convex. 

(iv) Mk(S, Z) is metrizable if and only if S is hemicompact. 

(v) If S is Hausdorff and Z is complete, then Mk(S, Z) is complete. 

(vi) If S is Hausdorff and Z is complete, then Mk(S, Z) is completely metrizable if and only if S is 

hemicompact. 

Holá explained that Mk(S, Y) is completely metrizable wherever Y a complete metric space and S a locally 

compact hemicompact space. Corollary (b) (v) gives a partial converse to this result. Now considering that the 

𝑓′(𝑠) = { 𝑧 ∈ 𝑓(𝑠) |∃ 𝑤 ∈ 𝑔(𝑠): 𝑧 + 𝑤 ∈ 𝑓 + 𝑔(𝑠)} ,   𝑠 ∈ 𝑋  

𝑔(𝑥) =    
ℎ ⊕ (−𝑓)(𝑥) ∩ 𝐵̅𝜀

2⁄ (0)

ℎ ⊕ (−𝑓)(𝑥)
         

𝑖𝑓 𝑥 ∈ 𝐼𝑛𝑡(𝐾′)

𝑖𝑓 𝑥 ∉ 𝐼𝑛𝑡(𝐾′)
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S is a Baire space, such that M(S, R) = D∗(S). This being the case, Corollary (b) (i) and (iii) generalize the 

above operations, while Corollary (b) (iv)–(vi) also partially  generalizes it.  

After satisfying the Generalization of the Concepts in terms os the Topology of Linear Spaces we proceed 

towards doing so for Quasilinear Spaces, as below: 

Topological Quasilinear Spaces: Definitions and Properties 

Allow us  to start this  by giving some concepts  and basic  results. For some topological space S, the  Ns stands 

denoting  the family of all neighborhoods of an s ∈ S. Consider  S be a topological vector space TVS, for short, 

s ∈ S and  G ⊂ S. Then G ∈ Ns if and only if G - s ∈ N0 and s - G ∈ N0. This is what called the localization 

principle of TVSs. 

A set S is called a quasilinear space QLS, for short,  if a partial ordering relation  “≤”, an algebraic sum 

operation, and an operation of multiplication by real numbers are defined in it in such way that the following 

conditions hold for any elements s, y, z, u ∈ S, and any real scalars α, β: 

s ≤ s, 

s ≤ z          if s ≤ y, y ≤ z, 

s=y           if s ≤ y, y ≤ s, 

s + y= y + s, 

s + (y + z) =   (s +  y) + z 

there is an element 0 ∈ S such that s  0  s, 

α · (β · s) =  (α · β) · s, 

α · (s +  y) =  α · s + α · y 

1 · s  = s, 

0 · s = 0, 

(α +  β) · s ≤ α · s +  β · s, 

s + z ≤ y + v             if s ≤ y, z ≤ v, 

α · s ≤ α · y      if s ≤ y. 

A linear space is a QLS with the partial ordering relation “s ≤ y if and only if s  = y”. Perhaps the most popular 

example of nonlinear QLSs is the set of all closed intervals of real numbers with the inclusion relation “⊆” , 

algebraic sum operation 

A+  B = {a  b : a ∈ A, b ∈ B}                                                                    (13) 

and the real-scalar multiplication 

λA = {λa : a ∈ A}                                                                                       (14) 

Denoting this set by KCR. While another one is KR, the set of all compact subsets of real numbers. In general, 

KE and KCE stand for the space of all nonempty closed bounded and nonempty convex and closed bounded 

subsets of any normed linear space E, respectively. Both are QLSs with the inclusion relation and with a slight 

modification of addition as follows: 

𝐴 + 𝐵 =  {𝑎  𝑏 ∶  𝑎 ∈  𝐴, 𝑏 ∈  𝐵}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                                                             (15) 

and with  real-scalar multiplication above. 

Hence, KC(E) = {A ∈ KE : A convex}. 

Lemma 1  In a QLS S the element 0 is minimal, that is, s = 0 if s ≤ 0. 

Definition . An element s ∈ S is called an inverse of an s ∈ S if s + s’=  0. If an inverse element exists, then it 

is unique. An element s having an inverse is called regular; otherwise, it is called singular. 

We prove later that the minimality is not only a property of 0 but also is shared by the other regular elements. 

Lemma 2.  Suppose that each element s in the QLS S has an inverse element s’ ∈ S. Then the partial ordering 

in S is determined by equality, the distributivity conditions hold, and, consequently, S is a linear space. 

Corollary (c) :  In a real linear space, equality is the only way to define a partial ordering such that operation 

(13)  hold. 
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It will be assumed in what follows that -s  = -1(s). An element s in a QLS is regular if and only if s – s =  0 if 

and only if 𝑥′=  -s. 

Definition . Suppose that S is a QLS and Y ⊆ S. Y is called a subspace of S wherever Y is a quasilinear space 

with the same partial ordering and the same operations on S. 

Theorem 7 : Y is a subspace of a QLS S if and only if for every s, y ∈ Y and α, β ∈ R, αs + βy ∈ Y. 

Proof of this theorem is quite similar to its classical linear algebraic counterpart. 

Consider  S  be a QLS and Y be a subspace of S. Suppose that each element s in Y has an inverse element 𝑥′ ∈ 

Y; then the partial ordering on Y is determined by the equality. In this case the distributivity conditions hold on 

Y, and Y is a linear subspace of S. 

Definition. Consider S be a QLS. An element s ∈ S is said to be symmetric provided that –s =  s, and Xb 

denotes the set of all such elements. Further, Xr and Xs stand for the sets of all regular and singular elements in 

S, respectively. 

Theorem 8 :  Xr, Xd, and Xs ∪ {0} are subspaces of S. 

Proof.  Xr is a subspace since the element 𝜆𝑥′ +  𝑦′ is the inverse of λs + y. 

Xs ∪ {0} is a subspace of S. Let s, y ∈ Xs ∪ {0} and λ ∈ R. The assertion is clear for s= y= 0. Let s ≠  0 and 

suppose that  s+ λy ∉ Xs ∪ {0}, that is, (s+ λy)+ u = 0 for some u ∈ S. Then  s+( λy+ u)= 0 and so 𝑥′ = λy + 

u. This implies that s ∈ Xr. Analogously we obtain y ∈ Xr if y ≠  0. This contradiction shows that s + λy ∈ Xs ∪ 

{0}. 

The proof for Xd is similar. 

Xr, Xd, and Xs ∪ {0} are called regular, symmetric, and singular subspaces of S, respectively. 

Example. Consider S =KCR and Z= {0} ∪ {a, b : a, b ∈ R and a≠ b}. Z is the singular subspace of S. 

However, the set {{a} : a ∈ R} of all singletons constitutes Xr and is a linear subspace of S. Factually, for any 

normed linear space E, each singleton {a}, a ∈ E is identified with a, and hence E is considered as the regular 

subspace of both KCE and KE. 

Lemma 3 The operations of algebraic operations of addition and scalar multiplication are continuous with 

respect to the Hausdorff metric. The norm is continuous function with respect to the Hausdorff metric. 

Lemma 4  (a) Suppose that sn → s0 and yn → y0, and that sn ≤ yn for any positive integer n. Then s0 ≤ y0. 

 (b) Suppose that sn → s0 and zn → s0. If sn ≤ yn ≤ zn for any n, then yn → s0.  

(c) Suppose that sn + yn → s0 and yn → 0; then sn → s0. 

Example Consider S  be a real complete normed linear space a real Banach space. Then S is a complete 

normed quasilinear space with partial ordering given by equality. Conversely, if S is complete normed 

quasilinear space and any s ∈ S has an inverse element 𝑥′ ∈ S, then S is a real Banach space, and the partial 

ordering on S is the equality. In this case ℎ𝑥(𝑥, 𝑦) =        ∥ 𝑥 − 𝑦 ∥𝑥 , it is notable that ℎ𝑥(𝑥, 𝑦) ≠∥ 𝑥 − 𝑦 ∥𝑥 for 

nonlinear QLS, in general. 

 For example, if E is a Banach space, then a norm on K(E)  is defined by ∥ 𝐴 ∥𝐾(𝐸)= 𝑠𝑢𝑝 ∥ 𝑎 ∥𝐸 . Then KE and 

KCE are normed quasilinear spaces. In this case the Hausdorff metric is defined as usual: 

,ℎ(𝐴, 𝐵) =  inf{𝑟 ≥  0 ∶  𝐴 ⊆  𝐵 + 𝑆𝑟(0), 𝐵 ⊆  𝐴 + 𝑆𝑟(0})                                    (15) 

Defining the Topology of Quasilinear Spaces: 

Definition. A topological quasilinear space TQLS, for short S is a topological space and a quasilinear space 

such that the algebraic operation of addition and scalar multiplication are continuous, and, following 

conditions are satisfied for any s, y ∈ S: 

for any U ∈ N0, s ≤ y and y ∈ U implies s ∈ U,                                         (16) 

for any U ∈ Ns, y ∈ U ⇐⇒ there IS some V ∈ N0 satisfying  s+V ⊆ U, 

such that s ≤ y+a for some a ∈ V or y ≤ s+b for some b ∈ V.                   (17) 

Any topology τ, which makes S, τ be a topological quasilinear space, will be called a quasilinear topology. The 
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ABOVE conditions  provide necessary harmony of the topology with the ordering structure on S. 

 

Example   Consider S be a TVS. Then, for any s, y ∈ S and for any U ∈ Ns, y ∈ U if and only if there exists a 

neighborhood V of 0 satisfying  s+ V ⊆ U such that s=  y + a for some a ∈ V or  y= s+ b for some b ∈ V . In 

fact, this is true by the localization principle of TVSs since U - s and  s - U are neighborhood of 0. Hence we  

obtain desired V by taking V=  U – s or V=  s - U. This provides the previous conditions.  Hence, S is a TQLS. 

We later show that some TQLS may not satisfy the localization principle.   

Remark. In condition 3.2, for some U ∈ Ns, we may find a V ∈ N0 satisfying   s+V ⊆ U such that both s ≤ y+a 

and y ≤ s + b for some a, b ∈ V . This comfortable situation depends on the selection of U. However, we may 

not find such a suitable V ∈ N0 for some U ∈ Nx even in TVS. 

Esample. Consider real numbers with usual metric. Take s =3, y= 5, and U = [2,7] ∈ Ns. Then any V ∈ N0 

satisfying 3+V ⊆ U must be a subset of  [ -1, 4]. Further 3 =5+a and 5=  3+b gives a =  -2, b= 2, and hence V 

can only include b. 

Remark . In a semimetrizable TQLS the condition can be reformulated by balls as follows: 

for any ε > 0, s ≤ y and y ∈ Sε0 implies s ∈ Sε(0)                                             (18) 

equivalently, 

s ≤ y implies d(s, 0) ≤ d(y, 0), 

for any ε > 0, y ∈ Sε s⇐⇒ there exists some Sε0, 

with s  Sε0 ⊆ Sεs such that s ≤ y  a for some a ∈ Sε0, 

                           or y ≤ s+b for some b ∈ Sε0.                                 (19) 

A TQLS with a semimetrizable quasilinear topology will be called a (semi)metric QLS. 

Theorem 9 : Let S be a TQLS. Then Xr and Xd are closed in S. 

Proof. {si} is a net in Sr converging to an s ∈ S. By the continuity of algebraic operations  -si → -s and si -si → 

s -s. This means s –s= 0 since si -si =  0 for each i, whence s ∈ Sr. 

The proof is easier for Xd. 

The result of this theorem may not be true for Xs ∪ {0}. Consider S =  KC(R) and define 𝑥𝑛 = [1, 1 
1

𝑛
]  ∈  𝑋𝑠 ∪

 {0} for each n ∈ N.  

Then sn → {1} ∉ Xs ∪ {0}. 

Definition Consider S be a quasilinear space. A paranorm on S is a function     p : S → R satisfying the 

following conditions. For every s, y ∈ S, 

(i) p(0) = 0 

(ii) p(s) ⩾ 0 

(iii) p(-s) = p(s) 

(iv) p(s+y) ⩽ p(s) + p(y) 

(v) if {tn} is a sequence of scalars with tn → t and {sn} ⊂ S with p(sn) → p(s), then p(tnsn) → p(ts) and 

(continuity of scalar multiplication) 

(vi) if s ≤ y, then p(s) ≤ p(y). 

The pair (S, p) with the function p satisfying the conditions (i) to (vi) is called a paranormed QLS. There exist 

that if any s ∈ S has an inverse element 𝑥′ ∈ S, then the concept of paranormed quasilinear space coincides 

with the concept of a real paranormed linear space. This paranorm is called total if, in addition, we have p(s) = 

0 ⇐⇒ s  0, 
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if for any ε > 0 there exists an element sε ∈ S such that, s ≤ y+ sε and p(sε) ≤ ε, then s ≤ y.   

                                                                                                                       (20) 

The equality 

𝑑(𝑥, 𝑦)  =   inf {𝑟 ≥  0 ∶  𝑥 ≤  𝑦 + 𝑎1
𝑟  , 𝑦 ≤  𝑥 + 𝑎2

𝑟  , 𝑝(𝑎𝑖
𝑟)   ≤  𝑟 }          (21) 

defines a semimetric on a paranormed quasilinear space S. d is metric wherever p is total. 

Now, consider  p be total and d(s, y) = 0. Then for any ε > 0 there exist elements𝑥𝜀
1, 𝑥𝜀

2 ∈ S such that s ≤ y+𝑥𝜀
1 

, and y ≤ s+ 𝑥𝜀
2 , for 𝑝(𝑥𝜀

𝑖 )  ≤ ε, i  1, 2. Hence the totality conditions imply that s ≤ y and y ≤ s, that is, s  y. 

Further, we have the inequality d(s+, y) ≤ p(s – y). 

Note that these definitions are inspired from the definitions about normed 

quasilinear spaces. The proofs of some facts given here are quite similar to that of Aseev’s corresponding 

results. 

If the first condition in the definition of norm in a QLS is relaxed into the condition 

‖s‖ ≥ 0         if s≠  0                                                                                   (22) 

and if the norm is removed, we obtain the definition of a seminorm. 

A quasilinear space having  seminorm is called a seminormed QLS. Similarly in linear spaces it can proved 

that a seminorm on a QLS is a paranorm. Thus we have the following implication chain among the kinds of 

QLS : 

normed-seminormed QLS ⇒ total paranormed-paranormed  QLS ⇒ metric-semimetric QLS ⇒ Hausdorff 

TQLS. 

Definition. Consider ( S, d)  be a semimetric QLS and s be an element of S. Then, the nonnegative number 

ρ(s) =  d(s - s, 0)                                                                                      (23) 

is called diameter of s. For every regular element s, ρ(s)= 0 since s – s =  0. Hence this definition is redundant 

in linear spaces. In addition it should not be confused with the classical notion of the diameter of a subset in a 

semimetric space for which it is defined by δ(U) = sups,y∈Ud(s, y)  for any U ⊂ S. 

For example, in KC(R),[ -1, 3] ∈ KCR and  ρ([-1, 3]) = h([-1, 3] –[ -1, 3], 0) 

                =  h([−4, 4], 0)  =  ‖[−4, 4]‖ 

                 = sup |a| =  4 

                     a ∈ [-4,4].                                                                             (24) 

However, for the singleton subset U = {[-1, 3]} of KC(R), δ(U)= 0. 

 result is half of the localization principle of TVS. 

Theorem 10:  Consider S be a TQLS, s ∈ S, and U is a set containing 0. If s + U ∈ Ns,,  then U ∈ N0. 

Proof. The proof is just an application of the fact that the translation operator fs : S → S, fs(v) =  v + s, is 

continuous by the continuity of the algebraic sum operation.  Though the converse of this theorem is true in 

almost all the TVSs, it may not be true in some TQLSs. 

Example Consider KC(R) again and let it be closed unit ball S1(0). Now, for      s = [2, 3] ∈ KC(R), we show 

that s+ S1(0) is not the neighborhood of s. A careful observation shows that s+ S1(0)  do not contain elements 

intervals for which the diameter is smaller than 1. However, every s-centered ball Sr(s)  with radius r contains a 

singleton if r ≥ ρ(s)/2 = ½ and contains an interval such as    [2+( r/2), 3 –( r/2)] if r < 1/2 since h([2, 3] ,[ 2+( 

r/2), 3 – (r/2)]=(r.2)<r     (25)  

That shows that, Sr(s) contains elements with diameter smaller than 1. However, neither a singleton nor such 

an element belongs to s+ Sr(0). This implies,       Sr(s) ⊈ s+Sr(0) for every r > 0. Eventually, the set s+S1(0) 

cannot contain an s-centered ball. Thus, the localization principle may not be satisfied about a singular element 

in KC(R). The example points that translation by a singular element destroys the property of being a 

neighborhood in a TQLS.  
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Theorem 11: Consider S be a TQLS and s ∈ Xr. Then U ∈ N0 ⇔ s+ U ∈ Ns. 

Proof. Consider again the operator fs in the Theorem 10. If this be the case the inverse 𝑓𝑠
−1 exists and is the 

continuous operator f-s. Hence fs is a homeomorphism hence preserves the neighborhoods. 

CONCLUSIONS 

This paper has significantly advanced the understanding of topological properties within the framework of 

quasilinear spaces and their crucial applications to set-valued maps. Our work successfully generalizes Aseev's 

foundational concept of normed quasilinear spaces to the more encompassing domain of topological 

quasilinear spaces, thereby broadening the theoretical landscape for such structures. 

A central contribution is the rigorous demonstration that the space of minimal semi-continuous compact-

valued maps, M(S,Z), can be endowed with a linear space structure, even when S is an arbitrary topological 

space and Z a metrizable topological vector space. This finding is particularly impactful as it extends previous 

results that were confined to more restrictive conditions on S, such as being a Baire space, necessitating the 

development of novel techniques based on the metric characterization of quasi-minimal upper semi-continuous 

compact-valued maps. 

Furthermore, the paper provides a detailed topological analysis of M(S,Z) when equipped with the topology of 

strong uniform convergence on compact subsets of S, denoted as Ms(S,Z). We establish several fundamental 

properties of this space, including its completeness under the conditions that S is a locally compact Hausdorff 

space and Z is complete. A key result is the characterization of its metrizability, proving that Ms(S,Z) is 

metrizable if and only if S is hemicompact. This comprehensive characterization provides essential tools for 

further research into the analytical properties of such function spaces. 

The comparative study of the strong uniform topology (τs) and the topology of uniform convergence on 

compact sets (τk) reveals that τs is consistently finer than τk, with these topologies coinciding when S is locally 

compact. This elucidates the precise relationship between different modes of convergence in this generalized 

setting. Moreover, our investigation into the principle of localization highlights that its universal validity, 

typical in topological vector spaces, may not extend to all topologically quasilinear spaces, especially 

concerning singular elements. This nuance is critical for avoiding pitfalls in future theoretical developments. 

Collectively, these findings offer fresh and profound insights into the intricate topology of quasilinear spaces, 

significantly enriching the fields of multivalued mappings and set-valued analysis. The established linear and 

topological structures provide a robust foundation for advancing functional analysis in non-linear contexts, 

paving the way for new applications in areas dealing with uncertainty and set-valued phenomena. 
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