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ABSTRACT 

Effective management of transportation infrastructure requires accurate modeling of system dynamics and 

deterioration processes. This study explores the application of Markov and Semi-Markov models as decision-

support tools for the maintenance and rehabilitation of transportation assets, such as roads, bridges, and transit 

systems. Markov models are employed to represent the probabilistic transitions of infrastructure condition 

states over discrete time intervals, enabling planners to estimate long-term performance and optimize 

maintenance policies. Semi-Markov models extend this framework by incorporating variable sojourn times, 

allowing for more realistic modeling of time-dependent deterioration and maintenance effects. By comparing 

the predictive capabilities and computational performance of both models, this research highlights their 

respective advantages and suitability for different infrastructure management scenarios. The findings support 

the integration of stochastic modeling approaches into infrastructure asset management systems, leading to 

improved decision-making, cost-efficiency, and service reliability. For many years, pavement and bridge 

management systems have included Markov models. Semi-Markov models have been used in Bridge 

Management Systems in more recent years. According to research, this stochastic technique can be used to 

predict future network level conditions and to develop preservation models for transportation infrastructure if 

there is sufficient data to create semi-Markov models for that infrastructure. These methods can be used in 

numerous contexts and are not just restricted to transportation infrastructure. 

Keywords: Markov Models, Semi-Markov Models, Transportation Infrastructure, Stochastic Modeling. 

INTRODUCTION 

The management of transportation infrastructure is a critical component of national and regional development, 

directly impacting economic growth, public safety, and quality of life. As infrastructure systems such as 

highways, bridges, and public transit networks age, they are subject to continuous deterioration due to traffic 

loads, environmental conditions, and material aging. Maintaining these assets in a serviceable condition over 

their life cycle presents a significant challenge for transportation agencies, particularly under constraints of 

limited budgets and growing demand. To address these challenges, data-driven and probabilistic methods have 

gained increasing attention for supporting infrastructure asset management decisions. Among these, Markov 

and Semi-Markov models have emerged as powerful tools for modeling the deterioration and maintenance of 

infrastructure systems. These stochastic models offer a structured framework for predicting future condition 

states, evaluating maintenance strategies, and optimizing resource allocation. Markov models are widely used 

due to their mathematical simplicity and ease of integration with existing asset management systems. They 

model the condition of infrastructure as a set of discrete states, with transitions between states governed by 

probabilities that depend solely on the current state. However, a key limitation of traditional Markov models is 

the assumption of constant time intervals between transitions, which may not accurately reflect real-world 

deterioration processes. To overcome this limitation, Semi-Markov models have been introduced as a more 

flexible alternative. By incorporating variable sojourn times—the time an asset remains in a particular state—

Semi-Markov models provide a more realistic representation of deterioration behavior and maintenance 

timing. This added complexity allows for better modeling of infrastructure systems that exhibit non-
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exponential transition patterns and varying maintenance effects. This paper explores the application of both 

Markov and Semi-Markov models in managing transportation infrastructure, comparing their capabilities, 

limitations, and implications for policy and practice. The goal is to demonstrate how these models can be 

effectively integrated into infrastructure asset management frameworks to support long-term planning, reduce 

life-cycle costs, and enhance the reliability and safety of transportation networks. 

Markov Chain Model 

The Markov chain model is one of the most widely used stochastic processes for modeling the deterioration 

of transportation infrastructure. It provides a mathematical framework for predicting the evolution of an asset's 

condition over time based on probabilistic transitions between discrete condition states. The fundamental 

assumption of a Markov chain is that the future state of the system depends only on its current state and not on 

the sequence of past states—this is known as the Markov property. 

If  𝑋𝑛 = 𝑖 describes a process such that the process is in state i at time n, and the process in state i has a fixed 

probability 𝑃𝑖,𝑗  of being in state j, after a transition, then 

𝑃{𝑋𝑛+1 = 𝑗|𝑋𝑛 = 𝑖, 𝑋𝑛−1 = 𝑖𝑛−1,….,𝑋0 = 𝑖0} = 𝑃𝑖,𝑗 …………………… . (1) 

For all states 𝑖0, 𝑖1, 𝑈𝑖𝑛−1, 𝑖, 𝑗  and all 𝑛 ≥ 0. 

Examine the spectrum of crack indices linked to flexible (asphalt) road pavement in Table 1, where each 

condition state has been allocated a crack index. Transition probabilities for a Markov chain model can be 

produced using the following formula, which was employed by Wang et al. 

 

𝑃𝑖,𝑗(𝑎𝑘) =
𝑚𝑖,𝑗(𝑎𝑘)

𝑚𝑖(𝑎𝑘)
……………………………………………(2) 

for i, j = 10,9,8,7,6,5 & 4 where, 

𝑘 = 𝑘𝑡ℎ rehabilitation action, in this case, the ‘do-nothing’ action, i.e. k =1. 

𝑃𝑖,𝑗(𝑎𝑘) =  transition probability from state i to j after action k is taken. 

𝑚𝑖,𝑗(𝑎𝑘) =  Total number of miles of pavement for which the state prior to action k was i and the state after 

the action k was j. 

𝑚𝑖(𝑎𝑘) =  Total number of miles of pavement for which the state prior to action k was i. 

Table 1. The range of crack indices and corresponding condition states. 

Crack Index(CRK) range Condition state 

9:5 ≤ CRK ≤ 10 10 

8:5  ≤ CRK < 9:5 9 

7:5  ≤ CRK < 8:5 8 

6:5 ≤ CRK < 7:5 7 

5:5  ≤ CRK < 6:5 6 

4:5 ≤ CRK < 5:5 5 

CRK < 4:5 4 
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Semi-Markov model  

This section demonstrates a Semi-Markov model for flexible (asphalt) road pavement. Consider a stochastic 

process having states 0,1,2, …, which is such that whenever it enters state i, i ≥ 0, then: (1) it will enter the 

next state j with probability Pij, i, j, ≥ 0, and (2) given that the next state is j the sojourn time from i to j has 

distribution Fij. For a semi-Markov process, the sojourn times may follow a specific distribution and the 

method of Maximum Likelihood Estimation (MLE) can be used to estimate the parameters of that distribution, 

such as that of a Weibull Distribution. Before discussing how the semi-Markov process can be applied to 

model deterioration, it is beneficial to define the basic concepts of the MLE method. One well-known 

statistical method for determining estimators is the Maximum Likelihood. 

Maximum likelihood estimation 

The likelihood function is defined as follows if a population with a probability density function (pdf) or 

probability mass function (pmf) 𝑓(𝑥|𝜃1, 𝑈𝜃𝑘) has an identical and independently distributed sample, X1, 

…,Xn. 

𝐿(𝜃|𝑋) = 𝐿(𝜃1,…….,𝜃𝑘|𝑥1,………,𝑥𝑛) =  ∏ 𝑓(𝑥𝑖|𝜃1,……..,𝜃𝑘)……………… . (3)
𝑛

𝑖=1
 

Assuming a Weibull distribution for the sojourn time, the Weibull distribution's pdf, as defined by Billing t and 

Allan, Tobias, and Trindade, is 

𝑓(𝑡) =
𝛽

𝛼
(
𝑡

𝛼
)

𝛽−1

𝑒−(
1
𝛼

)𝛽 ………………………………(4) 

where t is the number of years it takes for each unit of a mile of pavement segment to spend in one condition 

state before changing to another, and η and β are the corresponding scale and shape parameters. If η =1/α, then 

𝑓(𝑡) =  𝛽𝜂(𝜂𝑡)𝛽−1𝑒−(𝜂𝑡)𝛽 …………………………… . . (5) 

Using Eq. 3 it follows that the likelihood is: 

𝐿(𝑡1, …… , 𝑡𝑛 , 𝜂, 𝛽) = (𝛽𝜂𝛽)
𝑛
𝑒−𝜂𝛽

(𝑡1
𝛽

+ … . +𝑡𝑛
𝛽
)∏ 𝑡𝑖

𝛽−1
𝑛

𝑖=1
……… . (6) 

Once the log likelihood has been differentiated and set to zero, the MLE of the parameters 𝛽̂ and 𝜂̂ are 

𝛽̂ = [
∑ 𝑡𝑖

𝛽̂
ln (𝑡𝑖)

𝑛
𝑖=1

∑ 𝑡𝑖
𝛽̂𝑛

𝑖=1

−
1

𝑛
∑ ln (𝑡𝑖)

𝑛

𝑖=1

]

−1

…………………………… . . (7) 

And 

𝜂̂ =  [
𝑛

∑ 𝑡𝑖
𝛽̂𝑛

𝑖=1

]

1/𝛽̂

………………………………… . (8) 

The sojourn times T1,…,Tn k for then k units of pavement should also be taken into consideration in the 

evaluation . For the Weibull distribution, if it is assumed that the incomplete sojourn times of T1,…,Tn k have 

been observed in addition to the complete sojourn times t1,…,tk, then the likelihood function can be expressed 

as follows: If there are n units of pavement in a particular condition state and k units have transitioned to a 

lower condition state (with complete individual sojourn times t1 < t2 <… tk and the sojourn time for n k units of 

pavement are unknown, 
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𝐿 =  ∏𝑓(𝑡𝑖|𝜃).∏ 𝑓 (1 − 𝐹(𝑇𝑗, |𝜃)) …………… . . (9)
𝑛−𝑘

𝑗=1

𝑘

𝑖=1

 

Where I sums over all completed sojourn times, j sums over all incomplete sojourn times, and θ can be a 

vector. 

𝐿(𝑡1, … . . , 𝑡𝑛 , 𝜂, 𝛽) =  (𝛽𝜂𝛽)𝑘  𝑒−𝜂𝛽
(𝑡1

𝛽
+ ⋯ .+𝑡𝑘

𝛽
)∏ 𝑡1

𝛽−1
∏ 𝑒−(𝜂𝑇𝑗)

𝛽
𝑛−𝑘

𝑗=1

𝑘

𝑖=1
 

Producing the MLE of the parameters 𝛽̂ and 𝜂̂: 

𝛽̂ = [
∑ 𝑡𝑖

𝛽̂
ln(𝑡𝑖) + ∑ 𝑡𝑖

𝛽̂
ln(𝑇𝑗)

𝑛−𝑘
𝑖=1

𝑘
𝑖=1

∑ 𝑡𝑖
𝛽̂𝑘

𝑖=1 + ∑ 𝑇𝑗
𝛽̂𝑛−𝑘

𝑗=1

−
1

𝑘
∑ln (𝑡𝑖)

𝑘

𝑖=1

]

−1

 ………… . (11) 

And 

𝜂̂ = [
𝑘

∑ 𝑡𝑖
𝛽̂𝑘

𝑖=1 + ∑ 𝑇𝑗
𝛽̂𝑛−𝑘

 

]

1/𝛽̂

………………………………… . (12) 

Semi-Markov Kernel 

The semi-Markov kernel in the form given in Eq.13 can be used to illustrate how the semi-Markov can be 

generated by knowing the sojourn periods in a specific condition state prior to transitioning. I be defines the 

one-step transition probability Q_(i,j) (t) the semi-Markov process as: 

𝑄𝑖,𝑗(𝑡) =  𝑃[𝑋𝑛+1 = 𝑗, 𝐺𝑛  ≤ 𝑡|𝑋𝑛 = 𝑖]        𝑡 ≥ 0………………… . . (13) 

where, provided that the process is now in state i and that the waiting time in state i is less than t, Q_(i , j) (t) is 

the conditional probability that it will be in state j next. The amount of time the process stays in i before 

moving on to j is denoted by Gn. Additionally, it follows that 

 

𝑄𝐼,𝐽(𝑡) = 𝑝𝑖,𝑗𝐻𝑖,𝑗(𝑡)………………………………… . . (14) 

where 𝑝𝑖,𝑗 is defined as the transition probability of the embedded Markov chain, and 

𝐻𝑖,𝑗(𝑡) = 𝑃[𝐺𝑛 ≤ 𝑡|𝑋𝑛 = 𝑖, 𝑋𝑛+1 = 𝑗]………………………… . . (15) 

Semi-Markov process 

Given that a continuous-time semi-Markov process enters state i at time zero, Howard offered the following 

method to calculate the likelihood that it will be in state j at time n. 

∅𝑖𝑗(𝑛) = 𝛿𝑖𝑗 > 𝑤𝑖(𝑛)

+ ∑ 𝑃𝑖𝑘 ∫ ℎ𝑖𝑘(𝑚)∅𝑘𝑗(𝑛 − 𝑚)𝑖 = 1,2,   … . 𝑁; 𝑗 = 1,2, … ,𝑁; 𝑛 = 0,1,
𝑛

0

𝑁

𝑘=1

2…………… . . . (16) 
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𝛿𝑖𝑗 = {
1      𝑖 = 𝑗;
0        ≠ 𝑗.

  ………………………… . (17) 

This is known as the interval transition probability from state i to state j in the interval (0, n) > wi(n), where 

∅𝒊𝒋(𝒏)  is the probability that a continuous-time semi-Markov process will be in state j at time n given that it 

entered state i at time n = 0. It is also known as the interval transition probability from state i to state j in the 

interval (0, n) > wi(n). 

The probability of the sequence of events is represented by the second element, which means that at time m, 

the process moves from state i to a state k, and then in the remaining period n–m, it moves from state k to state 

j. To account for all possible outcomes, the probability is computed by adding up all periods (m) of the initial 

transition between l and n and all states (k) to which the first transition may have occurred. hik(m), where pik is 

the probability of transitioning from i to k, is a representation of the probability distribution of the sojourn time 

from i to k at time m. The matrix formulation equation for 

 

∅(𝑛) = 𝑊(𝑛) + ∫ [𝑃𝑥𝐻(𝑚)]
𝑛

0

∅(𝑛 − 𝑚)     𝑛 = 0,1,2,……             (18) 

In addition, let 

𝐶(𝑚) = [𝑃𝑥𝐻(𝑚)]………………………………………(19) 

 

When the core matrix is specified as C(m). The components of cij (m)=pijhij are as follows: hij (m) is the 

probability distribution of the sojourn time in state i prior to migrating to j at time m, and pij is the transition 

probability of the embedded Markov chain.  

Consequently, the interval transition matrix for "do-nothing" actions that represents a single transition at time 

m, ∅0,𝑚(𝑚),  can be written as follows: 

∅0,𝑚(𝑚) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 − ∑ 𝑝10,𝑗𝐻10,𝑗(𝑚)9
𝑗=4  

0
 
0
 
0
 
0
 
0
 
0

    

⋯ 
⋱
 
0
 
0
 
0
 
0
 
0

   

⋯ 
⋯
 
⋱
 
0
 
0
 
0
 
0

   

⋯ 
⋯
 
⋯
 
⋱
 
0
 
0
 
0

    

⋯ 
⋯
 
⋯
 
⋯
 
⋱
 
0
 
0

    

 𝑝10,5𝐻10,5(𝑚)
 

𝑝9,5𝐻9,5(𝑚)
 

𝑝8,5𝐻8,5(𝑚)
 

𝑝7,5𝐻7,5(𝑚)
 

𝑝6,5𝐻6,5(𝑚)
 

1 − 𝑝5,4𝐻5,4(𝑚)
 
0

           

𝑝10,5𝐻10,5(𝑚)
 

𝑝10,5𝐻10,5(𝑚)
 

𝑝10,5𝐻10,5(𝑚)
 

𝑝10,5𝐻10,5(𝑚)
 

𝑝10,5𝐻10,5(𝑚)
 

𝑝5,4𝐻5,4(𝑚)
 
1 )

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

                                                                                                                                                                                        

…20 
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where Hij is the cumulative distribution of the sojourn time between condition states i and j at time m, and pij is 

the probability for the semi-Markov process's embedded Markov chain. 

Another method is proposed to model the overall transition over time since it is evident that when calculating 

the overall transition probabilities for an interval (0, n), a number of permutations must be taken into account 

as the number of years, m, rises. The "do nothing" scenarios—in which no action is performed on the 

infrastructure—are the main emphasis when estimating asset deterioration. Therefore, it is reasonable to 

suppose that the semi-Markov process only proceeds in one direction after the infrastructure leaves a condition 

state and that condition state is never revisited. There's also a chance that certain infrastructure, like the 

pavement portions in this instance, will "skip" condition states in a single transition; 

But since there is very little chance of "skipping" two (2) or more condition states, it might not need to be 

taken into account. The transition probability (for the embedded Markov chain), pij, of "skipping" a condition 

state, k, is equal to one minus the transition probability (for the embedded Markov chain) of moving on to the 

next state, pik, assuming that only one condition state may be "skipped" in a single transition. Consequently, 

𝑝𝑖𝑗 = 1 − 𝑝𝑖𝑘    𝑖 = 10,9,8,7,5; 𝑗 = 𝑖 − 2, 𝑘 − 1,min(𝑗, 𝑘) = 4…………………… . (21) 

This is because, since deterioration is being taken into consideration, the overall chance of eventually departing 

a specific condition state—which is not a terminal state—to a lower condition state is 1. 

The period between the pavement segment's initial entry into condition state i and its initial entry into 

condition state j is also assumed to be the sojourn time in condition state i prior to shifting to condition state j. 

Figure 1's transition diagram illustrates the potential "single step" transitions in developing 

 

Figure 1. Transition diagram that represents the possible ‘single step’ transitions between condition states. 

the semi-Markov model, in which hij (m) is the probability density function of the sojourn time between 

condition states i and j at time m, and pij is the probability for the embedded Markov chain from one state to 

the other. The idea that only one transition can occur in a year is the basis for the term "single step" transition. 

The pavement segment spends some time in condition state 10 before moving into condition state 9 for the 

transition labeled p10, 9 h10,9 (m), and it spends some time in condition state 10 before moving into condition 

state 8 without going to condition state 9. 

It is assumed that only one transition occurs in a year, and in addition to calculating the interval transition 

probabilities for the interval (0, n), the conditional transition probabilities for each yearly interval for m = 1, 2, 

…,n are calculated and multiplied by one another to estimate the transition probabilities for the interval (0, n). 

∅0,𝑛(𝑛) = ∅0,1. ∅1,2. … . ∅𝑛−1,𝑛 ……………………………(22) 

In this case, m = 1, 2,…,n, and ∅𝑚−1,𝑚 is a one-year "single" transition probability matrix during the time m-1 

to m (i.e., mth interval). According to Eq. (20), the interval transition probability for the first year is as follows 

if the condition states can decrease by one (1) or two (2) states: 
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∅(𝑚) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 − ∑ 𝑝10,𝑗𝐻10,𝑗(𝑚)9
𝑗=8  

0
 
0
 
0
 
0
 
0
 
0

    

𝑝10,9𝐻10,9(𝑚)
 
⋱
 
0
 
0
 
0
 
0
 
0

   

𝑝10,8𝐻10,8(𝑚)
 
⋯
 
⋱
 
0
 
0
 
0
 
0

    

0 
⋯
 
⋯
 
⋱
 
0
 
0
 
0

       

0 
0
 
⋯
 
⋯
 
⋱
 
0
 
0

    

0 
0
 
0
 
⋯
 
⋯
 
⋱
 
0

    

0 
0
 
0
 
0
 
⋯
 
⋯
 
1

           

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

with m = 1. However, a different formulation is employed to calculate the corresponding transition probability 

matrices for the following intervals, assuming that the sojourn duration is left trimmed at the beginning of each 

period. 

Service life analysis and left truncation 

Reliability theory, also known as survival analysis, can be used to statistically analyze the service lives of 

transportation infrastructures. Sometimes the start time at the point of selection is not t = 0 (i.e., not at birth), 

but rather a value t = t0 >0. In other cases, individuals are chosen and tracked prospectively until the event or 

censorship occurs. As a result, it indicates that the subjects' life or censoring time, T i, is larger than t0, and that 

Ti is shortened at t0. When the same idea is applied to a transportation infrastructure's service life, then 

 

𝑇𝑇|𝑇>𝑡0
(𝑡) = {

0                              𝑖𝑓 𝑡0 > 𝑡; 
 

𝑇𝑇(𝑡) − 𝐹𝑇(𝑡0)

1 − 𝐹𝑇(𝑡0)
    𝑖𝑓 𝑡0   < 𝑡.

………………………… . (24) 

 

To determine the probabilities that are associated with the sojourn time for interval (1, 2],we assume that from 

Eq.(24) t0=1 and < t ≤ 2 It therefore means that at this point only sojourn times greater than t=1  are being 

considered and the cumulative distribution of the sojourn time in the interval can be considered truncated. It is 

therefore can be described as: 

 

𝐻𝑖,𝑗𝑇|𝑇>1
(1) =

𝐻𝑖,𝑗𝑇
(𝑡) − 𝐻𝑖,𝑗𝑇(1)

1 − 𝐻𝑖,𝑗𝑇
(1)

,       1 < 𝑡 ≤ 2 ……………………………(25) 

Consequently, the cumulative distribution of the sojourn time in the interval for interval (m -1, m) can be 

expressed as follows: 
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𝐻𝑖,𝑗𝑇|𝑇>𝑚−1
(1) =

𝐻𝑖,𝑗𝑇
(𝑡) − 𝐻𝑖,𝑗𝑇

(𝑚 − 1)

1 − 𝐻𝑖,𝑗𝑇(𝑚 − 1)
,       𝑚 − 1 < 𝑡 ≤ 𝑚 ……………………………(26) 

When t = m, the sojourn time's cumulative distribution turns into 

 

𝐻𝑖,𝑗𝑇|𝑇>𝑚−1
(𝑚) =

𝐻𝑖,𝑗𝑇
(𝑚) − 𝐻𝑖,𝑗𝑇(𝑚 − 1)

1 − 𝐻𝑖,𝑗𝑇
(𝑚 − 1)

,       𝑚 − 1 < 𝑡 ≤ 𝑚 ……………………………(27) 

Consequently, for the interval (m - 1, m), the transition probability is 

∅𝑚−1,𝑚 (𝑚) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 − ∑ 𝑝10,𝑗𝐻10,𝑗𝑇|𝑇>𝑚−1
(𝑚)9

𝑗=8
 
0
 
0
 
0
 
0
 
0
 
0

    

𝑝10,9𝐻10,9𝑇|𝑇>𝑚−1 
(𝑚)

 
⋱
 
0
 
0
 
0
 
0
 
0

    

⋯ 
⋯
 
⋱
 
0
 
0
 
0
 
0

       

0 
⋯
 
⋯
 
⋱
 
0
 
0
 
0

       

0 
0
 
⋯
 
⋯
 
⋱
 
0
 
0

    

0 
0
 
0
 
⋯
 
⋯
 
⋱
 
0

    

0 
0
 
0
 
0
 
⋯
 
⋯
 
1

      

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

         ………… 28 

Black et al. utilized Equation (27) to calculate the transition probabilities for yearly transitions in degradation 

models based on one-step states, assuming that the embedded Markov chain's transition probability was 1. 

Given that it has "survived" until the beginning of the period, it follows that the probability derived from Eq. 

(27) can be used to characterize the likelihood related to the sojourn duration until the end of the period. 

Sojourn times of flexible pavement condition states 

The sojourn time distribution for each one-tenth unit of a mile of pavement segment is then examined in order 

to create the semi-Markov model. The number of miles for a given segment can be rounded to the nearest one-

tenth of a mile. A schematic of the pavement segment's division into tenth of a mile sub-section is shown in 

Figure 2. The infrastructure data can be arranged and analyzed with the aid of an algorithm to estimate the 

parameters of the sojourn time distributions in each condition state. The steps are described in the following. 
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1. Each segment's length is calculated to the closest tenth of a mile.  

2. In order to mimic "do-nothing" activities on the pavement segments over time, a series of decreasing 

CRKs for each segment are extracted, which shows the yearly decreases in CRKs for each segment after 

the year that the segment was initially created or overlay. 

3. As previously mentioned, Table 1 is used to allocate the pavement segments to condition states 

throughout time. 

All of the pavement segments that are tracked eventually either reach the current condition state from a higher 

or equal condition state, or they are simply becoming "new." The sojourn period of a unit of pavement segment 

in the present condition state is practically known if it leaves a given condition state at a known time and enters 

a lower condition state. However, the sojourn time of a pavement segment unit is not precisely known and is 

regarded as right-censored if the pavement is in a specific condition state and the pavement tracking ended 

because the condition state either increased or the "study" ended. Pavement segments' condition states are 

shown changing over time in Figure 3, which also provides instances of the total and censored amount of time 

spent in each condition state. 

The distribution of the sojourn time in condition state I prior to transitioning to condition state j (H i, j (t)) can 

be ascertained based on the complete and censored durations derived from the data, where j is either i – 1 or i – 

2, i = 10,9,8,7,6,5 min(j) = 4. The percentage of the total quantity of the 

 

Figure 3. An example of the change in the condition states of pavement segments over time. 

For each condition state i, the number of units of assets that left condition state i and moved to all condition 

states other than itself (pi,j) can be calculated as the infrastructure that left condition state i and moved to 

condition state j. Segment 3 spends six years in condition state 10, drops one state, then spends seven years in 

condition state 9, and then drops one more state to condition state 8, as shown in Figure 3. It demonstrates that 

after spending a year in condition state 8, segment 3 moves on to condition state 7, where the pavement 

segment remains in condition state 7 for at least six years. Figure 3 before experiencing a two-state decline to 

condition state 8, segment 4 is observed to have spent ten years in condition state 10. This is followed by a 

sequence of one-state declines, from which the corresponding sojourn periods can also be deduced. 

It is possible to calculate the maximum likelihood estimate of the Weibull distribution's scale (α) and shape (β) 

parameters, which are used to characterize the sojourn time distributions. Based on the Weibull parameters (α 

and β values) found for the sojourn periods between condition states, an algorithm may be developed to find 

the series of transition probability matrices. This algorithm uses the MLE of the and β values as inputs. After 

that, the transition probabilities based on Eqs. (23) and (28) can be calculated and utilized to model the 

survival curves and the anticipated degradation over time. 

.Examples of transition probabilities associated with the Markov chain and semi-Markov models 

Transition probabilities in a Markov chain model 

As demonstrated below in Eq. (29), a transition probability matrix is an example of a set of transition 

probabilities for a Markov chain model. In Eq. (29), the condition states i and j are at the top and left of the 
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transition probability matrix, respectively, where Πij is the transition probability matrix for a Markov chain 

model. 

∏ 
𝑖𝑗

=

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.905 
0
 
0
 
0
 
0
 
0
 
0

    

0.072 
0.737

 
0
 
0
 
0
 
0
 
0

    

0.017 
0.157

 
0.660

 
0
 
0
 
0
 
0

       

0.006 
0.090

 
0.274

 
0.707

 
0
 
0
 
0

       

0 
0.016

 
0.042

 
0.188

 
0.724

 
0
 
0

    

0 
0
 

0.014
 

0.086
 

0.112
 

0.582
 
0

    

0 
0
 

0.010
 

0.019
 

0.164
 

0.418
 
1

      

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. . (29) 

 

Transition probabilities in a semi-Markov model 

An example of the transition probability of the embedded Markov chain of a semi-Markov process are shown 

for each transition in Table 2 

Table 2. Transition probabilities of the embedded Markov chain of the semi-Markov process. 

Transitions i to j  Transition probability 

10 to 9 0.707 

9 to 8 0.752 

8 to 7 0.645 

7 to 6 0.468 

6 to 5 0.214 

5 to 4 1.000 

10 to 8 0.293 

9 to 7 0.248 

8 to 6 0.355 

7 to 5 0.532 

6 to 4 0.786 

 

The frequency distributions of the observed sojourn time, comprising both the uncensored and right censored 

sojourn times, for each unit mile prior to transition are displayed in Figures 4–7. 

As anticipated, Figures 4 and 5 show that more pavement units fully changed from condition state 10 to 9 than 

from condition state 10 to 8. Figures 4 and 5 show the same total pavement length that is right-censored. This 
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is due to the uncertainty surrounding whether each pavement unit would have gone from condition state 10 to 

9 or from 10 to 8. 

Table 3 displays instances of the Weibull distribution parameters based on the Maximum Likelihood 

Estimation (MLE), and the corresponding uncertainties are 

 

Figure 4. Frequency of sojourn times in condition state 10 before transitioning to 9. 

 

Figure 5. Frequency of sojourn times in condition state 10 before transitioning to 8. 
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Figure 6. Frequency of sojourn times in condition state 9 before transitioning to 8 

 

Figure 7. Frequency of sojourn times in condition state 9 before transitioning to 7. 

Year 1 

∅𝑖𝑗(1) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.991 
0
 
0
 
0
 
0
 
0
 
0

    

0.008 
0.822

 
0
 
0
 
0
 
0
 
0

    

0.001 
0.078

 
0.795

 
0
 
0
 
0
 
0

       

0 
0.100

 
0.170

 
0.814

 
0
 
0
 
0

       

0 
0
 

0.035
 

0.123
 

0.886
 
0
 
0

    

0 
0
 
0
 

0.086
 

0.059
 

0.911
 
0

    

0 
0
 
0
 

0.063
 

0.056
 

0.089
 
1

      

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. . (30) 
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∅𝑖𝑗(1) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.970 
0
 
0
 
0
 
0
 
0
 
0

    

0.028 
0.716

 
0
 
0
 
0
 
0
 
0

    

0.002 
0.150

 
0.690

 
0
 
0
 
0
 
0

       

0 
0.134

 
0.249

 
0.749

 
0
 
0
 
0

       

0 
0
 

0.061
 

0.166
 

0.773
 
0
 
0

    

0 
0
 
0
 

0.085
 

0.107
 

0.744
 
0

    

0 
0
 
0
 
0
 

0.120
 

0.256
 
1

      

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. . (31) 

Year 3 

∅𝑖𝑗(3) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.944 
0
 
0
 
0
 
0
 
0
 
0

    

0.049 
0.652

 
0
 
0
 
0
 
0
 
0

    

0.007 
0.197

 
0.633

 
0
 
0
 
0
 
0

       

0 
0.151

 
0.290

 
0.717

 
0
 
0
 
0

       

0 
0
 

0.077
 

0.188
 

0.695
 
0
 
0

    

0 
0
 
0
 

0.095
 

0.138
 

0.602
 
0

    

0 
0
 
0
 
0
 

0.167
 

0.398
 
1

      

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. . (32) 

Year 4 

∅𝑖𝑗(4) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.915 
0
 
0
 
0
 
0
 
0
 
0

    

0.071 
0.603

 
0
 
0
 
0
 
0
 
0

    

0.014 
0.234

 
0.591

 
0
 
0
 
0
 
0

       

0 
0.163

 
0.319

 
0.694

 
0
 
0
 
0

       

0 
0
 

0.090
 

0.203
 

0.631
 
0
 
0

    

0 
0
 
0
 

0.103
 

0.163
 

0.484
 
0

    

0 
0
 
0
 
0
 

0.206
 

0.516
 
1

      

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. . (33) 
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Year 5 

∅𝑖𝑗(4) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.883 
0
 
0
 
0
 
0
 
0
 
0

    

0.093 
0.562

 
0
 
0
 
0
 
0
 
0

    

0.024 
0.265

 
0.557

 
0
 
0
 
0
 
0

       

0 
0.173

 
0.343

 
0.676

 
0
 
0
 
0

       

0 
0
 

0.100
 

0.215
 

0.577
 
0
 
0

    

0 
0
 
0
 

0.109
 

0.183
 

0.388
 
0

    

0 
0
 
0
 
0
 

0.240
 

0.612
 
1

      

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. . (34) 

Stochastic preservation model 

The approach can be used to the management of transportation infrastructure, where a semi-Markov decision 

process (SMDP) serves as the foundation for the decision model. One example of a bridge element with 

several condition states to which the preservation model might be used in a Bridge Management System is the 

"Bare Concrete Deck." Researchers in the field of infrastructure management, especially as it pertains to 

pavement and rail infrastructures, have applied the adaptive preservation approach. Because transition 

probabilities are revised over time, Madanat et al. also characterize the Pont is Bridge Management System's 

methodology as adaptive. The application of SMDP serves as the foundation for the methods described here. 

A bridge element's maintenance activities can include a variety of tasks with different time frames. Once more, 

the sojourn time—in this example, the amount of time needed to finish maintenance tasks—can be estimated 

using the Weibull distribution. It is expected that the sojourn periods for maintenance actions are independent 

of the bridge element's present and future condition states, in contrast to the do-nothing action. It is also 

reasonable to presume that rehabilitation efforts primarily include replacing the relevant bridge component, 

which has a more predictable timeline than maintenance efforts. It is possible to interpret the time required to 

complete improvement (maintenance and rehabilitation) work as beginning when the issue with the bridge 

element was initially identified, including the time needed to put the necessary work out to bid if needed, and 

then the time needed to actually complete the work. 

Network level optimization 

The ability to determine the minimum-cost long-term policy for each bridge element is one of the primary 

objectives of a Bridge Management System (BMS). This policy is based on the steady state concept and 

consists of a set of recommended actions that minimize the long-term Main Tenance, Repair and 

Rehabilitation (MR&R) cost requirements while keeping the bridge element out of risk of failure. If the 

minimum-cost long-term policy can be determined, it represents the most cost-efficient set of actions for the 

bridge element; therefore, if any of the actions are delayed, it will result in higher long-term expenses; if more 

improvement actions than the recommended actions are carried out, it will also result in higher long-term 

costs. It is anticipated that bridge components will continue to provide continuous transit connectivity over 

extended periods of time. It is crucial to have an ideal policy that can be sustained for a very long time. In a 

BMS the following three (3) things normally occur place each year: (1) Bridge elements deteriorate when no 

improvement actions are taken, also known as "do-nothing" actions; (2) some bridge elements undergo 

improvement actions, which incur associated costs; and (3) the improvement actions improve network 

conditions overall.  
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According to the MR & R actions, elements will move in and out of condition states at the network level for 

any given condition state. In order for a steady state to be achieved throughout the bridge network or a subset 

of it, the total number of bridge elements entering a specific condition state must match the total number of 

similar bridge elements exiting that condition state. This makes the policy long-term viable and ensures that 

the distribution of a bridge element among its condition states stays consistent from year to year within the 

group. The best policy is the one that meets steady state criteria and, as a result, reduces the transportation 

agency's operating expenses each year. 

Since a Markov chain model assumes that the sojourn time in one state before transitioning to another follows 

an exponential distribution for continuous time, it is more restrictive than a semi-Markov process, where the 

sojourn times can be assumed to follow a different distribution, such as the Weibull distribution. Accordingly, 

the Pont is Bridge Management System has used the Markov Decision Process (MDP) to determine the 

optimal policy, in which there is a means to update the transition probabilities over time or as needed. 

𝑓(𝑡) =
𝛽

𝛼
(
𝑡

𝛼
)

𝛽−1

𝑒−(
𝑡
𝛼

)
𝛽

……………………………………………(35) 

The scale and form parameters are represented by α and, respectively. The distribution that results becomes 

exponential and the rate of deterioration is constant when the shape parameter is equal to 1. The rate of 

deterioration increases with time if the form parameter is more than 1, and this rate reduces with time if the 

shape parameter is less than 1. The latter is generally not anticipated for infrastructure related to transportation. 

The deterioration model, which is a component of the preservation model for bridge elements, is similar to the 

one described above in that it uses the Maximum Likelihood Estimation of the parameters of the Weibull 

distribution to describe the sojourn time in one condition state before transitioning to a lower condition state. 

The sojourn time distribution for maintenance works can be determined in a similar manner. 

Discount coefficient 

We will examine continuous-time discounting with a rate of s > 0, for which the present value of one unit 

received t time units in the future is est. In the case of discounting over a 1-year period, we set t=1, which gives 

us e s=d. Here, d denotes the corresponding discrete-time discount rate used in a MDP. For instance, in the 

MDP, d=0:9 correspond to s= log 0:9 =0:105 in the SMDP, which represents the relevant discount factor 

derived from continuous-time 

The Laplace transforms (s-transform) 

In the context of the SMDP model, when accounting for continuous-time discounting, it is necessary to 

calculate the Laplace transform (s-transform) of the distribution of sojourn times between states. It is wise to 

consider the Laplace transform. Now, if is the pdf of a continuous random variable X that takes only non 

negative values; then f ⨯ x = 0 for x 

𝑀𝑥(𝑠) = 𝐸[𝑒−𝑠𝑋] = ∫ 𝑒−𝑠𝑋 ∫(𝑥)𝑑𝑥
 

𝑥

   ……………………………… . (36)
∞

0

 

A fundamental characteristic of the Laplace transform is that its evaluation at s=0 yields a value of 1. 

 

𝑀𝑥(𝑠)|𝑠=0 = ∫ 𝑓𝑥(𝑥)𝑑𝑥 = 1
∞

0

………………………………………… . (37) 

The Weibull distribution's Laplace transform can be complex, as demonstrated in Eq. (38). 
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𝐸[𝑒−𝑡𝑋] =
1

𝜆𝑘𝑡𝑘
 

𝑝𝑘√𝑞/𝑝

(√2𝜋)
𝑞+𝑝−2 𝐺𝑝,𝑞

𝑞,𝑝

(

 
 

1 − 𝑘

𝑝
,
2 − 𝑘

𝑝
, … . ,

𝑝 − 𝑘

𝑝
  

0

𝑞
,   

1

𝑞
, … .

𝑞 − 1

𝑞
 

| 
𝑝𝑝

(𝑞𝜆𝑘𝑡𝑘)𝑞

)

 
 

…… . (38) 

Where G is known as the Meijer G-function. 

Consequently, it might need to be addressed through numerical methods. Numerical solutions are derived by 

inserting the scale and shape (Weibull) parameter estimates, along with the continuous-time discount rate s, 

into the expression specified in Eq. (39) 

𝑀𝑥(𝑠) =  𝐸[𝑒−𝑠𝑋] = ∫ 𝑒−𝑠𝑥 .
𝛽

𝛼
(
𝑡

𝛼
)

𝛽−1

𝑒−(
𝑡
𝛼

)𝛽𝑑𝑥
∞

0

……………………… . (39) 

In the situation where the bridge element condition is in the terminal state, it can be mathematically assumed 

that the bridge element remains in that state for 1 year before ‘transitioning’ back into the terminal state. In 

cases where a certain transition consistently requires 1 year, the equivalent to the Laplace transform in this 

situation is given by Eq. (40) 

𝑀𝑥(𝑠) =   𝐸[𝑒−𝑠𝑋] = 𝑒−𝑡 …………………………(40) 

Semi-Markov decision process with discounting 

The subsequent wording gives the calculation of present values according to the SMDP 

𝑣𝑖(𝑎, 𝜆) = 𝑟𝑖(𝑎, 𝜆) + ∑𝑝𝑖𝑗(𝑎)𝑀𝑖𝑗
𝐻(𝑎, 𝜆)𝑣𝑗(𝑎, 𝜆)…………………… . . (40)

𝑁

𝑗=1

 

Where 𝑀𝑖𝑗
𝐻 represents the Laplace transform (s-transform) of 𝑓𝐻𝑖𝑗

(𝜏, 𝑎) and the transition at s = 𝜆 probability 

matrix, 𝑝𝑖𝑗  is defined as 

𝑃𝑖,𝑗(𝑎) =

[
 
 
 
 
 

𝑝1,1(𝑎) 

𝑝2,1(𝑎)
…

𝑝𝑁−1,1(𝑎)

𝑝𝑁,1(𝑎)

       

𝑝1,2(𝑎) 

𝑝2,2(𝑎)
…

𝑝𝑁−1,2(𝑎)

𝑝𝑁,2(𝑎)

     

… 
…
…
…
…

    

… 
…
…
…
…

     

𝑝1,𝑁(𝑎) 

𝑝2,𝑁(𝑎)
…

𝑝𝑁−1,𝑁(𝑎)

𝑝𝑁,𝑁(𝑎) ]
 
 
 
 
 

…………… . (43) 

If we let 

𝑞𝑖𝑗(𝑎, 𝜆) =  𝑝𝑖𝑗(𝑎)𝑀𝑖𝑗
𝐻(𝑎, 𝜆)…………………………… . . ……… (44) 

We obtain 

𝑣𝑖(𝑎, 𝜆) = 𝑟𝑖(𝑎, 𝜆) + ∑𝑞𝑖(𝑎)(𝑎, 𝜆)𝑣𝑗(𝑎, 𝜆)   𝑖 = 1,…𝑁 ……………… . . (45)

𝑁

𝑗=1

 

According to [19], the long-term value for ri (𝑎, 𝜆) is given by 

= 𝐵𝑖(𝑎) + ∑𝑝𝑖𝑗

𝑁

𝑗=1

∫ ∫ 𝑒−𝜆𝑥𝑏𝑖𝑗(𝑥, 𝑎)𝑓𝐻𝑖𝑗
(𝜏, 𝑎)𝑑𝑥𝑑𝜏

𝑡

𝑥=0

∞

𝜏=0

    …………………… . (46) 
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Where Bi (a) is the immediate cost and is determined by 

𝐵𝑖(𝑎) =  ∑ 𝑝𝑖𝑗(𝑎)𝐵𝑖𝑗(𝑎)               𝑖 = 1,…𝑁     𝐵𝑖𝑗(𝑎) < ∞

𝑁

𝑗=1

    …………………(47) 

From a mathematical perspective, the second term in Eq. (46) signifies the sum of costs that accrues at the rate 

per unit time until the transition to state j takes place, bij In the SMDP model, it is assumed that only 

'immediate' costs are incurred during a transition from one condition state to another. It can thus be assumed 

that the second term in Eq. (46) is zero. When expressed in matrix form, Eq. (45) becomes 

 

𝑉(𝑎, 𝜆) = [𝑣1(𝑎, 𝜆)  𝑣(𝑎, 𝜆)… . . 𝑣(𝑎, 𝜆)]𝑇   ………………… . (48) 

𝑅(𝑎, 𝜆) = 𝑉(𝑎, 𝜆) = [𝑟1(𝑎, 𝜆)  𝑟2(𝑎, 𝜆)… . . 𝑟𝑁(𝑎, 𝜆)]𝑇 …………… . . (49) 

𝑄 (𝑎, 𝜆) =

[
 
 
 
 
𝑞1,1(𝑎, 𝜆) 

𝑝2,1(𝑎, 𝜆)
…
 

𝑝𝑁,1(𝑎, 𝜆)

       

𝑞1,2(𝑎, 𝜆) 

𝑞2,2(𝑎, 𝜆)
…
 

𝑝𝑁,2(𝑎, 𝜆)

     

… 
…
…
 
…

    

… 
…
…
 
…

     

𝑞1,𝑁(𝑎) 

𝑞2,𝑁(𝑎)
…
 

𝑝𝑁,𝑁(𝑎, 𝜆)]
 
 
 
 

…………… . (50) 

Based on Eq.(45), considering steady state conditions, 

𝑉(𝑎, 𝜆) = 𝑅(𝑎, 𝜆) + 𝑄(𝑎, 𝜆) 𝑉(𝑎, 𝜆)…………………………… . (51) 

Then  

𝑉(𝑎, 𝜆) = [𝐼 − 𝑄(𝑎, 𝜆)]−1 𝑅(𝑎, 𝜆) ………………… . . (52) 

Consequently, there exists a Q (a, λ) that represents the minimum long-term cost, derived from an optimal 

policy. I be defines the minimum long-term cost as follows: 

𝑣𝑖
∗ = 𝑚𝑖𝑛{𝑟𝑖(𝑎, 𝜆) + ∑𝑞𝑖𝑗(𝑎, 𝜆)𝑣𝑗

∗

𝑁

𝑗=1

 (𝑎, 𝜆)}  𝑖 = 1,… . . , 𝑁 …… . . (53) 

Do-nothing action (action‘d’) 

Like previously stated, for ‘do-nothing’ actions (ad), it can be assumed that the sojourn time in an a condition 

state before transition follows a Weibull distribution, except when sojourning in the terminal state. With the 

help of Eq. (39), the numerical solution for the Laplace of the Weibull distribution can be found for all 

scenarios apart from failure. Let 

𝑀𝑖𝑗
𝐻(𝑎𝑑, 𝜆) = 𝐿{𝑓(∞, 𝑎𝑑|𝛼𝑖𝑗 , 𝛽𝑖𝑗)}            𝑖, 𝑗 = 1,…… . , 𝑁𝑆……………………(54) 

Here, NS denotes the count of states excluding the terminal state. The terminal state is characterized as an 

absorption condition state or the moment when the bridge element has reached the conclusion of its useful life. 

To put it differently, when evaluating the ‘do-nothing’ action on a bridge element, once it reaches the terminal 

state, it will persist in that state without rehabilitation. Thus, it follows that 

𝑀𝑖𝑗
𝐻 (𝑎𝑑, 𝜆) = 𝑒−𝑠 = 𝑒−𝜆       𝑠 = 𝜆;      𝑖 = 𝑗 = 𝐹 ……………………… . (55) 

Where F represents the terminal state. From Eqs. (44), (50) and (54), 

https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI) 

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XII Issue V May 2025 

Page 803 www.rsisinternational.org 

   

 

   

 

(𝑎𝑑 , 𝜆) = [

𝑝1,1. 𝐿{𝑓(∞, 𝑎𝑑|𝛼1,1, 𝛽1,1)}

⋮
𝑝𝐹,1. 𝐿{𝑓(∞, 𝑎𝑑|𝛼𝐹,1, 𝛽𝐹,1)}

0

  

⋯
⋯
⋯
0

   

⋯
⋯
⋯
0

   

𝑝1,𝐹 . 𝐿{𝑓(∞, 𝑎𝑑|𝛼1,𝐹 , 𝛽1,𝐹)}

⋮
𝑝𝐹,𝐹 . 𝐿{𝑓(∞, 𝑎𝑑|𝛼𝐹,𝐹 , 𝛽𝐹,𝐹)}

𝑒−𝜆

]…… . (56)  

Where ad represents ‘do-nothing’ action. 

It can be assumed that the deterioration of bridge elements occurs in a one-step process, with the bridge 

element able to drop by only one condition state at any given moment. To put it differently, an abridge element 

in a specific condition state will ultimately move to the next lower condition state when the only actions taken 

on that element are ‘do-nothing’ actions. It can also be assumed that for 'do-nothing' actions, once the 

condition of the bridge element exits a condition state, that state will not be revisited. For the ‘do-nothing’ 

action, the transition probability pij for the embedded Markov chain of the semi-Markov process is thus 

assumed to be 1 between the current and next condition states, as well as for the terminal state. Thus, for the 

bridge component that possesses five (5) condition states in addition to the terminal state 

𝑃𝑖,𝑗(𝑎𝑑) =

[
 
 
 
 
 
0
0
0
0
0
0

    

1
0
0
0
0
0

    

0
1
0
0
0
0

    

0
0
1
0
0
0

     

0
0
0
1
0
0

    

0
0
0
0
1
1]
 
 
 
 
 

        ……… . . (57) 

 

And so Eq. (56) can be simplified to: 

𝑄(𝑎𝑑 , 𝜆) =

[
 
 
 
 
 
0
0
0
0
0
0

    

𝐿{𝑓(∞, 𝑎𝑑|𝛼1,2, 𝛽1,2)}

0
0
0
0
0

    

0
𝐿{𝑓(∞, 𝑎𝑑|𝛼2,3, 𝛽2,3)}

0
0
0
0

    

0
0
⋱
0
0
0

     

0
0
0
⋱
0
0

    

0
0
0
0

𝐿{𝑓(∞, 𝑎𝑑|𝛼5,𝐹 , 𝛽5,𝐹)}

𝑒−𝜆 ]
 
 
 
 
 

(58) 

Maintenance action (action ‘m’) 

For maintenance action (am), the sojourn time distribution may also follow a Weibull distribution. Every time 

a maintenance action is performed, it can impact the condition of each bridge element in the network 

differently. To rephrase, the same maintenance action can lead to three possible outcomes for the condition 

state of a bridge element: it may increase, remain unchanged, or decrease at a slower rate than it would have 

without the action being taken. In order to estimate the transition probability of the embedded Markov chain as 

a result of the maintenance action, one can observe the changes occurring in a sample of bridge elements that 

underwent the maintenance action. The expected transition probability matrix between pairs of observations 

can be determined using the method of least squares with matrices computation. Take Eq.(59) into account: 

[

𝑥1 ⋯ 𝑥𝐹

⋮ ⋯ ⋮
𝑥1

∗ ⋯ 𝑥𝐹
∗
] . [

𝑝1,1(𝑎𝑚) ⋯ 𝑝1,𝐹(𝑎𝑚)

⋮ ⋯ ⋮
𝑝1,1(𝑎𝑚) ⋯ 𝑝𝐹,𝐹(𝑎𝑚)

] = [

𝑦1 ⋯ 𝑦𝐹

⋮ ⋯ ⋮
𝑦1

∗ ⋯ 𝑦𝐹
∗
]……… . (59) 

In which each row of xi’s represents the proportions of the bridge element (in each state) under condition state 

I prior to the maintenance action, am; each row of yi represents the proportions of the same bridge element in 

condition state i following the maintenance action, am, for i=1,2,…NS, F. Each row of the corresponding 

matrices containing the values of xi and yi corresponds to a distinct in-section record for a specific bridge 

element. When the xi’s and yi’s are known for a sample of identical bridge elements, the transition probability 

matrix for action am can be calculated through matrix computations via the least squares method, following 
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Eq. (60). The nearest pair of in-section dates preceding and succeeding a maintenance action can be utilized to 

capture the pairs of records that possess the respective condition states. 

𝑃𝑖,𝑗(𝑎𝑚) = [𝑋𝑇𝑋]−1[𝑋𝑇𝑋]………………………… . . . . (60) 

The resulting transition matrix does not account for uncertainties regarding the duration of maintenance work 

and the distribution of sojourn time in each condition state. It can also be assumed that the sojourn time 

distribution for the maintenance action follows a Weibull distribution. The numerical solution for the Laplace 

of the Weibull distribution of sojourn times, regardless of the current and subsequent condition states, can be 

determined for NS states (excluding the terminal state) using Eq. (39). As the solutions for NS states are 

numerical and the scale (α) and shape (β) estimates are not specific to any state, the Laplace of the Weibull 

distribution for each i, j is represented by: 

𝑀𝑖𝑗
𝐻(𝑎𝑚 , 𝜆) = 𝐿{𝑓(∞, 𝑎𝑚|𝛼, 𝛽)}𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑠𝑡𝑎𝑡𝑒  1,… ,𝑁𝑆 ………(61) 

Where NS denotes the count of states, excluding the terminal state. To find 𝑞𝐹,𝐹(𝑎𝑚 , 𝜆)., Eq. (55) can be 

applied. For an element with five (5) condition states (plus a terminal state), 

𝑄(𝑎𝑚 , 𝜆) =

[
 
 
 
 
 
 
 
 
 
 
 𝑝1,1. 𝐿{𝑓(∞, 𝑎𝑚|𝛼, 𝛽)}

 
𝑝1,1. 𝐿{𝑓(∞, 𝑎𝑚|𝛼, 𝛽)}

 
𝑝1,1. 𝐿{𝑓(∞, 𝑎𝑚|𝛼, 𝛽)}

 
𝑝1,1. 𝐿{𝑓(∞, 𝑎𝑚|𝛼, 𝛽)}

 
𝑝1,1. 𝐿{𝑓(∞, 𝑎𝑚|𝛼, 𝛽)}

 
0

   

 
…
 
…
 
…
 
…
 
…
 
0

     

 
…
 
…
 
…
 
…
 
…
 
0

     

 
… 
 
…
 
…
 
…
 
…
 
0

     

 
…
 
…
 

 …
 
…
 
…
 
0

     

𝑝1,1. 𝐿{𝑓(∞, 𝑎𝑚|𝛼, 𝛽)}
 

𝑝1,1. 𝐿{𝑓(∞, 𝑎𝑚|𝛼, 𝛽)}
  

𝑝1,1. 𝐿{𝑓(∞, 𝑎𝑚|𝛼, 𝛽)}
 

𝑝1,1. 𝐿{𝑓(∞, 𝑎𝑚|𝛼, 𝛽)}
 

𝑝1,1. 𝐿{𝑓(∞, 𝑎𝑚|𝛼, 𝛽)}
 

𝑒−𝜆 ]
 
 
 
 
 
 
 
 
 
 
 

  . (62) 

 

 

Rehabilitation action (action ‘r’) 

It is possible to ascertain the length of specific rehabilitation actions if there is adequate data on these 

rehabilitation projects. If this information is unavailable, you can estimate the duration of their habilitation 

action by calculating the time between the two (2) closest inspections before the start and after the completion 

of the rehabilitation action. In this case, the latter was assumed for sojourn time of two (2) years. It can be 

assumed that the transition probability of the embedded Markov chain for the rehabilitation action is fixed 

when the condition state of the bridge element returns to 1. As such, the transition probability for the 

embedded Markov chain of the semi-Markov process, pij, for rehabilitation action. 

𝑃𝑖,𝑗(𝑎𝑟) =

[
 
 
 
 
 
 1 
1
1
1
1
1

     

0
0
0
0
0
0

      

0
0
0
0
0
0

      

0
0
0
0
0
0

      

0
0
0
0
0
0]
 
 
 
 
 

………………………… .………(63) 

 

Based on  Eqs. (40), (44) and (50), 
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[
 
 
 
 
 
𝑒−2𝜆

𝑒−2𝜆

𝑒−2𝜆

𝑒−2𝜆

𝑒−2𝜆

𝑒−2𝜆

         

0
0
0
0
0
0

      

0
0
0
0
0
0

      

0
0
0
0
0
0]
 
 
 
 
 

…… . . ………………… . . . . (64) 

CONCLUSIONS 

This chapter presented viable methods that show how the state of transportation infrastructure can be utilized 

to create Markov and semi-Markov deterioration models, which represent network-level performance in the 

absence of maintenance actions. Modeling deterioration with semi-Markov processes allows for a less 

restrictive approach than Markov chain deterioration models, as it relaxes the assumption regarding the 

distribution of sojourn times in condition states for ‘do-nothing’ actions. A preservation model utilizing Semi-

Markov Decision Processes for transportation infrastructure was introduced. The preservation model aims to 

establish the least long-term costs associated with maintaining a transportation infrastructure within a group or 

network of comparable infrastructures. The primary ‘inputs’ for the preservation model are: (a) the scale and 

shape parameter estimate of the Weibull distribution that characterizes ‘do-nothing’ actions, and (b) the 

transition probabilities of the embedded Markov chain along with the scale and shape parameter estimates of 

the Weibull distribution for maintenance actions. When sufficient data is available, employing a Semi-Markov 

Decision Process is beneficial for modeling Transportation Infrastructure preservation. 

REFERENCES 

1. Wang CP. Pavement network optimization and analysis [PhD dissertation]. Tempe, AZ, USA: 

Arizona State University; 1992 

2. Wang KCP, Zaniewski J, Way G. Probabilistic behavior of pavements. Journal of Transportation 

Engineering, American Society of Civil Engineers (ASCE). 1994;120(3):358-375 

3. Nasseri S, Gunaratne M, Yang J, Nazef A. Application of improved crack prediction methodology in 

florida’s highway network. Transportation Research Record: Journal of the Transportation Research 

Board. 2009; 2093:67-7 

4. Golabi K, Thompson PD, Hyman WA. Pontis Version 2.0 Technical Manual, A Network 

Optimization System for Bridge Improvements and Maintenance. Washington DC: Federal Highway 

Administration; December 1993 

5. Micevski T, Kuczera G, Coombes P. Markov model for storm water pipe deterioration. Journal of 

Infrastructure Systems, American Society of Civil Engineers (ASCE). 2002;8(2):49-56 

6. Baik H-S, Seok HJ, Abraham DM. Estimating transition probabilities in markov chain-based 

deterioration models for management of wastewater systems. Journal of Water Resources Planning 

and Management, American Society of Civil Engineers (ASCE). 2006; 132(1):15-24 

7. Yang J, Gunaratne M, Jian John L, Dietrich B. Use of recurrent markov chains for modeling the 

crack performance of flexible pavements. Journal of Transportation Engineering, American Society 

of Civil Engineers (ASCE). 2005;131(11):861-872 

8. Yang J, Lu JJ, Gunaratne M, Dietrich B. Modeling crack deterioration of flexible pavements: 

Comparison of recurrent markov chains and artificial neural networks. Transportation Research 

Record: Journal of the Transpor tation Research Board. 1974;18–25:2009 

9. Ng S-K, Moses F. Bridge deterioration modeling using semi-markov theory. A. A. Balkema 

Uitgevers B.V. Structural Safety and Reliability. 1998;1:113-120 

10. Sobanjo JO. State transition probabilities in bridge deterioration based on weibull sojourn times. 

Structure and Infrastructure Engineering: Maintenance, Management, Life-Cycle Design and 

Performance. 2011;7(10):747-764 

11. Black M, Brint AT, Brailsford JR. Comparing probabilistic methods for the asset management of 

distributed items. Journal of Infrastructure Systems, American Society of Civil Engineers (ASCE). 

2005;11(2):102-109 

https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI) 

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XII Issue V May 2025 

Page 806 www.rsisinternational.org 

   

 

   

 

12. Black M, Brint AT, Brailsford JR. A semi-markov approach for modelling asset deterioration. 

Journal of the Operational Research Society. 2005;56: 1241-1249 

13. Thomas O. Stochatic preservation model for transportation infrastructure [PhD dissertation]. 

Tallahassee, FL, USA: Florida State University; 2011 

14. Ross SM. Stochastic Processes. 2nd ed. USA: John Wiley and Sons, Inc.; 1996 

15. Casella G, Berger RL. Statistical Inference. 2nd ed. Duxbury, Pacific Grove, CA, USA: Cenage 

Learning; 2001 

16. Billington R, Allan RN. Reliability Evaluation of Engineering Systems: Concepts and Techniques. 

London: Pitman Books Limited; 1983 

17. Tobias PA, Trindade DC. Applied Reliability. 2nd ed. Florida: Chapman and Hall/CRC Press; 1995  

18. Birolini A. Reliability Engineering, Theory and Practice. 5th ed. Berlin, Heidelberg: Springer, 

Verlag; 2007  

19. Ibe OC. Markov Processes for Stochastic Modeling. Massachusetts: Elsevier Academic Press; 2009  

20. Howard RA. Dynamic probabilistic systems. In: Volume II: Semi-Markov and Decision Processes. 

Canada: John Wiley and Sons Inc.; 1971 

21. Cleves MA, Gould WW, Guitierrez RG. An Introduction to Survival Analysis Using Stata. Revised 

ed. 4905 Lakeway Drive, College Station, Texas 77845: Stata Press; 2001 

22. Castillo E, Hadi AS, Balakrishnan N, Sarabia JM. Extreme Value and Related Models with 

Applications in Engineering and Science. New Jersey: John Wiley and Sons, Inc.; 2005 

23. Lee ET. Statistical Methods for Survival Data Analysis. 2nd ed. USA: John Wiley and Sons, Inc.; 

1992  

24. Durango PL, Madanat SM. Optimal maintenance and repair policies in infrastructure management 

under uncertain facility deterioration rates: And adaptive approach. Transportation Research Part A. 

2002;36:763-778  

25. Guillaumot VM, Durango-Cohen PL, Madanat SM. Adaptive optimization of infrastructure 

maintenance and inspection decisions under performance model uncertainty. Journal of Infrastructure 

Systems, American Society of Civil Engineers (ASCE). 2003; 9(4):133-139  

26. Gonzalez J, Romera JCR, Perez JM. Optimal railway infrastructure maintenance and repair policies 

to manage under uncertainty with adaptive control. UC3MWorking Papers. Statistics and 

Econometrics. 2006;5:1-15 

27. Madanat SM, Park S, Kuhn K. Adaptive optimization of infrastructure maintenance and inspection 

decisions under performance model uncertainty. Journal of Infrastructure Systems, American Society 

of Civil Engineers (ASCE). 2006;12(3):192-198 

28. Thompson PD, Harrison FD. Pontis Version 2.0 User’s Manual, A Network Optimization System for 

Bridge Improvements and Maintenance. Washington DC: Federal Highway Administration; 

December 1993  

29. Evans M, Hastings N, Peacock B. Statistical Distributions. 3rd ed. New York: John Wiley and Sons; 

2000  

30. Puterman ML. Markov Decision Processes: Discrete Stochastic Dynamic Programming. New Jersey: 

John Wiley and Sons; 2005  

31. Sagias NC, Karagiannidis GK. Gaussian class multivariate weibull distributions: Theory and 

applications in fading channels. Institute of Electrical and Electronics Engineers. Transactions on 

Information Theory. 2005;51(10): 3608-3619  

32. Thompson PD, Johnson MB. Markovian bridge deterioration: Developing models from historical 

data. Structure and Infrastructure Engineering. 2005;1:85-91 

https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
http://www.rsisinternational.org/

	Markov Chain Model

