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ABSTRACT 

In this paper, we introduce and investigate a new class of bi- univalent functions defined in the open unit disk U 

involving a general integral operator associated with  the general Hurwitz- Lerch Zeta function denoted by 

ℳ∑
a,b,c(β, λ) . The main result of the investigation is to estimate the upper bounds for the initial Taylor–Maclaurin 

coefficients of functions |a2| and |a3|  for this class. Following, we find the second Hankel determinant. Several 

new results are shown after specializing the parameters employed in our main results. 

Keywords- Hankel determinant, Bi-univalent functions, coefficient bounds, Hurwitz -Lerch zeta function.   

INTRODUCTION 

Let A denote the class of all analytic functions in the open unit disk U = {z ∈ ℂ: |z| < 1} , and normalized by the 

conditions f(0) = f ′(0) − 1 = 0, and given by the power series   

f (z) = z + ∑ akz
k.∞

k=2                                                                                                                                           (1.1) 

Let S denote the subclass of A consisting of univalent functions. The well-known Koebe one-quarter theorem 

(see [1]) every univalent function f ∈ S  contains a disk of radius (
1

4
), the inverse of  f ∈ U is a univalent analytic 

function on the disk  Up ≔ {z: z ∈ ℂ  and |z| < p; p ≥
1

4
} . 

Therefore, for each function f(z) = w ∈ S, there is an inverse function f−1(w) of  f(z) defined by 

  f−1(f(z))  =  z (z ∈  U) and f( f−1 (w))  =  w (w ∈ Up) , 

where 

g(w) =  f−1(w) = w− a2w
2 + (2a2

2 − a3)w
3 − (5a2

3 − 5a2a3 + a4)w
4 +⋯   .                     (1.2)   

If   f and  f−1 are univalent function in U, then we say the function f is bi-univalent function in U. 

The class of bi-univalent function in U given by (1.1) denoted by Σ. The following are some important examples 

of bi-univalent functions in U 

Σ
𝑧

1−𝑧
,     log

1

1−𝑧
  and   log√

1+𝑧

1−𝑧
. 

Lewin [8] investigated in 1967 and showed a bound of the coefficient on the class Σ of bi-univalent functions 

and estimated  |a2| < 1.5. Following, Brannan and Clunie [9] showed the result of Lewin and established that 

| a2| < √2. Afterwards, Netanyahu [10] showed that max
f∈∑

|a2| =
4

3
. Then many authors approximate the Taylor-
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Maclaurin coefficient |an| (n ∈ ℕ\{1,2}) and defined new subclasses of bi-univalent analytic functions unit disk 

see (e.g. [11]- [13]). However, the problem to estimate the coefficients of |an| (n ∈ ℕ\{1,2}) still an open.  In 

current paper, employing the techniques of Srivastava et al [13] which have brought back interest in the study 

of analytic and bi-univalent functions, we introduce a new class and estimates of the coefficients |a2| and |a3|, 

although we estimate a second Hankel determinant for a class ℳ∑
a,b,c(β, λ) .                                                                                               

In 1976 Noonan and Thomas [2] defined the Hankel determinant of a function f  for q ≥ 1 and k ≥ 1  

1 1

1 2 2

1 2 2

( ) = .

k k k q

k k k q

q

k q k q k q

a a a

a a a
H k

a a a

+ + −

+ + + −

+ − + + −   

 The determinant Hq(k) has been extensively studied with H2(2) referring to the second Hankel determinant 

which is defined by  |a2a4 − a3
2|.

 
It has also been investigated by several authors (e.g. [3]-[7]).  

Definition.1.1 [14] A general Hurwitz–Lerch Zeta function (𝑧, 𝑠, 𝑏) defined by 

 (𝑧, 𝑠, 𝑏) = ∑
𝑧𝑘

(𝑘 + 𝑏)𝑠

∞

𝑘=0

 , 

where (𝑠 ∈ ℂ, 𝑏 ∈ ℂ − ℤ0
−) when (|𝑧| < 1) ,  and  (ℜ(𝑠) > 1) when (|𝑧| = 1).  

 Nagat and Darus [17], introduced the generalized integral operator associated with  the general Hurwitz- Lerch 

Zeta function, denoted by 𝔍s,b
α f(z) for 𝑓 ∈ A as follows: 

For  (s ∈ ℂ, b ∈ ℂ − ℤ0
−)  the generalized integral operator 𝔍s,b

α f(z): A → A is defined by 

𝔍s,b
α f(z) = Γ(2 − α)zαDz

αՓ(z, s, b),   (α ≠ 2,3,4, … )  

               = z + ∑ φk
α,b,sakz

k∞
k=2 , (z ∈ U) ,                                                                                                    (1.3)  

where  

 φk
α,b,s =

Γ(k+1)Γ(2−α)

Γ(k+1−α)
(

b

k+1−b
)
s

. 

Many other works on analytic and univalent functions related to this operator can be see (e.g. [15],[17], [18]). 

By using a generalized integral operator, a new class of bi-univalent functions are considered as the following.  

Definition.1.1: For  s ∈ ℂ, b ∈ ℂ − ℤ0
− and α ≠ 2,3,4, … , a function  f ∈ ∑ and of the form (1.1) is said to be in 

the class ℳ∑
a,b,c(β, λ) if the following conditions are satisfied: 

ℜ[
(1−λ)(𝔍s,b

α f(z))

z
+ λ(𝔍s,b

α f(z)) ՝] > β, (0 ≤ β < 1 , λ ≥ 1 , z ∈ U),                                                           

and 

ℜ [
(1−λ)(𝔍s,b

α g(w))

w
+ λ(𝔍s,b

α g(w)) ՝] > 𝛽, (0 ≤ β < 1 , λ ≥ 1 , z ∈ U),                                                       

where g = f−1 . 
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It is of interest to note that by taking 𝛼 = 0 and 𝑠 = 0 in Definition 1.1, we state the following class ℬ∑(𝛽, 𝜆) 

due to Frasin et al. [19] in the next remark. 

Remark 1: A function  f ∈ ∑ and of the form (1.1) is said to be in the class ℬ∑(𝛽, 𝜆)  if the following conditions 

are satisfied: 

ℜ [
(1−λ)(f(z))

z
+ λ(f(z))՝] > β,     (0 ≤ β < 1 , λ ≥ 1 , z ∈ U),  

   and                       

ℜ [
(1−λ)(g(w)

w
+ λ(g(w))՝] > 𝛽,    (0 ≤ β < 1 , λ ≥ 1 , z ∈ U),  

where g = f−1 .  

It is of interest to note that by taking 𝛼 = 0 ,𝑠 = 0 and  𝜆 = 1 in Definition1.1, we state the following class 

ℌ∑(𝛽, 𝜆) due to Srivastava et al. [20] in the next remark. 

Remark 2: A function  f ∈ ∑ and of the form (1.1) is said to be in the class ℌ∑(𝛽, 𝜆) if the following conditions 

are satisfied: 

ℜ[𝑓′(𝑧)] > β,     (0 ≤ β < 1 , z ∈ U), 

and  

ℜ[𝑔′(𝑤)] > β,    (0 ≤ β < 1 , z ∈ U),     

where g = f−1.  

PRELIMINARY RESULTS 

In order to derive our main results, we have to recall here the following lemmas 

Lemma 2.1.[1] Let 𝒫 be the class of all analytic functions 𝑝(𝑧) of the form  

𝑝(𝑧) = 1 + ∑ 𝑝𝑛𝑧
𝑛∞

𝑛=1                                                                                                                           

  satisfying ℜ(𝑝(z)) > 0(z ∈ U)and 𝑝(0) = 1.Then |𝑝n| ≤ 2, (n = 1,2,3, … ). 

Lemma 2.2. [21] if the function p ∈ P is given by the series  

2𝑝2 = 𝑝1
2 + x(4 − 𝑝1

2) ,                                                                                                                        
                                                                                          

4𝑝3 = 𝑝1
3 + 2(4 − 𝑝1

2)𝑝1x − 𝑝1(4 − 𝑝1
2)x2 + 2(4 − 𝑝1

2)(1 − |x|2𝑧),                                         

for some x, z with |x| ≤ 1 and |z| ≤ 1. 

Lemma 2.3. [22] The power series for 𝑝 given in (2.1) converges in U to a function in 𝑃 if and only if the 

Toeplitz determinants 

   Dn = |

2     c1 c2   ⋯  cn
c−1 2  c1 ⋯   cn−1
⋮         ⋮        ⋮         ⋮         ⋮   
c−n c−n+1 ⋯  c−n+2

| , n = 1,2,3, …                       

And c−k = ck,̅̅ ̅ and all non-negative. They are strictly positive except for 
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p(z) = ∑ pk𝑝0
m
k=1 (eit𝑘z), pk > 0,   tk ∈ ℜ and tk ≠ tj for k ≠ j in this case Dn > 0 for n < m− 1 and Dn = 0 

for n ≥ m. 

MAIN RESULTS 

Theorem 3.1 Let f  be an analytic and bi-univalent function given by (1.1) be in the class ℳ∑
a,b,c(β, λ), Then            

  |a2| ≤ √
2(1−β)

(1+2λ)φ3
α,b,s .                                                                                                          

|a3| ≤
4(1−β)2

(1+λ)2(φ2
α,b,s)

2 +
2(1−β)

(1+2λ)φ3
α,b,s .                                                                                    

Proof: Since f ∈ ℳ∑
a,b,c(β, λ)  there exists two analytic functions ρ  and q : U →  U  with ρ(0) = 𝑞(0) = 0 

satisfying the following conditions. 

(1 − λ)
𝔍s,b
α f(z)

z
+ λ (𝔍s,b

α f(z))
′

= β + (1 − β)ρ(z),                                                             (3.1) 

and  

(1 − 𝜆)
(𝔍s,b

α g(w))

w
+ λ (𝔍s,b

α g(w)) ՝ = β + (1 − β)q(w),                                                       (3.2)  

Define the functions p(z) and q(w) by 

  ρ(z) = 1 + c1z + c2z
2 + c3z

3 +⋯                                                                                           (3.3) 

And 

 q(w) = 1 + d1w+ d2w
2 + d3w

3 +⋯                                                                                  (3.4) 

Applying (3.3) and (3.4) in (3.1) and (3.2), respectively 

1 +
(1+λ)Γ(3)Γ(2−α)

Γ(3−α)
(
b

b+1
)
s

a2z +
(1+2λ)Γ(4)Γ(2−α)

Γ(4−α)
(
b

b+2
)
s

a3z
2 +

(1+3λ)Γ(5)Γ(2−α)

Γ(5−α)
(
b

b+3
)
s

a4z
3 +⋯,            

= 1 + (1 − β)c1z + (1 − β)c2z
2 + (1 − β)c3z

3 +⋯,                                                    (3.5) 

and  

1 −
(1+λ)Γ(3)Γ(2−α)

Γ(3−α)
(
b

b+1
)
s

a2w+
(1+2λ)Γ(4)Γ(2−α)

Γ(4−α)
(
b

b+2
)
s
(2a2

2 − a3)w
2 +

(1+3λ)Γ(5)Γ(2−α)

Γ(5−α)
(
b

b+3
)
s
(5a2

3 −

5a2a3 + a4)w
4 +⋯,  

= 1 + (1 − β)d1w+ (1 − β)d2w
2 + (1 − β)d3w

3 +⋯.                                                   (3.6) 

 Now, by comparing the coefficients in (3.5), we see that: 

(1+λ)Γ(3)Γ(2−α)

Γ(3−α)
(
b

b+1
)
s

a2 = (1 − β)c1,                                                                                         (3.7)  

(1+2λ)Γ(4)Γ(2−α)

Γ(4−α)
(
b

b+2
)
s

a3 = (1 − β)c2,                                                                                       (3.8)  
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(1+3λ)Γ(5)Γ(2−α)

Γ(5−α)
(
b

b+3
)
s

a4 = (1 − β)c3,                                                                                      (3.9)  

And by comparing the coefficients in (3.6), we see that: 

−(1+λ)Γ(3)Γ(2−α)

Γ(3−α)
(
b

b+1
)
s

a2 = (1 − β)d1,                                                                                   (3.10)  

(1+2λ)Γ(4)Γ(2−α)

Γ(4−α)
(
b

b+2
)
s
(2a2

2 − a3) = (1 − β)d2,                                                                    (3.11)  

−(1+3λ)Γ(5)Γ(2−α)

Γ(5−α)
(
b

b+3
)
s
(5a2

3 − 5a2a3 + a4) = (1 − β)d3.                                                  (3.12)  

From (3.7) and (3.10), gives  

  a2 =
(1 − β)

(1 + λ)φ2
α,b,s

c1 = −
(1 − β)

(1 + λ)φ2
α,b,s

d1 = −d1                                                                (3.13) 

  c1 = −d1,                                                                                                                             

and 

 2(1 + λ)2(φ2
α,b,s)

2
a2
2 = (1 − β)2(c1

2 + d1
2).                                                               (3.14)  

Also, from (3.8) and (3.11), we get: 

2(1 + 2λ)φ3
α,b,sa2

2 = (1 − β)(c2 + d2).  

Thus, we have 

   |a2|
2 ≤

(1−β)(|c2|+|d2|)

2(1+2λ)φ3
α,b,s ≤

2(1−β)

(1+2λ)φ3
α,b,s,   

 |a2| ≤ √
2(1−β)

(1+2λ)φ3
α,b,s.                                                                                                            

Subtracting (3.8), (3.11), we get 

2(1 + 2λ)a3φ3
α,b,s − 2(1 + 2λ)a2

2φ3
α,b,s = (1 − β)(c2 − d2), 

a3 = a2
2 +

(1−β)(c2−d2)

2(1+2λ)φ3
α,b,s,  

Upon substituting the value of a2
2 from (3.14), we obtain  

a3 =
(1−β)2(c1

2+d1
2)

2(1+λ)2(φ2
α,b,s)

2 +
(1−β)(c2−d2)

2(1+2λ)φ3
α,b,s,  

Applying lemma 2.1 

   |a3| ≤
4(1 − β)2

(1 + λ)2(φ2
α,b,s)

2 +
2(1 − β)

(1 + 2λ)φ3
α,b,s

.                                                                                       

As applications of Theorem3.1 about upper bounds for coefficients 𝑎2and 𝑎3for the analytic and bi-univalent 

functions in the new class ℳ∑
a,b,c(β, λ), we obtain and improve the known results by [19] in the following 

corollaries by setting the particular values of the parameters 𝛼 , 𝑠, 𝜆 𝑎𝑛𝑑  𝜑𝑘
𝛼,𝑏,𝑠. 
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 Corollary 1. ([19]) Let f  be an analytic and bi-univalent function given by (1.1) be in the class ℳ∑
a,b,c(β, λ) 

,0 ≤ 𝛽 < 1  ,𝜆 ≥ 1  by taking α = 0  , s = 0,  φ2
α,b,s = 1,  and φ3

α,b,s = 1. Then the upper bounds for two initial 

coefficients are 

|a2| ≤ √
2(1−β)

(1+2λ)
,                 

|a3| ≤
4(1−β)2

(1+λ)2
+
2(1−β)

(1+2λ)
.  

Corollary 2. [20] Let f  be an analytic and bi-univalent function given by (1.1) be in the class ℳ∑
a,b,c(β, λ)0 ≤

𝛽 < 1 ,𝜆 ≥ 1 by taking α = 0 , 𝜆 = 1, s = 0, φ2
α,b,s = 1, and φ3

α,b,s = 1. Then the upper bounds for two initial 

coefficients are 

|a2| ≤ √
2(1−β)

3
,           

|a3| ≤
(1−𝛽)(5−3𝛽)

3
.  

Theorem 3.2 Let f  be an analytic and bi-univalent function given by (1.1) be in the class ℳ∑
a,b,c(β, λ),0 ≤ 𝛽 <

1 ,𝜆 ≥ 1 , Then the upper bound for the Second Hankel is 

|a2a4 − a3
2| ≤

{
  
 

  
 
4(1 − β)2 [

(1+λ)3(φ2
α,b,s)

3
+4(1−β)2(1+3λ)φ4

α,b,s

(1+λ)4(1+3λ)(φ2
α,b,s)4φ4

α,b,s ] ; β ∈ [0,1 − √
(1+λ)3(φ2

α,b,s)
3

8(1+3λ)φ4
α,b,s ] ,

9(1+λ)2(1−β)2(φ2
α,b,s)

2

2(1+3λ)φ4
α,b,s[(1+λ)3(φ2

α,b,s)
3
−2 (1−β)2(1+3λ)φ4

α,b,s]
; β ∈ (1 − √

(1+λ)3(φ2
α,b,s)

3

8(1+3λ)φ4
α,b,s , 1) .

  

  

Proof: since f ∈ ℳ∑
a,b,c(β, λ) and from (3.13) in Theorem3.1, we get:  

c1 = −d1. 

From (3.8) and (3.11) and using (3.13), we get: 

(1 + 2λ)φ3
α,b,s(2a2

2 − a3) − (1 + 2λ)φ3
α,b,sa3 = (1 − β)(c2−d2). 

Then  

(1 + 2λ)φ3
α,b,sa3 − 2(1 + 2λ)φ3

α,b,s (1−β)2

(1+λ)2(φ2
α,b,s)2

c1
2 + (1 + 2λ)φ3

α,b,sa3  = (1 − β)(c2 − d2).  

 2(1 + 2λ)φ3
α,b,sa3 = (1 − β)(c2 − d2) + 2(1 + 2λ)φ3

α,b,s (1−β)2

(1+λ)2(φ2
α,b,s)2

c1
2  

      a3 =
(1−β)2

(1+λ)2(φ2
α,b,s)

2 c1
2 +

(1−β)

2(1+2λ)φ3
α,b,s (c2 − d2).                                    (3.15)  

Also, from (3.9) and (3.12), and using (3.13), we get: 

−(1 + 3λ)φ4
α,b,s(5a2

3 − 5a2a3 + a4) − (1 + 3λ)φ4
α,b,sa4 = (1 − β)(c2 − d2)  
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−5(1 + 3λ)φ4
α,b,sa2

3 + 5(1 + 3λ)φ4
α,b,sa2a3 − (1 + 3λ)φ4

α,b,sa4 − (1 + 3λ)φ4
α,b,sa4  

= (1 − β)(c3 − d3)  

2(1 + 3λ)φ4
α,b,sa4 −

5(1+3λ)(1−β)2φ4
α,b,s

2(1+2λ)(1+λ)φ2
α,b,sφ3

α,b,s c1(c2 − d2) = (1 − β)(c3 − d3)  

a4 =
1

2(1+3λ)φ4
α,b,s [

5(1+3λ)(1−β)2φ4
α,b,s

2(1+2λ)(1+λ)φ2
α,b,sφ3

α,b,s c1(c2 − d2) + (1 − β)(c3 − d3)].        (3.16)  

From (3.13), (3.15) and (3.16), we stabilize that 

|a2a4 − a3
2| = |−

(1−β)4

(1+λ)4(φ2
α,b,s)

4 c1
4 +

(1−β)3

4(1+2λ)(1+λ)2(φ2
α,b,s)

2
φ3
α,b,s

c1
2(c2 − d2) +

                                         
(1−β)2

2(1+λ)(1+3λ)φ2
α,b,sφ4

α,b,s c1(c3 − d3) −
(1−β)2

4(1+2λ)2(φ3
α,b,s)

2 (c2 − d2)
2|.                            

According to lemma2.2, we have 

2c2 = c1
2 + x(4 − c1

2), 

and  

2d2 = d1
2 + x(4 − d1

2), 

then,       c2 = d2,     

and further  

4c3 = c1
3 + 2(4 − c1

2)c1x − c1(4 − c1
2)x2 + 2(4 − c1

2)(1 − |x|2z), 

4d3 = d1
3 + 2(4 − d1

2)d1x − d1(4 − d1
2)x2 + 2(4 − d1

2)(1 − |x|2z) 

  c3 − d3 =
1

2
c1
3 + c1(4 − c1

2)x −
1

2
c1(4 − c1

2)x2,                                                   

|a2a4 − a3
2| = |−

(1−β)4

(1+λ)4(φ2
α,b,s)

4 c1
4 +

(1−β)2

2(1+λ)(1+3λ)φ2
α,b,sφ4

α,b,s c1(c3 − d3)|,  

|a2a4 − a3
2| = |−

(1−β)4

(1+λ)4(φ2
α,b,s)

4 c1
4 +

(1−β)2

2(1+λ)(1+3λ)φ2
α,b,sφ4

α,b,s c1(
1

2
c1
3 + c1(4 − c1

2)x − 
1

2
c1(4 − c1

2)x2)|     

|a2a4 − a3
2| = |−

(1−β)4

(1+λ)4(φ2
α,b,s)

4 c1
4 +

(1−β)2

4(1+λ)(1+3λ)φ2
α,b,sφ4

α,b,s c1
4 +   

(1−β)2c1
2(4−c1

2)

2(1+λ)(1+3λ)φ2
α,b,sφ4

α,b,s x −

(1−β)2c1
2(4−c1

2)

4(1+λ)(1+3λ)φ2
α,b,sφ4

α,b,s x
2|.                                           

Now letting c = c1 , where   c ∈ [0,2] with μ = |x| ≤ 1 , we obtain: 

|a2a4 − a3
2| ≤

(1−β)4

(1+λ)4(φ2
α,b,s)

4 c
4 +

(1−β)2

4(1+λ)(1+3λ)φ2
α,b,sφ4

α,b,s c
4 + 

(1−β)2c2(4−c2)

2(1+λ)(1+3λ)φ2
α,b,sφ4

α,b,s μ +

(1−β)2c2(4−c2)

4(1+λ)(1+3λ)φ2
α,b,sφ4

α,b,s μ
2 = F(μ) .                           

Differentiating F(μ) ,we get: 
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F′(μ) =
(1−β)2c2(4−c2)

4(1+λ)(1+3λ)φ2
α,b,sφ4

α,b,s +
(1−β)2c2(4−c2)

2(1+λ)(1+3λ)φ2
α,b,sφ4

α,b,s μ.  

By using elementary calculus, one can show that F′(μ) > 0  for μ > 0, hence F is an increasing function and 

thus, the upper bound for F(μ) corresponds to μ = 1 ,in which case  

F(μ) = F(1) = [
(1−β)4

(1+λ)4(φ2
α,b,s)

4 +
(1−β)2

4(1+λ)(1+3λ)φ2
α,b,sφ4

α,b,s] c
4    +  

3(1−β)2

4(1+λ)(1+3λ)φ2
α,b,sφ4

α,b,s  c
2(4 − c2) =  𝐺(𝑐) .      

Assuming G(c) has a maximum value in an interior of c ∈ [0,2],by elementary calculations, we find  

G′(c) = [
4(1 − β)4

(1 + λ)4(φ2
α,b,s)

4 −
2(1 − β)2

(1 + λ)(1 + 3λ)φ2
α,b,sφ4

α,b,s
] c3 +

6(1 − β)2c

(1 + λ)(1 + 3λ)φ2
α,b,sφ4

α,b,s
.          

Then G′(c) = 0 implies that real's critical point c01 = 0 or c02 = √
3(1+λ)3(φ2

α,b,s)
3

(1+λ)3(φ2
α,b,s)

3
−2(1−β)2(1+3λ)φ4

α,b,s
    .  

Now we will find the value of β, 

β = 1 − √
(1+λ)3(φ2

α,b,s)
3

8(1+3λ)φ4
α,b,s .  

We came to the following conclusions after some calculations: 

Case (1): when β ∈ [0 , 1 − √
(1+λ)3(φ2

α,b,s)
3

8(1+3λ)φ4
α,b,s ]  ,we observe that  c02 ≥ 0  , is  c02  is out of the interval (0,2) , 

therefore the maximum value of G(c)  occurs at c01 = 0  or c = c02   which contradiction our assumption of 

having the maximum value at the interior point of  c ∈ [0,2]. Since G(c) is an increasing function in the interval 

[0,2] , maximum point of G must be on the boundary of c ∈ [0,2] that is c = 2. 

Thus, we have: 

max
0≤c≤2

G(c) = G(2) = 4(1 − β)2 [
(1+λ)3(φ2

α,b,s)
3
+4(1−β)2(1+3λ)φ4

α,b,s

(1+λ)4(1+3λ)(φ2
α,b,s)4φ4

α,b,s ].  

Case (2): when β ∈ (1 −√
(1+λ)3(φ2

α,b,s)
3

8(1+3λ)φ4
α,b,s , 1) ,we observe that c02 ≤ 2 that is c02 is an interior of the interval 

[0,2] so the maximum value G(c) occurs at   c = c02.Thus we have  

 max
0≤c≤2

G(c) = G( c02) = G(√
3(1+λ)3(φ2

α,b,s)
3

(1+λ)3(φ2
α,b,s)

3
−2(1−β)2(1+3λ)φ4

α,b,s
)          

=
9(1+λ)2(1−β)2(φ2

α,b,s)
2
[(1−β)2(1+3λ)φ4

α,b,s−(1+λ)3(φ2
α,b,s)

3
]

2(1+3λ)φ4
α,b,s[(1+λ)3(φ2

α,b,s)
3
−2(1−β)2(1+3λ)φ4

α,b,s]
2 +

           
3(1−β)2(1+λ)2(φ2

α,b,s)
2

(1+3λ)φ4
α,b,s[(1+λ)3(φ2

α,b,s)
3
−2(1−β)2(1+3λ)φ4

α,b,s]
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 =
9(1+λ)2(1−β)2(φ2

α,b,s)
2

2(1+3λ)φ4
α,b,s[(1+λ)3(φ2

α,b,s)
3
−2(1−β)2(1+3λ)φ4

α,b,s]
.                                                        

This completes the proof of Theorem 3.2.  

In particular, Theorem 3.2 gives the following corollaries 

By preferring α = 0 , s = 0, φ2
α,b,s = 1 , φ3

α,b,s = 1  and φ4
α,b,s = 1, in Theorem3.2  

Corollary 1. ([23]) Let f  be an analytic and bi-univalent function given by (1.1) be in the class ℳ∑
a,b,c(β, λ) 

,0 ≤ 𝛽 < 1  ,𝜆 ≥ 1  by taking α = 0  , s = 0,  φ2
α,b,s = 1 , φ3

α,b,s = 1   and φ4
α,b,s = 1, Then the upper bound for 

the Second Hankel is 

|a2a4 − a3
2| ≤

{
 
 

 
 4(1 − β)2 [

(1+λ)3+4(1−β)2(1+3λ)

(1+λ)4(1+3λ)
] ;  β ∈ [0  1 − √

(1+λ)3

8(1+3λ)
] ,

9(1+λ)2(1−β)2

2(1+3λ)[(1+λ)3−2 (1−β)2(1+3λ)]
;      β ∈ (1 − √

(1+λ)3

8(1+3λ)
, 1) .

          

Corollary 2. ([24]) Let f  be an analytic and bi-univalent function given by (1.1) be in the class ℳ∑
a,b,c(β, λ) 

,0 ≤ 𝛽 < 1 ,𝜆 ≥ 1 by taking α = 0 ,𝜆 = 1, s = 0, φ2
α,b,s = 1 , φ3

α,b,s = 1  and φ4
α,b,s = 1, Then the upper bound 

for the Second Hankel is 

|a2a4 − a3
2| ≤ {

(1 − β)2 [(1 − β)2 +
1

2
] ;               β ∈ [0  ,

1

2
] ,

9(1−β)2

16[1−(1−β)2]
,                      β ∈ (

1

2
, 1) .

                                         

CONCLUSION   

In this study, A new class of bi-univalent functions in the open unit disk has been introduced and defined via a 

general integral operator. Derived estimates for the initial coefficients of functions and further obtained an upper 

bound for the second Hankel determinant for this class. Several existing and new results may be identified as 

special cases of our main result. By varying the parameters involved, these results contribute to the further 

development of the theory of bi-univalent functions and open new avenues for future studies of other special 

functions operators. Many research papers have been utilized to investigate various problems related to this 

area, can be see (e.g.  [25-26]). 
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