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ABSTRACT 

In this paper, we investigate the periodic properties of the squared Pell sequence {𝑆𝑃𝑛}, which is defined by 

the recurrence relation 𝑆𝑃𝑛 = 𝑃𝑛
2; for all 𝑛 ≥ 2; with 𝑃0 = 0, 𝑃1 = 1, where 𝑃𝑛 denotes 𝑛th Pell number. For 

any modulus 𝑚 > 1, we introduce a novel concept of 'blocks' within this sequence by examining the 

distribution of residues over a single period of the squared Pell sequence. Our results reveal that the length of 

any given period of the squared Pell sequence comprises either 1 or 2 blocks. 

Keywords: Fibonacci sequence, Pell sequence, Periodicity of Pell sequence. 

INTRODUCTION 

The Fibonacci sequence {𝐹𝑛} shows interesting periodic properties under modulo 10𝑒. Initially, the last digits 

of Fibonacci numbers seem random, but a clear pattern emerges: the sequence of last digits repeats every 60 

numbers. Therefore, the last digits exhibit a periodicity with a cycle length of 60, expressed as 𝐹60𝑛 + 𝑖 ≡
𝐹𝑖(𝑚𝑜𝑑 10) for any 𝑖, where 𝑛 ≥  0. Koshy [7] proved this using mathematical induction. 

In 1972, Kramer and Hoggatt Jr. [2] established the periodicity of Fibonacci sequence as well as of Lucas 

sequence when considered modulo 10𝑛. Patel, Shah [5] considered the periodicity of generalized Lucas 

numbers and proved the result when the length of its period under modulo 2𝑒. 

This brings in to mind an immediate question - For any given positive integer 𝑚 > 1, does the sequence {𝐹𝑛} 
is periodic when considered modulo 𝑚? In 1960, Wall [6] examined the periodic nature of {𝐹𝑛} with respect 

to any positive integer 𝑚 > 1 and showed that {𝐹𝑛} consistently exhibits periodicity. 

Ömür Deveci, Erdal Karaduman [3] proved some elementary results for the periodicity of {𝑃𝑛}. For further 

details about Pell numbers, one can refer Horadam [1] and Koshy [8]. 

This listing can be further extended as several articles are available in the literature concerning the 

periodicity of varied generalizations of the Fibonacci sequence. In the following section, we now consider 

the periodicity of a new sequence – the squared Pell sequence.  

SQUARED PELL SEQUENCE 

The squared Pell sequence is the sequence which consists of the squares of all the Pell numbers in order.  

Definition: The sequence {𝑆𝑃𝑛} represents the squares of corresponding terms of the sequence {𝑃𝑛} in order. 

In other words, 𝑆𝑃𝑛 = 𝑃𝑛
2 ; for all 𝑛 ≥ 1, where 𝑃𝑛 stands for 𝑛th Pell number.  

It is trivial to note that {𝑆𝑃𝑛} = {0, 1, 4, 25, 144, 841, 4900, 28561, 166464,… }. We first derive some 

elementary results for this sequence which will be used further in this paper. The following result gives a 

recurrence relation which helps to reduce the terms of {𝑆𝑃𝑛} into smaller terms. 
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Lemma 𝟐. 𝟏: 

𝑆𝑃𝑚+𝑛 = 𝑆𝑃𝑚𝑆𝑃𝑛+1 + 𝑆𝑃𝑚−1𝑆𝑃𝑛 + 2 𝑃𝑚𝑃𝑛𝑃𝑚−1𝑃𝑛+1. 

Lemma 𝟐. 𝟐: 𝑆𝑃2𝑛 = 𝑆𝑃𝑛(𝑆𝑃𝑛−1 + 𝑆𝑃𝑛+1) + 2 𝑆𝑃𝑛 𝑃𝑛−1 𝑃𝑛+1. 

Lemma  𝟐. 𝟑: 𝑆𝑃2𝑛+1 = 𝑆𝑃𝑛
2 + 𝑆𝑃𝑛+1

2 + 2 𝑆𝑃𝑛𝑆𝑃𝑛+1. 

In the following section we study the periodicity of sequence {𝑆𝑃𝑛} and obtain some interesting results 

related with its residues. 

PERIODICITY OF SQUARED PELL SEQUENCE 

In this section, we study in detail about the periodic nature of {𝑆𝑃𝑛} when considered modulo 𝑚 > 1. For the 

detailed insights, one can refer Marc [9]. 

Definition: By 𝑆𝑃(𝑚𝑜𝑑 𝑚), we mean the sequence of the least non-negative residues of the terms of the 

squares of terms of the sequence {𝑃𝑛} in order taken modulo 𝑚. 

As an illustration, we consider 𝑆𝑃(𝑚𝑜𝑑 8) in the following table: 

Table 𝟒. 1: 𝑺𝑷(𝒎𝒐𝒅 𝟖) 

𝒏 0 1 2 3 4 5 6 

𝑆𝑃𝑛 0 1 4 25 144 841 4900 

𝑆𝑃(𝑚𝑜𝑑 8) 0 1 4 1 0 1 4 

From the above table, it can be noticed that the sequence 𝑆𝑃(𝑚𝑜𝑑 8) is periodic. Furthermore, it is not 

difficult to check that 𝑆𝑃4𝑛+𝑖 ≡ 𝑃𝑖(𝑚𝑜𝑑 8); where 𝑛 ≥ 0. This clearly indicates that the period of 𝑆𝑃(𝑚𝑜𝑑 

8) is 4. 

We now prove several results for the periodic nature of 𝑆𝑃(𝑚𝑜𝑑 𝑚) analogues to that of 𝑃(𝑚𝑜𝑑 𝑚).  

Lemma 𝟑. 𝟏: The sequence 𝑆𝑃(𝑚𝑜𝑑 𝑚) is always periodic; for any integer 𝑚 > 1 and its starting values 

0, 1. 

We next introduce the notation for the length of period of 𝑆𝑃(𝑚𝑜𝑑 𝑚). 

Definition: 𝑘𝑆𝑃(𝑚) denotes the length of period of the squared Pell sequence modulo 𝑚. 

The following are some immediate consequences from the lemmas 4.6.1, 4.6.2 and the definition of 𝑘𝑆𝑃(𝑚). 

Lemma 𝟑. 𝟐: (a) 𝑆𝑃𝑘𝑆𝑃(𝑚)−2 ≡ 4 (𝑚𝑜𝑑 𝑚) 

                       (b) 𝑆𝑃𝑘𝑆𝑃(𝑚)−1 ≡ 1 (𝑚𝑜𝑑 𝑚) 

                       (c) 𝑆𝑃𝑘𝑆𝑃(𝑚) ≡ 0 (𝑚𝑜𝑑 𝑚)    

                       (d) 𝑆𝑃𝑘𝑆𝑃(𝑚)+1 ≡ 1 (𝑚𝑜𝑑 𝑚) 

                       (e) 𝑆𝑃𝑘𝑆𝑃(𝑚)+2 ≡ 4 (𝑚𝑜𝑑 𝑚)    

                       (f) 𝑆𝑃𝑘𝑆𝑃(𝑚)+3 ≡ 25 (𝑚𝑜𝑑 𝑚) 

                       (g) 𝑆𝑃𝑘𝑆𝑃(𝑚)+𝑛𝑟 ≡ 𝑃𝑛(𝑚𝑜𝑑 𝑚), ∀ 𝑟 ∈ ℤ.                                                                               
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Fact 𝟑. 𝟑: Since 𝑆𝑃(𝑚𝑜𝑑 𝑚) is periodic, we will often use the fact that ‘if both 𝑆𝑃𝑛 ≡ 0(𝑚𝑜𝑑 𝑚) and 

𝑆𝑃𝑛+1 ≡ 1 (𝑚𝑜𝑑 𝑚) holds, then 𝑘𝑆𝑃(𝑚) | 𝑛. 

Lemma 𝟑. 𝟒: For any given integer 𝑚, there are infinitely many squared Pell numbers which are divisible by 

𝑚. 

Theorem 𝟑. 𝟓: If  𝑛 | 𝑚 then 𝑘𝑆𝑃(𝑛) | 𝑘𝑆𝑃(𝑚). 

Theorem 𝟑. 𝟔: 𝑘𝑆𝑃(𝑚) = 𝑙𝑐𝑚[𝑘𝑆𝑃( 𝑝𝑖
𝑒𝑖)], for various values of 𝑖, where 𝑚 = ∏ 𝑝𝑖

𝑒𝑖 and 𝑝𝑖’s are distinct 

primes.  

Theorem 𝟑. 𝟕:𝑘𝑆𝑃(𝑙𝑐𝑚[𝑚, 𝑛]) = 𝑙𝑐𝑚[𝑘𝑆𝑃(𝑚), 𝑘𝑆𝑃(𝑛)]. 

VALUE OF 𝒌𝑺𝑷(𝟐
𝒆) 

In this section, we obtain the value of 𝑘𝑆𝑃(𝑝
𝑒) when 𝑝 = 2. 

Theorem 𝟒. 𝟏: 𝑘𝑆𝑃(2
𝑒) = {

3        ; 𝑒 = 1

2𝑒−1  ; 𝑒 ≥ 2
. 

Proof: We notice that 𝑆𝑃(𝑚𝑜𝑑 2) = {0, 1, 1, 0, 1, … }. Therefore, 𝑘𝑆𝑃(2) = 3. For 𝑒 ≥ 2, we prove the result 

by induction.  

We note that 𝑆𝑃(𝑚𝑜𝑑 4) = {0, 1, 0, 1, … } and 𝑆𝑃(𝑚𝑜𝑑 8) = {0, 1, 4, 1, 0, 1, … }. Therefore, 𝑘𝑆𝑃(4) = 3 and 

𝑘𝑆𝑃(8) = 6. This proves the result for 𝑒 = 2, 3. We assume that the result holds for some positive integer 

𝑒 = 𝑟 ≥ 4. Thus, 

𝑘𝑆𝑃(2
𝑟) = 2𝑟−1; 𝑟 ≥ 4.                                                  (1) 

Then by the lemma 3.2 (𝑎), (𝑏) and (𝑐), we have 

𝑆𝑃2𝑟−1 ≡ 0(𝑚𝑜𝑑 2
𝑟); 𝑆𝑃2𝑟−1+1 ≡ 1(𝑚𝑜𝑑 2

𝑟)

𝑆𝑃2𝑟−1−1 ≡ 1 (𝑚𝑜𝑑 2
𝑟)

}                  (2) 

By lemma 2.2, we have 𝑆𝑃2𝑛 = 𝑆𝑃𝑛(𝑆𝑃𝑛−1 + 𝑆𝑃𝑛+1) + 2 𝑆𝑃𝑛𝑃𝑛−1𝑃𝑛+1. By taking 𝑛 = 2𝑟−1 and using (2), 
we have 

𝑆𝑃2×2𝑟−1 = 𝑆𝑃2𝑟−1(𝑆𝑃2𝑟−1−1 + 𝑆𝑃2𝑟−1+1) + 2 𝑆𝑃2𝑟−1𝑃2𝑟−1−1𝑃2𝑟−1+1                                

                ≡ 0 × (1 + 1) + 2 × 0 × 1 × 1(𝑚𝑜𝑑 2𝑟+1) 

Thus,  

𝑆𝑃2𝑟 ≡ 0(𝑚𝑜𝑑 2
𝑟+1)                             (3) 

Again, by lemma 2.3, we have 𝑆𝑃2𝑛+1 = 𝑆𝑃𝑛
2 + 𝑆𝑃𝑛+1

2 + 2𝑆𝑃𝑛𝑆𝑃𝑛+1. Considering  𝑛 = 2𝑟−1, we get 

𝑆𝑃2×2𝑟−1+1 = 𝑆𝑃2𝑟−1
2 + 𝑆𝑃2𝑟−1+1

2 + 2 𝑆𝑃2𝑟−1𝑆𝑃2𝑟−1+1.   (4) 

But by (1), we get 𝑆𝑃2𝑟−1 ≡ 0(𝑚𝑜𝑑 2
𝑟) and 𝑆𝑃2𝑟−1+1 ≡ 1(𝑚𝑜𝑑 2

𝑟). Thus, 𝑆𝑃2𝑟−1 = 0, 2
𝑟 , 2 × 2𝑟 , 3 ×

2𝑟 , …  and 𝑆𝑃3×2𝑟−2+1 = 1, 1 + 2
𝑟 , 1 +  2 × 2𝑟 , … . By considering modulo 2𝑟+1, we have 𝑆𝑃2𝑟−1 = 0 or 2𝑟; 

and 𝑆𝑃2𝑟−1 ≡ 1 or 1 + 2𝑟. Thus by (4), we have 

𝑆𝑃2𝑟+1 ≡ (0 or 2
r)2 + (1 or(1 + 2𝑟))

2
+ 2(0 or 2r)(1 or (1 + 2𝑟))(𝑚𝑜𝑑 2𝑟+1) 
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              ≡ (0 or 22𝑟) + (1 or 1 + 2𝑟+1 + 22𝑟) + (2𝑟+1 or 2𝑟+1 + 22𝑟+1)(𝑚𝑜𝑑 2𝑟+1) 

Thus,  

𝑆𝑃2𝑟+1 ≡ 1(𝑚𝑜𝑑 2
𝑟+1)                                (5) 

Then by the (3), (5) and fact 3.3, we have 

𝑘𝑆𝑃(2
𝑟+1) | 2𝑟                                                  (6) 

Since 2𝑟 | 2𝑟+1 implies 𝑘𝑆𝑃(2
𝑟) | 𝑘𝑆𝑃(2

𝑟+1), we get 

2𝑟−1 | 𝑘𝑆𝑃(2
𝑟+1)                                     (7) 

Then by combining equation (6) and (7), we get  

𝑘𝑆𝑃(2
𝑟+1) = 2𝑟−1 or 𝑘𝑆𝑃(2

𝑟+1) = 2 × 2𝑟−1 = 2𝑟. 

We shall show that the case 𝑘𝑆𝑃(2
𝑟+1) = 2𝑟−1 is not possible. In fact, we will show that 𝑆𝑃2𝑟−1+1 ≢

1(𝑚𝑜𝑑 2𝑟+1). More precisely, we will prove that  

𝑆𝑃2𝑟−1+1 ≡ 1 + 2
𝑟(𝑚𝑜𝑑 2𝑟+1); 𝑟 ≥ 4.                                 (8) 

Considering 𝑟 = 4, we have (i) 𝑆𝑃9 = 970225 ≡ 17 = 1 + 2
4(𝑚𝑜𝑑 25) and (ii) 𝑆𝑃17 =

1292061882721 ≡ 33 = 1 + 25(𝑚𝑜𝑑 26). Therefore, (8) is true for 𝑟 = 4. Let it be true for some integer 

𝑟 − 1. Thus, 𝑆𝑃2𝑟−2+1 ≡ 2
𝑟 + 1 (𝑚𝑜𝑑 2𝑟). Considering modulo 2𝑟+1, we get 

𝑆𝑃2𝑟−2+1 ≡ (2
𝑟−1 + 1) or (2r−1 + 1 + 2r)             (9) 

Then, 𝑆𝑃2𝑟−2+1
2 ≡ (2𝑟−1 + 1)2 or (2𝑟−1 + 1 + 2𝑟)2(𝑚𝑜𝑑 2𝑟+1). 

Now since 𝑟 ≥ 4, we have (2𝑟−1 + 1)2 = 22𝑟−2 + 2𝑟 + 1 ≡ 2𝑟 + 1(𝑚𝑜𝑑 2𝑟+1). 

Also, (2𝑟−1 + 1 + 2𝑟)2 = 22𝑟−2 + 22𝑟+1 + 2𝑟+1 + 2𝑟 + 1 ≡ 2𝑟 + 1(𝑚𝑜𝑑 2𝑟+1). 

This gives, 

𝑆𝑃2𝑟−2+1
2 ≡ 2𝑟 + 1(𝑚𝑜𝑑 2𝑟+1).                   (10) 

We also assume that 

 𝑆𝑃2𝑟−2 ≡ 0(𝑚𝑜𝑑 2
𝑟)                                                  (11) 

(This is because if it is not true then replacing 𝑟 by 𝑟 + 1, we can say that 𝑆𝑃2𝑟−1 ≡ 0(𝑚𝑜𝑑 2
𝑟+1) is not true. 

Thus, 𝑘𝑆𝑃(2
𝑟+1) ≠ 2𝑟−1 which we need to prove.) Taking modulo 2𝑟+1, we get 𝑆𝑃2𝑟−2 ≡ 0 or 2𝑟. Thus  

𝑆𝑃2𝑟−2
2 ≡ 0(𝑚𝑜𝑑 2𝑟+1)                            (12) 

Now, by lemma 2.3, we have 𝑆𝑃2𝑛+1 = 𝑆𝑃𝑛
2 + 𝑆𝑃𝑛+1

2 + 2 𝑆𝑃𝑛 × 𝑆𝑃𝑛+1. Considering 𝑛 = 2𝑟−2, we get 

 𝑆𝑃2𝑟−1+1 = 𝑆𝑃2𝑟−2
2 + 𝑆𝑃2𝑟−2+1

2 + 2 𝑆𝑃2𝑟−2 × 𝑆𝑃2𝑟−2+1  (13) 

By (9), (10), (11) and (12), we thus have  

https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI) 

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XII Issue V May 2025 

 

 

Page 1169 

www.rsisinternational.org 

 

 

𝑆𝑃2𝑟−1+1 ≡ 0 + (2
𝑟 + 1) + 2(0 or 2𝑟)(2𝑟−1 + 1 or 2𝑟−1 + 1 + 2𝑟)(𝑚𝑜𝑑 2𝑟+1) ≡  2𝑟 + 1 + (22𝑟 +

2𝑟+1or22𝑟 + 2𝑟+1 + 22𝑟+1)(𝑚𝑜𝑑 2𝑟+1) 

Thus, 𝑆𝑃2𝑟−1+1 ≡ 2
𝑟 + 1(𝑚𝑜𝑑 2𝑟+1)                              (14) 

This now confirms that 𝑆𝑃2𝑟−1+1 ≢ 1(𝑚𝑜𝑑 2
𝑟+1); that means 𝑘𝑆𝑃(2

𝑟+1) = 2𝑟−1 is not possible. Hence  

𝑘𝑆𝑃(2
𝑟+1) = 2𝑟. This proves the theorem by induction. 

VALUE OF 𝒌𝑺𝑷(𝟓
𝒆) 

In this section, we obtain the value of 𝑘𝑆𝑃(𝑝
𝑒) for the case 𝑝 = 5. 

Theorem 𝟓. 𝟏: 𝑘𝑆𝑃(5
𝑒) = 6 × 5𝑒−1; 𝑒 ≥ 1. 

Proof: To prove the required result, it is sufficient to prove that 

                    
 𝑆𝑃6×5𝑒−1 ≡ 𝑆𝑃0 ≡ 0(𝑚𝑜𝑑 5

𝑒)

 𝑆𝑃6×5𝑒−1+1 ≡ 𝑆𝑃1 ≡ 1(𝑚𝑜𝑑 5
𝑒).
}              (15) 

We use induction to prove these results. For 𝑒 = 1, we have 

𝑆𝑃6×51−1 ≡ 𝑆𝑃6 = 4900 ≡ 0(𝑚𝑜𝑑 5
𝑒) and 𝑆𝑃6×51−1+1 ≡ 𝑆𝑃7 = 28561 ≡ 1(𝑚𝑜𝑑 5

𝑒). 

Thus, (15) is true for 𝑒 = 1. We next assume that results hold for some positive integer 𝑒 = 𝑟 ≥ 2. That is, 

let the following holds: 

𝑘𝑆𝑃(5
𝑟) = 6 × 5𝑟−1                               (16) 

We prove that (15) holds for 𝑒 = 𝑟 + 1 also. Therefore, we need to prove that 𝑆𝑃6×5𝑟 ≡ 𝑆𝑃0 ≡
0(𝑚𝑜𝑑 5𝑟+1) and 𝑆𝑃6×5𝑟+1 ≡ 𝑆𝑃1 ≡ 1(𝑚𝑜𝑑 5

𝑟+1). Now, by lemma 1.2.3 (𝑒), we have 𝑆𝑃𝑛 = 5𝑃2𝑛+3 −
𝑆𝑃𝑛+3. By considering 𝑛 = 6 × 5𝑟, we get 

𝑆𝑃6×5𝑟 = 5 × 𝑃2×6×5𝑟+3 − 𝑆𝑃6×5𝑟+3. 

Also, by Koshy [2,3], we have 𝑃12×5𝑟+3 ≡ 5 (𝑚𝑜𝑑 5
𝑟+1) and by lemma 3.2 (𝑓), we have 𝑆𝑃6×5𝑟+3 ≡

25 (𝑚𝑜𝑑 5𝑟+1). Therefore, 𝑆𝑃6×5𝑟 = 5 × 𝑃12×5𝑟+3 − 𝑆𝑃6×5𝑟+3 ≡ 5 × 5 − 25(𝑚𝑜𝑑 𝑚). Thus,  

𝑆𝑃6×5𝑟 ≡ 0(𝑚𝑜𝑑 5
𝑟+1)                          (17) 

By Koshy [3], we have 𝑃2𝑛+1 = 𝑃𝑛
2 + 𝑃𝑛+1

2 . 

By considering 𝑛 = 6 × 5𝑟 , we get 𝑆𝑃6×5𝑟+1 = 𝑃12×5𝑟+1 − 𝑆𝑃6×5𝑟. Now, by lemma 4.1.1 (𝑑), we have 

𝑃12×5𝑟+1 ≡ 1(𝑚𝑜𝑑 5
𝑟+1). Also, by lemma 2.3 (𝑐), we have 𝑆𝑃6×5𝑟 ≡ 0(𝑚𝑜𝑑 5

𝑟+1). Therefore, 

𝑆𝑃6×5𝑟+1 = 𝑃12×5𝑟+1 − 𝑆𝑃6×5𝑟 ≡ 1 − 0 (𝑚𝑜𝑑 5
𝑟+1) 

Thus,  

𝑆𝑃6×5𝑟+1 ≡ 1(𝑚𝑜𝑑 5
𝑟+1)                     (18) 

Using the (17), (18) and fact 3.3, we can now conclude that 

𝑘𝑆𝑃(5
𝑟+1) | 6 × 5𝑟                                      (19) 

Since 5𝑟 | 5𝑟+1 implies that 𝑘𝑆𝑃(5
𝑟) | 𝑘𝑆𝑃(5

𝑟+1). Also, by induction hypothesis, we have 𝑘𝑆𝑃(5
𝑟) = 6 ×
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5𝑟−1. This gives 

6 × 5𝑟−1 | 𝑘𝑆𝑃(5
𝑟+1)                                (20) 

Thus using (19) and (20), we conclude that 

𝑘𝑆𝑃(5
𝑟+1) = 6 × 5𝑟−1 or 𝑘𝑆𝑃(5

𝑟+1) = 6 × 5𝑟. 

We finally confirm that the case 𝑘𝑆𝑃(5
𝑟+1) = 6 × 5𝑟−1 is not possible. In fact, we show that 𝑆𝑃6×5𝑟−1 ≢

0(𝑚𝑜𝑑 5𝑟+1). Now by Koshy [3], we get 

𝑆𝑃𝑛 =
1

2
{2𝑆𝑃𝑛+1 − 𝑃2𝑛+1 − 𝑃2𝑛 − (−1)

𝑛}. 

Considering 𝑛 = 6 × 5𝑟−1, we get 

𝑆𝑃6×5𝑟−1 =
1

2
{2 × 𝑆𝑃6×5𝑟−1+1 − 𝑃12×5𝑟−1+1 − 𝑃12×5𝑟−1 − (−1)

12×5𝑟−1}. 

Since by Koshy [3], we have 𝑃12×5𝑟−1 ≡ 0 (𝑚𝑜𝑑 5
𝑟) and  𝑃12×5𝑟−1+1 ≡ 1 (𝑚𝑜𝑑 5

𝑟) and thus in modulo 

5𝑟+1, we have 𝑃12×5𝑟−1 ≡ 0 or 5
𝑟 and 𝑃12×5𝑟−1+1 ≡ 1 or 1 + 5

𝑟. Also, by lemma 2.3 (𝑐) and (𝑑), we have 

𝑆𝑃6×5𝑟−1 ≡ 0(𝑚𝑜𝑑 5
𝑟) and 𝑆𝑃6×5𝑟−1+1 ≡ 0(𝑚𝑜𝑑 5

𝑟). 

Thus, in modulo 5𝑟+1, we have  𝑆𝑃6×5𝑟−1 ≡ 0 or 5
𝑟 and 𝑆𝑃12×5𝑟−1+1 ≡ 1 or 1 + 5

𝑟. We get 

𝑆𝑃6×5𝑟−1 =
1

2
{
2 × 𝑆𝑃6×5𝑟−1+1 − 𝑃12×5𝑟−1+1 − 𝑃12×5𝑟−1 −

(−1)12×5
𝑟−1 }    

              ≡
1

2
{(1 or 1 + 5𝑟) − (1 or 1 + 5𝑟) − (0 or 5𝑟) − 1}      

              ≡
1

2
{5𝑟 − 1}(𝑚𝑜𝑑 5𝑟+1)  

Therefore, 𝑆𝑃6×5𝑟−1 ≢ 0(𝑚𝑜𝑑 5
𝑟+1). This shows that 𝑘𝑆𝑃(5

𝑟+1) = 6 × 5𝑟−1 is not possible. Hence, 

𝑘𝑆𝑃(5
𝑟+1) = 6 × 5𝑟. Thus, 𝑘𝑆𝑃(5

𝑒) = 6 × 5𝑒−1 is true for every positive integer 𝑒, which proves the 

required result. 

Finally, using theorem 4.1, 5.1 and 3.7, we easily conclude the following important result. 

Theorem 𝟓. 𝟐: 𝑘𝑆𝑃(10
𝑒) = {

     6            ; 𝑒 = 1

3 × 10𝑒−1 ; 𝑒 ≥ 2
 . 

The following result calculates the period of {𝑃𝑛} when considered modulo 10𝑒.  

Theorem 𝟓. 𝟑: 𝑆𝑃6𝑡+𝑛 ≡ 𝑆𝑃𝑛(𝑚𝑜𝑑 10) and 𝑆𝑃3×10𝑒−2𝑡+𝑛 ≡ 𝑆𝑃𝑛(𝑚𝑜𝑑 10
𝑒); where  𝑒 ≥ 2, 𝑛 > 0 and 𝑡 is 

any integer.   

In the next section, we introduce the notion of blocks within the period of the squared Pell sequence. 

BLOCKS WITHIN THE PERIOD OF SQUARED SEQUENCE 

In this final section, we study the nature of the blocks within the residues of the squared Pell sequence when 

considered modulo 𝑚. We also discuss the distribution of residues within a single period of 𝑆𝑃(𝑚𝑜𝑑 𝑚). 
For the detailed insights, one can refer Patel, Shah [4]. 

Definition: 𝛼𝑆𝑃(𝑚) denotes the smallest positive value of index 𝑛 of squared Pell numbers such that 𝑆𝑃𝑛 ≡
0(𝑚𝑜𝑑 𝑚) and 𝑆𝑃𝑛−1 = 𝑆𝑃𝑛+1; when 𝑛 > 1. 
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Thus, 𝑆𝑃𝛼𝑆𝑃(𝑚) ≡ 0(𝑚𝑜𝑑 𝑚). We call 𝛼𝑆𝑃(𝑚) to be the restricted period of 𝑆𝑃(𝑚𝑜𝑑 𝑚). Thus 𝛼𝑆𝑃(𝑚) 

indicates the position of ending of first block which occurs in 𝑆𝑃(𝑚𝑜𝑑 𝑚). We call the finite sequence 𝑆𝑃0,
𝑆𝑃1, …  , 𝑆𝑃𝛼𝑃(𝑚)−1 to be the first block occurring in 𝑆𝑃(𝑚𝑜𝑑 𝑚). 

Definition: When 𝛼𝑆𝑃(𝑚) = 𝑘𝑆𝑃(𝑚), we call 𝑆𝑃(𝑚𝑜𝑑 𝑚) to be without restricted period. 

To illustrate these definitions, we consider the following examples.   

(i) Since 𝑆𝑃(𝑚𝑜𝑑 3) = {0, 1, 1, 1, 0, 1, 1, 1 … }, then clearly 𝛼𝑆𝑃(3) = 𝑘𝑆𝑃(3) = 4. In this case 

𝑆𝑃(𝑚𝑜𝑑 3) will be without restricted period. 

(ii) Since 𝑆𝑃(𝑚𝑜𝑑 5) = {0, 1, 4, 0, 4, 1, 0, 1, … }, we have 𝑘𝑆𝑃(5) = 6  and 𝛼𝑆𝑃(5) = 3. Thus, 𝑆𝑃3 ≡
0(𝑚𝑜𝑑 5). Here 0, 1, 4 is the first block in 𝑆𝑃(𝑚𝑜𝑑 5). 

(iii) Since 𝑆𝑃(𝑚𝑜𝑑 13) = {0, 1, 4, 12, 1, 9, 12, 0, 12, 9, 1, 12, 4, 1, 0, 1, 1, … }, thus we have 𝑘𝑆𝑃(13) = 14 

and 𝛼𝑆𝑃(13) = 7. Thus, 𝑆𝑃7 ≡ 0(𝑚𝑜𝑑 13). Here 0, 1, 4, 12, 1, 9, 12 is the first block in 

𝑆𝑃(𝑚𝑜𝑑 13). 

From last two illustrations, it is seen that the subscript of terms for which 𝑆𝑃𝑛 ≡ 0(𝑚𝑜𝑑 𝑚) and 𝑆𝑃𝑛−1 =
𝑆𝑃𝑛+1 contains equal number of (that is 𝛼𝑆𝑃(𝑚) number of) terms and the subscripts are in arithmetic 

progression with common difference 𝛼𝑆𝑃(𝑚). That is, 𝑆𝑃𝛼𝑆𝑃(𝑚)−1 = 𝑆𝑃𝛼𝑆𝑃(𝑚)+1 and 𝑆𝑃𝛼𝑆𝑃(𝑚) ≡

0(𝑚𝑜𝑑 𝑚). 

Thus, we can say that 𝑆𝑃𝛼𝑆𝑃(𝑚)𝑢 ≡ 0(𝑚𝑜𝑑 𝑚), for each positive integer 𝑢. Moreover, since 𝑆𝑃𝑘𝑆𝑃(𝑚) ≡

0(𝑚𝑜𝑑 𝑚), we say that 𝛼𝑆𝑃(𝑚)𝑢 = 𝑘𝑆𝑃(𝑚), where 𝑢 is some positive integer. Thus, 𝛼𝑆𝑃(𝑚) | 𝑘𝑆𝑃(𝑚).  

To illustrate this, we consider  

𝑆𝑃(𝑚𝑜𝑑 13) = {0, 1, 4, 12, 1, 9, 12, 0, 12, 9, 1, 12, 4, 1, 0, 1, … }. 

Then it can be seen that 𝑆𝑃0 ≡ 𝑆𝑃7 ≡ 0(𝑚𝑜𝑑 13), 𝑆𝑃6 = 𝑆𝑃8 = 12 and 𝑘𝑆𝑃(13) = 14. Thus, in this case 

𝛼𝑆𝑃(13) = 7 and 𝛼𝑆𝑃(13) | 𝑘𝑆𝑃(13). 

Later we will show that the value of 𝑢 is always either 1 or 2. The following result gives interesting outlook 

about the divisibility property of suffix 𝑛.   

Lemma 𝟔. 𝟏: 𝛼𝑆𝑃(𝑚) | 𝑛 if and only if 𝑚 | 𝑆𝑃𝑛. 

Proof: Let 𝛼𝑆𝑃(𝑚) | 𝑛. Then, we have 𝑛 = 𝑛′ × 𝛼𝑆𝑃(𝑚); for some 𝑛′ ∈ ℤ.  

In view of the above comment, 𝑆𝑃𝑛 = 𝑆𝑃𝛼𝑆𝑃(𝑚)×𝑛′ ≡ 0(𝑚𝑜𝑑 𝑚). This gives 𝑚 | 𝑆𝑃𝑛. 

To prove the converse part, assume that 𝑚 | 𝑆𝑃𝑛. Then by the definition of 𝛼𝑆𝑃(𝑚), either 𝛼𝑆𝑃(𝑚) = 𝑛 or 

𝛼𝑆𝑃(𝑚) < 𝑛. If 𝛼𝑆𝑃(𝑚) = 𝑛 then 𝛼𝑆𝑃(𝑚) | 𝑛 is true and if 𝛼𝑆𝑃(𝑚) < 𝑛 then as 𝑛 lies in the simple 

arithmetic progression with first term 0 and common difference 𝛼𝑆𝑃(𝑚), we have 𝑛 = 𝛼𝑆𝑃(𝑚) × 𝑛
′. 

Therefore, 𝛼𝑆𝑃(𝑚) | 𝑛 is true in any case. This completes the proof. 

The following interesting divisibility property always holds for any arbitrary values of 𝑚 and 𝑛. 

Theorem 𝟔. 𝟐: 𝛼𝑆𝑃(𝑚) | 𝛼𝑆𝑃(𝑚𝑛). 

Proof: By the definition of 𝛼𝑆𝑃(𝑚), we have 𝑆𝐹𝛼𝑆𝑃(𝑚) ≡ 0(𝑚𝑜𝑑 𝑚). Therefore, 𝑚 | 𝑆𝑃𝛼𝑆𝑃(𝑚) is always true. 

Thus, 𝑚𝑛 | 𝑆𝑃𝛼𝑆𝑃(𝑚𝑛) also holds. Now for any multiple of 𝑚, 𝛼𝑆𝑃(𝑚𝑛)
th position within the list of residues 

for 𝑆𝑃(𝑚𝑜𝑑 𝑚) will always contain zero. Thus, 𝑚 | 𝑆𝑃𝛼𝑆𝑃(𝑚𝑛); that is 𝑆𝐹𝛼𝑆𝑃(𝑚𝑛) ≡ 0(𝑚𝑜𝑑 𝑚). Hence, 
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𝛼𝑆𝑃(𝑚) | 𝛼𝑆𝑃(𝑚𝑛), as required. 

To illustrate this, we consider 𝑆𝑃(𝑚𝑜𝑑 8) = {0, 1, 4, 1, 0, 1, … }, In this case we observe that 𝛼𝑆𝑃(8) = 4. 

When we consider  

𝑆𝑃(𝑚𝑜𝑑 32) = {0, 1, 4, 25, 16, 9, 4, 17, 0, 17, 4, 9, 16, 25, 4, 1, 0, 1 … }, 

we observe that 𝛼𝑆𝑃(32) = 8. Thus, 𝛼𝑆𝑃(8) | 𝛼𝑆𝑃(16). 

Definition: By 𝑆𝑆𝑃(𝑚), we mean the first positive residue appearing after the blocks in 𝑆𝑃(𝑚𝑜𝑑 𝑚). That is 

𝑆𝑃𝛼𝑆𝑃(𝑚)+1 ≡ 𝑆𝑆𝑃(𝑚)(𝑚𝑜𝑑 𝑚) and 𝑆𝑆𝑃(𝑚) is the smallest such number. 

Since, 𝑆𝑃𝛼𝑆𝑃(𝑚) ≡ 0(𝑚𝑜𝑑 𝑚) and 𝑆𝑃𝛼𝑆𝑃(𝑚)+1 ≡ 𝑆𝑆𝑃(𝑚)(𝑚𝑜𝑑 𝑚), we have (𝑆𝑃𝛼𝑆𝑃(𝑚), 𝑆𝑃𝛼𝑆𝑃(𝑚)+1) ≡

𝑆𝑆𝑃(𝑚) × (0,1)(𝑚𝑜𝑑 𝑚). Thus, 𝑆𝑆𝑃(𝑚) acts like a multiplier of the first periodic part of 𝑆𝑃(𝑚𝑜𝑑 𝑚). 

To illustrate this, we consider 𝑚 = 13. Then since 𝛼𝑆𝑃(13) = 7, we have 

(𝑆𝑃6, 𝑆𝑃7, 𝑆𝑃8) = (12, 0,12) ≡ 12(1, 0,1)(𝑚𝑜𝑑 13) 

Thus, 𝑆𝑆𝑃(13) = 12. 

Definition: 𝛽𝑆𝑃(𝑚) denote the order of 𝑆𝑆𝑃(𝑚)(𝑚𝑜𝑑 𝑚).  

That is 𝑆𝑆𝑃(𝑚)
𝛽𝑆𝑃(𝑚) ≡ 1(𝑚𝑜𝑑 𝑚) and if 𝑛 < 𝛽𝑆𝑃(𝑚) then 𝑆𝑆𝑃(𝑚)

𝑛 ≢ 1(𝑚𝑜𝑑 𝑚). 

As an illustration, if we once again consider 𝑆𝑃(𝑚𝑜𝑑 13), then 𝑆𝑆𝑃(13) = 12 and 122 ≡ 1(𝑚𝑜𝑑 13). Thus, 

𝛽𝑆𝑃(13) = 2.  

To illustrate above definitions, we consider the following two examples: 

(i) Since 𝑆𝑃(𝑚𝑜𝑑 3) = {0, 1, 1, 1, 0,1, … }, clearly 𝑘𝑆𝑃(3) = 4. Also, the restricted period 𝛼𝑃(3) = 4 and 

multiplier 𝑆𝑆𝑃−1(3) = 𝑆𝑆𝑃+1(3) = 1. Thus, the order of 𝑆𝑆𝑃(4) = 1  and hence 𝛽𝑆𝑃(3) = 1. 

(ii) Since 𝑆𝑃(𝑚𝑜𝑑 5) = {0, 1, 4, 0, 4, 1, 0, 1, … }, then clearly 𝑘𝑆𝑃(5) = 6, 𝛼𝑆𝑃(5) = 3 and 𝑆𝑆𝑃−1(𝑚) =
𝑆𝑆𝑃−1(𝑚) = 4. Since 42 ≡ 1(𝑚𝑜𝑑 5), we get 𝛽𝑆𝑃(5) = 2. 

The following resembles the theorem 4.4.3 for the sequence {𝑆𝑃𝑛}. 

Theorem 𝟔. 𝟑: 𝑘𝑆𝑃(𝑚) = 𝛼𝑆𝑃(𝑚) × 𝛽𝑆𝑃(𝑚). 

Proof: Throughout the proof we consider all the congruences modulo 𝑚. Suppose that one period of 

𝑆𝑃(𝑚𝑜𝑑 𝑚) is partitioned into smaller and finite subsequences 𝑅0, 𝑅1, 𝑅2, … , 𝑅𝑛, … as shown below: 

0, 1, … , 𝑆𝑆𝑃1
⏞        ,

𝑅0

0, 𝑆𝑆𝑃1, … , 𝑆𝑆𝑃2
⏞        

𝑅1

, 0, 𝑆𝑆𝑃2, … , 𝑆𝑆𝑃3
⏞          

𝑅2

, … , 

0, 𝑆𝑆𝑃𝑛, … , 𝑆𝑆𝑃𝑛+1
⏞          

𝑅𝑛

, 0, 1, … , 𝑆𝑆𝑃1
⏞      ,

𝑅𝑛+1

…                      (21) 

where 𝑆𝑆𝑃1 = 𝑆𝑆𝑃(𝑚) and every 𝑅𝑖 (𝑖 ≥ 1) contains exactly one 0. 

Clearly each subsequence 𝑅𝑖 has 𝛼𝑆𝑃(𝑚) terms and 𝑆𝑆𝑃 = 𝑆𝑆𝑃(𝑚). Also, in any 𝑅𝑖 (𝑖 ≥ 1), there is exactly 

one zero. Hence every subsequence 𝑅𝑖 (𝑖 ≥ 1) is a multiple of 𝑅0. More precisely, we have the following 

congruences: 
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𝑅1 ≡ 𝑆𝑆𝑃1𝑅0, 𝑅2 ≡ 𝑆𝑆𝑃2𝑅0, ⋯ , 𝑅𝑛−1 ≡ 𝑆𝑆𝑃𝑛−1𝑅0, 𝑅𝑛 ≡ 𝑆𝑆𝑃𝑛𝑅0. 

Now the last term in 𝑅2 is 𝑆𝑆𝑃3 and that of 𝑅0 is 𝑆𝑆𝑃1. Also, we have 𝑅2 ≡ 𝑆𝑆𝑃2𝑅0. Therefore, 𝑆𝑆𝑃3 ≡

𝑆𝑆𝑃2 × 𝑆𝑆𝑃1(𝑚𝑜𝑑 𝑚). By the similar arguments, we have  

𝑆𝑆𝑃4 ≡ 𝑆𝑆𝑃3 × 𝑆𝑆𝑃1, 

 𝑆𝑆𝑃5 ≡ 𝑆𝑆𝑃4 × 𝑆𝑆𝑃1, ⋯,  

𝑆𝑆𝑃𝑛 ≡ 𝑆𝑆𝑃𝑛−1 × 𝑆𝑆𝑃1 

Therefore, we have  

𝑆𝑆𝑃𝑛 ≡ 𝑆𝑆𝑃𝑛−1 × 𝑆𝑆𝑃1 

         ≡ (𝑆𝑆𝑃𝑛−2 × 𝑆𝑆𝑃1) × 𝑆𝑆𝑃1 

         ≡ (𝑆𝑆𝑃𝑛−3 × 𝑆𝑆𝑃1) × 𝑆𝑆𝑃1 × 𝑆𝑆𝑃1 

 ⋮ 

         ≡ (𝑆𝑆𝑃𝑛−(𝑛−1) × 𝑆𝑆𝑃1) × 𝑆𝑆𝑃1 ×⋯× 𝑆𝑆𝑃1⏟          
𝑛−2 times

. 

Therefore, 𝑆𝑆𝑃𝑛 ≡ 𝑆𝑆𝑃1
𝑛(𝑚𝑜𝑑 𝑚) . 

Since the order of 𝑆𝑆𝑃1 is 𝛽𝑆𝑃(𝑚), we rewrite sequence (21) as follows: 

0, 1, … , 𝑆𝑆𝑃1, 0, 𝑆𝑆𝑃1, … , 𝑆𝑆𝑃1
2, 0, 𝑆𝑆𝑃1

2, … , 0, 𝑆𝑆𝑃1
3, … , 

0, 𝑆𝑆𝑃1
𝛽𝑆𝑃(𝑚)−1, … , 0, 1, … ; 

with 𝑆𝑆𝑃1
𝛽𝑆𝑃(𝑚) ≡ 1(𝑚𝑜𝑑 𝑚).  

Thus 𝛽𝑆𝑃(𝑚) can be interpreted as the number of blocks in a single period of 𝑆𝑃(𝑚𝑜𝑑 𝑚). It now follows 

easily that 𝑘𝑆𝑃(𝑚) = 𝛼𝑆𝑃(𝑚) × 𝛽𝑆𝑃(𝑚). 

The following results will be helpful for the study of blocks within the residues of {𝑆𝑃𝑛}. 

Corollary 𝟔. 𝟒:  

𝑆𝑃𝑛×𝛼𝑆𝑃(𝑚)+𝑟 ≡ (𝑆𝑃𝛼𝑆𝑃(𝑚)+1)
𝑛
𝑆𝑃𝑟(𝑚𝑜𝑑 𝑚). 

Proof: From above theorem, we have 𝑅𝑛 ≡ 𝑆𝑆𝑃𝑛𝑅0(𝑚𝑜𝑑 𝑚) and 𝑆𝑆𝑃𝑛 ≡ 𝑆𝑆𝑃1
𝑛(𝑚𝑜𝑑 𝑚) . Thus, we have 

𝑅𝑛 ≡ 𝑆𝑆𝑃1
𝑛𝑅0(𝑚𝑜𝑑 𝑚)                     (22) 

This shows that the 𝑟th term of 𝑅𝑛 is equal to 𝑆𝑆𝑃1
𝑛

 times the 𝑟𝑡h term of 𝑅0, when considered modulo 𝑚. 

Also, from the definition of 𝑆𝑆𝑃(𝑚) we conclude that  𝑆𝑆𝑃1 = 𝑆𝑃𝛼𝑆𝑃(𝑚)+1, when considered modulo 𝑚. 

Therefore, from (4.9.2) and above arguments, we can say that 𝑆𝐹𝑛×𝛼𝑆𝐹(𝑚)+𝑟 ≡ (𝑆𝐹𝛼𝑆𝐹(𝑚))
𝑛
×
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𝑆𝐹𝑟 (𝑚𝑜𝑑 𝑚). This finally gives  

𝑆𝐹𝑛×𝛼𝑆𝐹(𝑚)+𝑟 ≡ (𝑆𝑆𝐹(𝑚))
𝑛
× 𝑆𝐹𝑟  (𝑚𝑜𝑑 𝑚). 

Corollary 𝟔. 𝟓: 𝑆𝑛
𝑟 ≡ 𝑆𝑛×𝑟(𝑚𝑜𝑑 𝑚). 

Proof: Since 𝑆𝑆𝑃𝑛 ≡ 𝑆𝑆𝑃1
𝑛(𝑚𝑜𝑑 𝑚), we write 𝑆𝑆𝑃𝑛

𝑟 ≡ (𝑆𝑆𝑃1
𝑛)
𝑟
≡ 𝑆𝑆𝑃1

𝑛×𝑟 ≡ 𝑆𝑆𝑃𝑛×𝑟(𝑚𝑜𝑑 𝑚), as required 

Theorem 𝟔. 𝟔: 𝛽𝑆𝑃(𝑚) = 1 or 2, for 𝑚 ≥ 2. 

Proof: By Koshy [3],  we have 𝑃𝑛
2 = 𝑃𝑛−1𝑃𝑛+1 − (−1)

𝑛. Taking 𝑛 = 𝛼𝑆𝑃(𝑚), we get 

𝑆𝑃𝛼𝑆𝑃(𝑚) = 𝑃𝛼𝑃(𝑚)−1𝑃𝛼𝑃(𝑚)+1 − (−1)
𝛼𝑆𝑃(𝑚).          (23) 

Now, 𝑆𝑃𝛼𝑆𝑃(𝑚) ≡ 0(𝑚𝑜𝑑 𝑚). Also, we know that  

𝑃𝛼𝑃(𝑚)+1 ≡ 𝑠𝑃(𝑚)(𝑚𝑜𝑑 𝑚) and 

𝑃𝛼𝑃(𝑚)−1 ≡ 𝑃𝛼𝑃(𝑚)+1(𝑚𝑜𝑑 𝑚). 

Therefore, by (23), we have 0 = {𝑠𝑃(𝑚)}{𝑠𝑃(𝑚)} − (−1)(𝑚𝑜𝑑 𝑚). Thus, we get {𝑠𝑃(𝑚)}
4 ≡ 1(𝑚𝑜𝑑 𝑚), 

that is 𝑆𝑆𝑃(𝑚)
2 ≡ 1(𝑚𝑜𝑑 𝑚). Since order of 𝑆𝑆𝑃(𝑚) is 𝛽𝑆𝑃(𝑚), we finally conclude that 𝛽𝑆𝑃(𝑚) must 

divide 2. Hence, for any 𝑚 ≥ 2, we have 𝛽𝑆𝑃(𝑚) = 1 or 2. 

We conclude by presenting a table displaying the values of 𝑘𝑆𝑃(𝑚), 𝛼𝑆𝑃(𝑚) and 𝛽𝑆𝑃(𝑚) for 2 ≤ m ≤ 20. 

 

CONCLUSIONS 
 

In this article, we studied the length of the novel sequence – squared Pell sequence when considered modulo 

10𝑒. We also introduced the ‘blocks’ within the period of this sequence and shown that length of any one 

period of the squared Pell sequence always contains either 1 or 2 blocks. 
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𝒎 𝒌𝑺𝑷(𝒎) 𝜶𝑺𝑷(𝒎) 𝜷𝑺𝑷(𝒎) 
2 2 2 1 

3 4 4 1 

4 2 2 1 

5 6 3 2 

6 4 4 1 

7 6 6 1 

8 4 4 1 

9 12 12 1 

10 6 6 1 

11 12 12 1 

12 4 4 1 

13 14 7 2 

14 6 6 1 

15 12 12 1 
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