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ABSTRACT

In this paper, we investigate the periodic properties of the squared Pell sequence {SPB,}, which is defined by
the recurrence relation SP, = PZ; for all n > 2; with P, = 0, P, = 1, where P, denotes n'" Pell number. For
any modulus m > 1, we introduce a novel concept of 'blocks' within this sequence by examining the
distribution of residues over a single period of the squared Pell sequence. Our results reveal that the length of
any given period of the squared Pell sequence comprises either 1 or 2 blocks.

Keywords: Fibonacci sequence, Pell sequence, Periodicity of Pell sequence.
INTRODUCTION

The Fibonacci sequence {F,} shows interesting periodic properties under modulo 10¢. Initially, the last digits
of Fibonacci numbers seem random, but a clear pattern emerges: the sequence of last digits repeats every 60
numbers. Therefore, the last digits exhibit a periodicity with a cycle length of 60, expressed as Fggy, 4+ ; =
F;(mod 10) for any i, where n > 0. Koshy [7] proved this using mathematical induction.

In 1972, Kramer and Hoggatt Jr. [2] established the periodicity of Fibonacci sequence as well as of Lucas
sequence when considered modulo 10™. Patel, Shah [5] considered the periodicity of generalized Lucas
numbers and proved the result when the length of its period under modulo 2°.

This brings in to mind an immediate question - For any given positive integer m > 1, does the sequence {F, }
is periodic when considered modulo m? In 1960, Wall [6] examined the periodic nature of {F,} with respect
to any positive integer m > 1 and showed that {F,} consistently exhibits periodicity.

Omiir Deveci, Erdal Karaduman [3] proved some elementary results for the periodicity of {P,}. For further
details about Pell numbers, one can refer Horadam [1] and Koshy [8].

This listing can be further extended as several articles are available in the literature concerning the
periodicity of varied generalizations of the Fibonacci sequence. In the following section, we now consider
the periodicity of a new sequence — the squared Pell sequence.

SQUARED PELL SEQUENCE
The squared Pell sequence is the sequence which consists of the squares of all the Pell numbers in order.

Definition: The sequence {SP,} represents the squares of corresponding terms of the sequence {P,} in order.
In other words, SP, = P? ; for all n > 1, where P, stands for n'" Pell number.

It is trivial to note that {SP,} = {0,1,4,25,144,841,4900,28561, 166464, ...}. We first derive some
elementary results for this sequence which will be used further in this paper. The following result gives a
recurrence relation which helps to reduce the terms of {SP,} into smaller terms.
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Lemma 2.1:

SPyin = SPySPys1 + SPy_1SP, + 2 PPy Py 1 Prsy.
Lemma 2.2: SP,,, = SP,(SP,_1 + SPy11) + 2 SP, Py_q Py
Lemma 2.3:SP,,.1 = SP? + SP2,, + 2 SP,SP, 4 1.

In the following section we study the periodicity of sequence {SP,} and obtain some interesting results
related with its residues.

PERIODICITY OF SQUARED PELL SEQUENCE

In this section, we study in detail about the periodic nature of {SP,} when considered modulo m > 1. For the
detailed insights, one can refer Marc [9].

Definition: By SP(mod m), we mean the sequence of the least non-negative residues of the terms of the
squares of terms of the sequence {B,} in order taken modulo m.

As an illustration, we consider SP(mod 8) in the following table:

Table 4. 1: SP(mod 8)

n 0l1]2]3 |4 5 6
SP, 0| 1] 4| 25 | 144 | 841 | 4900
SP(mod8) | 0 | 1 | 41 |0 1 4

From the above table, it can be noticed that the sequence SP(mod 8) is periodic. Furthermore, it is not
difficult to check that SPasn+i= Pi(mod 8); where n > 0. This clearly indicates that the period of SP(mod
8) is 4.

We now prove several results for the periodic nature of SP(mod m) analogues to that of P(mod m).

Lemma 3.1: The sequence SP(mod m) is always periodic; for any integer m > 1 and its starting values
0,1.

We next introduce the notation for the length of period of SP(mod m).
Definition: kgsp (m) denotes the length of period of the squared Pell sequence modulo m.
The following are some immediate consequences from the lemmas 4.6.1, 4.6.2 and the definition of kgp(m).
Lemma 3.2: (3) SPy,,(m)-2 = 4 (mod m)
(b) SPycp(m)-1 = 1 (mod m)
(€) SPkgp(m) = 0 (mod m)
(d) SPkgpmy+1 = 1 (mod m)
(€) SPyep(m)+2 = 4 (mod m)
(f) SPyopim)+3 = 25 (mod m)

(9) SPygp(my+nr = Pr(mod m), vV r € L.
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Fact 3.3: Since SP(imod m) is periodic, we will often use the fact that ‘if both SP, = 0(mod m) and
SP,+1 = 1 (mod m) holds, then kgp(m) | n.

Lemma 3. 4: For any given integer m, there are infinitely many squared Pell numbers which are divisible by
m.

Theorem 3.5: If n | mthen kgp(n) | kgp(m).

Theorem 3.6: kgp(m) = lem[kgp( p;€)], for various values of i, where m = [] p;° and p;’s are distinct
primes.

Theorem 3. 7:kgp (lcm[m, n]) = lem[kgp(m), ksp(n)].
VALUE OF kgp(2)

In this section, we obtain the value of ksp(p®) when p = 2.

3 ;e=1

Theorem 4.1: ksp(2°) = {26_1 o>

Proof: We notice that SP(mod 2) = {0,1,1,0,1, ... }. Therefore, ksp(2) = 3. For e > 2, we prove the result
by induction.

We note that SP(mod 4) = {0,1,0,1, ...} and SP(mod 8) = {0,1,4,1,0, 1, ... }. Therefore, ksp(4) = 3 and
ksp(8) = 6. This proves the result for e = 2,3. We assume that the result holds for some positive integer
e =1 =4.Thus,

kep(27) =271 r > 4. (1)
Then by the lemma 3.2 (a), (b) and (c), we have

SPzr—l = O(mod 21‘); SPzr—l_I_l = 1(m0d 27‘)}

szr—l_l =1 (mod Zr) (2)

By lemma 2.2, we have SP,,, = SB,(SP,_1 + SPp41) + 2 SB,P,_1P,,1. By taking n = 2"~ and using (2),
we have

SPyyor—1 = SPyr-1(SPyr-1_1 + SPyr-1,1) + 2 SPyr-1Pyr-1_Pyr1,,
=0x(1+1)+2x0x1x1(mod2™1)

Thus,

SP,r = 0(mod 27%1) (3)

Again, by lemma 2.3, we have SP,,,; = SP? + SP?,, + 2SP,SP,,,. Considering n = 2", we get

SPyyar-141 = SPir—1 + SP21,, + 2 SPyr-1SPyr-1,,. (4)

But by (1), we get SP,r—1 = 0(mod 2") and SP,r-1,, = 1(mod 2"). Thus, SP,r-1 = 0,2",2 x 27,3 X
2", ... and SP3y,r—2,, = 1,1+ 27,1+ 2 x 2", .... By considering modulo 2"**, we have SP,r-1 = 0 or 27;
and SP,r-1 = 1 or 1 4+ 2". Thus by (4), we have

SPyryq = (00r27)? + (Lor(1 + zr))2 +2(0 or 2")(1 or (1 + 27))(mod 27*1)
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=(0or22")+ (lorl+2"1 422" 4+ (2" or 2"+t + 22"t (mod 27*1)
Thus,

SPyr.q = 1(mod 27%1) (5)

Then by the (3), (5) and fact 3.3, we have

ksp(27*1) | 27 (6)

Since 27 | 2"t implies ksp (27) | ksp(27F1), we get

2" | kgp(271) (7)

Then by combining equation (6) and (7), we get

kep(27+1) = 27 L or kgp(27F1) = 2 x 2771 = 27,

We shall show that the case ksp(27%') = 2771 is not possible. In fact, we will show that SP,r-1,, #
1(mod 2"*1). More precisely, we will prove that

SPyr-1,, = 1+ 2" (mod 2"*1);r > 4. (8)

Considering r =4, we have (i) SP,=970225=17=1+2%(mod?2°) and (ii) SP;, =
1292061882721 = 33 = 1 + 2°5(mod 2°). Therefore, (8) is true for r = 4. Let it be true for some integer
r — 1. Thus, SPyr—2,; = 2" + 1 (mod 27). Considering modulo 2"*1, we get

SPyr—2,, =1+ D or (21 +1+2") 9)

Then, SPA—.,, = (27 1+ 12 or (2771 + 1 + 27)%(mod 271).

Now since r > 4, we have (271 +1)2 =22""2 + 2" + 1 = 2" + 1(mod 2"*1).

Also, (2771 + 1+ 27)2 = 2272 4 22r+1 4 pr+1 4 27 4+ 1 = 2" + 1(mod 2"*1).

This gives,

SPZ 2, =27 + 1(mod 27*1). (10)

We also assume that

SP,r-2 = 0(mod 27) (11)

(This is because if it is not true then replacing r by r + 1, we can say that SP,»—1 = 0(mod 2"*1) is not true.
Thus, kgp(27+1) = 271 which we need to prove.) Taking modulo 27*1, we get SP,r-= = 0 or 2". Thus

SPZ_. = 0(mod 27*1) (12)
Now, by lemma 2.3, we have SP,,,.; = SB? + SP2., + 2 SP, X SP,,,,. Considering n = 272, we get
SPyr-1,1 = SPir—2 + SP2r2, + 2 SPyr-2 X SPyr-2,1 (13)

By (9), (10), (11) and (12), we thus have
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SPyr-1,, =0+ Q2"+ 1)+ 2000r2M)(2" 1 +10r2" 1+ 14+ 2N (mod 2" = 2" + 1+ (27" +
2T+10r22r + 2r+1 + 22r+1)(m0d 21‘+1)

Thus, SP,r-1,, = 2" + 1(mod 2"+1) (14)

This now confirms that SP,r-1,; # 1(mod 2"*1); that means kgp(27*') = 2"~ is not possible. Hence
ksp(27t1) = 27. This proves the theorem by induction.

VALUE OF kgp(5°9)

In this section, we obtain the value of kgp (p¢) for the case p = 5.
Theorem 5.1: ksp(5¢) = 6 X 5¢71;e > 1.

Proof: To prove the required result, it is sufficient to prove that

SP¢yse-1 = SPy = 0(mod 5°) } (15)

SP6><5€—1+1 = SPl = 1(m0d 58)-
We use induction to prove these results. For e = 1, we have
SPgys1i-1 = SPg = 4900 = 0(mod 5°¢) and SPgysi-1,1 = SP, = 28561 = 1(mod 5°).

Thus, (15) is true for e = 1. We next assume that results hold for some positive integer e = r > 2. That is,
let the following holds:

kSP(Sr) = 6 X 51"—1 (16)

We prove that (15) holds for e =r+ 1 also. Therefore, we need to prove that SPgysr = SPy =
0(mod 5"*1) and SPgysryq = SP; = 1(mod 5"*1). Now, by lemma 1.2.3 (e), we have SP, = 5P, ,5 —
SP, 5. By consideringn = 6 X 5", we get

SPexsr =5 X Pyyexsre3 — SPexsris.

Also, by Koshy [2,3], we have P,xsri3 =5 (mod 5711) and by lemma 3.2 (f), we have SPgysris =
25 (mod 5"*1). Therefore, SPgysr =5 X Pyyysrys — SPexsry3 = 5 X 5 — 25(mod m). Thus,

SPeysr = 0(mod 57+1) (17)
By Koshy [3], we have P,,,.1 = P? + PZ, ;.

By considering n = 6 X 57, we get SPgysry1 = Piaxsr+1 — SPexsr. Now, by lemma 4.1.1 (d), we have
Pioxsre1 = 1(mod 57%1). Also, by lemma 2.3 (¢), we have SPq.sr = 0(mod 57*1). Therefore,

SPexsr+1 = Piaxste1 — SPexsr =1 — 0 (mod 5™*1)

Thus,

SPgxsriq = 1(mod 57*1) (18)

Using the (17), (18) and fact 3.3, we can now conclude that
ksp(5™1) | 6 x 57 (19)

Since 57 | 57t implies that ksp(57) | ksp(57%1). Also, by induction hypothesis, we have kgp(57) = 6 X
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57~1. This gives

6 X 5771 | kep(57F) (20)
Thus using (19) and (20), we conclude that
ksp(57*1) = 6 x 571 or kgp(57+1) = 6 X 57.

We finally confirm that the case kgp(5"*1) = 6 x 571 is not possible. In fact, we show that SPy cr-1 #
0(mod 5"*1). Now by Koshy [3], we get

1
Sk, = E{ZSPnH — Pypp1 — Ppy — (="}
Consideringn = 6 x 5771, we get
! r—1
SP6><5r—1 = 5{2 X SPGXST_1+1 — P12><5r_1+1 — P12><5r_1 — (_1)12><5 }

Since by Koshy [3], we have P,,ysr-1 = 0 (mod 5") and P;,.sr-1,, = 1 (mod 5") and thus in modulo
571, we have P,y -1 = 0 or 5" and P,y sr-1,, = 1 or 1 + 57, Also, by lemma 2.3 (¢) and (d), we have
SPgysr-1 = 0(mod 57) and SPgysr-1,, = 0(mod 57).

Thus, in modulo 5", we have SP . .r-1 = 0 or 5" and SP,,,sr-1,; = 1 or 1 + 5. We get

2 X SPgysr-141 — Piaxsr-141 — Pipysr—1 _}

1
SP6X5T_1 = E{ (_1)12X5T—1

E%{(10r1+5r)—(1or1+5T)—(00r5r)—1}
= ~{5" — 1}(mod 5"+1)

Therefore, SP.,cr-1 £ 0(mod 5"*1). This shows that kgp(57%1) =6 x 5771 is not possible. Hence,
kep(5711) = 6 x 57. Thus, ksp(5¢) = 6 x 571 is true for every positive integer e, which proves the
required result.

Finally, using theorem 4.1, 5.1 and 3.7, we easily conclude the following important result.

6 e=1
- e —_ 4
Theorem 5.2: ksp(10¢) = {3 X100 1ie>2"
The following result calculates the period of {B,} when considered modulo 10°.

Theorem 5.3: SP¢i.,, = SB,(mod 10) and SP3yge-2;4y = SB,(mod 10¢); where e >2,n >0 and t is
any integer.

In the next section, we introduce the notion of blocks within the period of the squared Pell sequence.
BLOCKS WITHIN THE PERIOD OF SQUARED SEQUENCE

In this final section, we study the nature of the blocks within the residues of the squared Pell sequence when
considered modulo m. We also discuss the distribution of residues within a single period of SP(mod m).
For the detailed insights, one can refer Patel, Shah [4].

Definition: agp(m) denotes the smallest positive value of index n of squared Pell numbers such that SB, =
0(mod m) and SP,,_; = SP,,,1; Whenn > 1.
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Thus, SPy,m) = 0(mod m). We call asp(m) to be the restricted period of SP(mod m). Thus agp(m)
indicates the position of ending of first block which occurs in SP(mod m). We call the finite sequence SP,,
SPy, ... , SP4,am)—1 0 be the first block occurring in SP(mod m).

Definition: When asp(m) = kgp(m), we call SP(mod m) to be without restricted period.
To illustrate these definitions, we consider the following examples.

(i) Since SP(mod3)=1{0,1,1,1,0,1,1,1 ...}, then clearly agsp(3) = ksp(3) =4. In this case
SP(mod 3) will be without restricted period.

(ii) Since SP(mod 5) ={0,1,4,0,4,1,0,1,...}, we have ksp(5) =6 and asp(5) = 3. Thus, SP; =
0(mod 5). Here 0, 1, 4 is the first block in SP(mod 5).

(iii) Since SP(mod 13) ={0,1,4,12,1,9,12,0,12,9,1,12,4,1,0,1, 1, ... }, thus we have kgp(13) = 14
and asp(13) =7. Thus, SP, = 0(mod 13). Here 0,1,4,12,1,9,12 is the first block in
SP(mod 13).

From last two illustrations, it is seen that the subscript of terms for which SB, = 0(mod m) and SP,_, =
SP,., contains equal number of (that is agp(m) number of) terms and the subscripts are in arithmetic
progression with common difference agp(m). That is, SPy.,om)-1 = SPagpimy+1 aNd SPyom) =
0(mod m).

Thus, we can say that SP,_,myu = 0(mod m), for each positive integer u. Moreover, since SPy ) =
0(mod m), we say that asp(m)u = ksp(m), where u is some positive integer. Thus, agp(m) | ksp(m).

To illustrate this, we consider
SP(mod 13) ={0,1,4,12,1,9,12,0,12,9,1,12,4,1,0, 1, ... }.

Then it can be seen that SPy = SP, = 0(mod 13), SP; = SPg = 12 and kgsp(13) = 14. Thus, in this case
asp(l?)) = 7 and asp(13) | kSp(l?))

Later we will show that the value of u is always either 1 or 2. The following result gives interesting outlook
about the divisibility property of suffix n.

Lemma 6.1: asp(m) | nifand only if m | SB,.
Proof: Let agp(m) | n. Then, we have n = n’ X agp(m); for some n’ € Z.

In view of the above comment, SB, = SPy.,m)xn: = 0(mod m). This gives m | SB,.

To prove the converse part, assume that m | SB,. Then by the definition of asp(m), either agp(m) = n or
asp(m) < n. If agp(m) =n then agp(m) | n is true and if asp(m) < n then as n lies in the simple
arithmetic progression with first term 0 and common difference agp(m), we have n = agp(m) x n'.
Therefore, agp(m) | n is true in any case. This completes the proof.

The following interesting divisibility property always holds for any arbitrary values of m and n.
Theorem 6.2: agp(m) | agp(mn).

Proof: By the definition of asp(m), we have SF, ,m) = 0(mod m). Therefore, m | SPqp(m) IS always true.
Thus, mn | SPqp(mny also holds. Now for any multiple of m, asp (mn)™ position within the list of residues
for SP(mod m) will always contain zero. Thus, m | SPqop(mny that is SFy,mny = 0(mod m). Hence,
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asp(m) | agp(mn), as required.

To illustrate this, we consider SP(mod 8) = {0,1,4,1,0,1, ...}, In this case we observe that asp(8) = 4.
When we consider

SP(mod 32) ={0,1,4,25,16,9,4,17,0,17,4,9,16,25,4,1,0,1 ...},
we observe that asp(32) = 8. Thus, agp(8) | asp(16).

Definition: By Sgp(m), we mean the first positive residue appearing after the blocks in SP(mod m). That is
SPycpmy+1 = Ssp(m)(mod m) and Sgp(m) is the smallest such number.

Since, SPy.,(m) = 0(mod m) and SPy.,m)+1 = Ssp(m)(mod m), we have (SPaSP(m),SPaSP(m)H) =
Ssp(m) x (0,1)(mod m). Thus, Sgp(m) acts like a multiplier of the first periodic part of SP(mod m).

To illustrate this, we consider m = 13. Then since asp(13) = 7, we have

(SP,, SP,, SPg) = (12,0,12) = 12(1,0,1)(mod 13)

Thus, Sgp(13) = 12.

Definition: Bsp(m) denote the order of Sgp(m)(mod m).

That is Sgp (m)#sP(M™ = 1(mod m) and if n < Bsp (M) then Ssp(mM)™ Z 1(mod m).

As an illustration, if we once again consider SP(mod 13), then Sgp(13) = 12 and 122 = 1(mod 13). Thus,
Bsp(13) = 2.

To illustrate above definitions, we consider the following two examples:

(i) Since SP(mod 3) ={0,1,1,1,0,1, ... }, clearly ksp(3) = 4. Also, the restricted period ap(3) = 4 and
multiplier Sgp_1(3) = Sgp41(3) = 1. Thus, the order of Ssp(4) = 1 and hence Bsp(3) = 1.

(if) Since SP(mod 5) ={0,1,4,0,4,1,0,1, ...}, then clearly kgp(5) =6, agp(5) =3 and Sgp_,(m) =
S¢p_1(m) = 4. Since 42 = 1(mod 5), we get Bsp(5) = 2.

The following resembles the theorem 4.4.3 for the sequence {SPB, }.
Theorem 6. 3: kgp(m) = agp(m) X Bsp(m).

Proof: Throughout the proof we consider all the congruences modulo m. Suppose that one period of
SP(mod m) is partitioned into smaller and finite subsequences Ry, Ry, R, ..., R,,, ... as shown below:

Ro Ry Rz

0, 1, 'SSP1 ) O, SSPl’ ""SSPZ y O, SSPZ, ...,Ssp3 y ey

Rp Rn41

0,Ssp s s Sspro1s0, 1, ) Ssp s oo (21)

where Sgp, = Ssp(m) and every R; (i = 1) contains exactly one 0.

Clearly each subsequence R; has agp(m) terms and Ssp = Sgp(m). Also, in any R; (i = 1), there is exactly
one zero. Hence every subsequence R; (i > 1) is a multiple of R,. More precisely, we have the following
congruences:
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Rl = SSP1R0' Rz = SSPZRO’ "',Rn_l = SSPn_]_RO’ Rn = SSPnRO'

Now the last term in R, is Sgp, and that of R, is Sgp,. Also, we have R, = Sgp,R. Therefore, Sgp, =
Ssp, X Ssp,(mod m). By the similar arguments, we have

Ssp, = Sspy X Sspy)
Sspg = Sspy X Sspyr
Sspy, = Sspy_q X Sspy
Therefore, we have
Sspy = Sspp_q X Sspy
= (Ssp,,_, X Sspy) X Ssp,

= (Ssp,_5 X Sspy) X Ssp, X Ssp,

= (SSPTL—(TL—l) X SSP1) X SSPl X eee X SSP1'

n-2 times

Therefore, Sgp. = Sgp; (mod m) .

Since the order of Ssp, is Bsp(1m), we rewrite sequence (21) as follows:
0,1,...,S5p;,0,Ssp, s Ssp2r 0, Ssp2, s 0,Sspo oo

0,SspPsP™1 0,1, ...

with Ssplﬁs"(m) = 1(mod m).

Thus Bsp(m) can be interpreted as the number of blocks in a single period of SP(mod m). It now follows
ea.SlIy that ksp(m) = asp(m) X ﬁsp(m).

The following results will be helpful for the study of blocks within the residues of {SPB,}.
Corollary 6.4:
_ n
SPnXasp(m)+r = (SPasp(m)+1) SPr(mOd m).
Proof: From above theorem, we have R,, = Sgp, Ro(mod m) and Sgp = SSP;‘(mod m) . Thus, we have
R, = Sspy Ro(mod m) (22)

This shows that the " term of R,, is equal to Ssp’f times the " term of R,, when considered modulo m.
Also, from the definition of Sgp(m) we conclude that Sgp, = SPqg,my+1, When considered modulo m.

Therefore, from (4.9.2) and above arguments, we can say that SFnXaSF(m)+rE(SFaSF(m))nX
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SF, (mod m). This finally gives
SFaxasetmysr = (Ssr(m))” X SE. (mod m).

Corollary 6.5: S;, = S,,«-(mod m).

Proof: Since Ssp, = Sspy (mod m), we write Ssp7 = (Ssp’f)r = Sepy "

= Ssp,,y,(Mod m), as required
Theorem 6.6: Bsp(m) = 1 or 2, form > 2.

Proof: By Koshy [3], we have P? = P,,_,P,,1 — (—1)™. Taking n = agp(m), we get

SPagpm) = Papmy-1Papmy+1 — (=P, (23)

Now, 5Py, m) = 0(mod m). Also, we know that

Popmy+1 = sp(m)(mod m) and

Popm)-1 = Papmy+1(mod m).

Therefore, by (23), we have 0 = {sp(m)}{sp(m)} — (—1)(mod m). Thus, we get {sp(m)}* = 1(mod m),
that is Sgp(m)? = 1(mod m). Since order of Sgp(m) is Bsp(m), we finally conclude that Bsp(m) must
divide 2. Hence, for any m > 2, we have fSsp(m) = 1 or 2.

We conclude by presenting a table displaying the values of kgp (m), agp(m) and Bsp(m) for 2 <m < 20.

m ksp(m) agp(m) Bsp(m)

O ONO|O|RWIN
AOIROINIEAIDN
AlOIRIWIN BN

=
o
(o]
(@]

[EEN
[EEN
R
N
RN
N

[EY
N
SN
N

[N
w
[EEN
IS
\‘

=
SN
»
(@]

[EEN
)
[EEN
)

RPN R R R R RPN R P

[EEN
(6]
R
N
RN
N

CONCLUSIONS

In this article, we studied the length of the novel sequence — squared Pell sequence when considered modulo
10¢. We also introduced the ‘blocks’ within the period of this sequence and shown that length of any one
period of the squared Pell sequence always contains either 1 or 2 blocks.
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