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ABSTRACT  

The Monkeypox virus poses as a public health risk that might quickly escalate into a worldwide epidemic. 

Machine learning (ML) has recently shown much promise in diagnosing diseases like cancer, finding tumor 

cells, and finding COVID-19 patients. The timely identification and accurate categorization of Monkeypox 

cutaneous manifestations are crucial for the successful implementation of containment strategies. It requires 

sophisticated methodologies to detect and combat this evolving orthopoxvirus at an early stage. This study 

presents an exploration of a hybrid machine learning model integrating CNN (Convolutional Neural Network), 

XG Boost (Extreme Gradient Boosting), and XG boost based stack model for classification and detection with 

other standard machine learning methods such as Support Vector Machine (SVM) and Random Forest, where 

transfer learning and the DL algorithms for the skin lesion data will enhance and train model, while SHAP 

methods were adopted to examine and analyze XGBoost predictions. The resulting ensemble model is not only 

adept at detecting Monkeypox virus through its lesion and symptoms but also showcases computational 

efficiency with a predictive accuracy, recall, precision, and F1 Score, all reaching a value of 1.0. In a comparison 

analysis conducted on other deep learning models, the suggested model has superior performance as a hybrid 

model compared to other models. The exceptional performance demonstrated in this study underscores the 

effectiveness of the methodology in accurately classifying skin lesions and symptoms linked to Monkeypox. 

This approach holds promise for individuals, as it enables early detection, a vital factor in preventing the spread 

of Monkeypox. 

Keywords: Monkeypox, Convolutional Neural Network, Extreme Gradient Boosting, Shapley Additive, 

Machine learning 

INTRODUCTION 

In recent years, pandemics such as COVID-19, Ebola, and HIV/AIDS have posed significant global threats. As 

the impact of these pandemics has lessened, other infectious diseases, such as Monkeypox, have emerged. The 

resurgence of Monkeypox in an undervaccinated  population  is a global health    issue    requiring    immediate 

attention  from  the  scientific  community [1].  Monkeypox, a rare viral disease caused by an orthopoxvirus, 

produces symptoms similar to those of smallpox. Monkeypox, a zoonotic virus emerging into the spotlight of 

global health concerns, traces its origins and molecular lineage to the Orthopoxvirus genus, sharing taxonomic 

kinship with variola (smallpox), vaccinia, and cowpox viruses [2]. The World Health Organization (WHO) has 

declared Monkeypox a Public Health Emergency of International Concern (PHEIC) under the International 

Health Regulations, following its spread from the Democratic Republic of the Congo (DRC) to other parts of 

Africa, including Nigeria. Recently, many cases have been reported outside Africa, and the outbreak of 

Monkeypox has been rapidly spreading worldwide [3]. The orthopoxvirus genus employs various strategies to 
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evade the host's immune defenses, allowing the virus to enter the host undetected or unrecognized. There are 

two distinct strains of Monkeypox Virus (MPXV) unique to Africa: clade I, which is prevalent in Central Africa, 

and clade II, which is found in Western Africa. Monkeypox transmission occurs through handling bush meat, 

animal contact, bodily fluids, or contaminated objects, with rodents serving as primary carriers [4].  Symptoms 

of Monkeypox include swollen lymph nodes, fever, fatigue, chills, and a rash that could be mistaken for 

chickenpox or a sexually transmitted infection, especially if it appears in the genital or anal areas. Although 

Monkeypox cases globally in 2023 can lead to severe illness and complications if not properly managed, the 

Economic Community of West African States (ECOWAS) reported 44 confirmed cases and 1 death since the 

beginning of the year, as of Week 33 of the 2024 Epidemiological Report. These cases were distributed across 

Nigeria (24 cases), Côte d'Ivoire (11 cases), Liberia (5 cases), and Ghana (4 cases) [5]. Additionally, on 

Thursday, August 15, 2024, global health officials confirmed the first case of a new strain of Monkeypox outside 

Africa, in Sweden [6]. In the absence of an effective vaccine for Monkeypox in Nigeria, early and accurate 

detection of the infection is crucial for both private and public healthcare intervention. The infection typically 

resolves on its own. Image processing techniques can be employed to predict or diagnose whether an individual 

is a carrier of Monkeypox based on the lesions on their body. Image processing is a technology that can identify 

and verify the type of lesions, distinguishing them from those caused by other rash-related infectious diseases 

like smallpox, chickenpox, and cowpox, offering high accuracy and reliability. The image detection system is a 

computer model that automatically identifies and verifies the presence of skin lesions using digital images. 

Similar to facial recognition systems, which compare input images against a database to find matches, the 

Monkeypox Image Prediction System (MIPS) evaluates an individual's skin to predict if they are a carrier of 

Monkeypox and preprocesses the image. In addition to the image recognition system, combining it with a 

symptom detection system would offer a more effective and comprehensive solution. 

Ensemble learning is a powerful machine learning technique that combines the output of multiple models, or 

"weak learners," to solve complex problems in classification and prediction. The goal is to enhance model 

performance. An ensemble model merges predictions from two or more individual models [7]. Stacking is an 

ensemble learning method that integrates multiple machine learning algorithms through a meta-learning process. 

The base-level algorithms are trained on a comprehensive dataset, and a meta-model is then trained using the 

combined outputs from these base models as input features. Bagging, boosting, and stacking are the three main 

ensemble learning techniques used in machine learning. Bagging reduces variance by averaging predictions from 

various trained models, while boosting aims to reduce bias by creating sequential models to minimize variance. 

Stacking involves training a higher-level meta-model to combine predictions from different base models, 

leveraging the strengths of various modeling approaches. Stacking algorithms can have multiple layers, making 

the training process computationally intensive.  

The study at hand leveraged stacked ensemble learning (SEL) models to detect Monkeypox using lesion images 

and presented symptoms. Stacking amalgamates multiple parallel "weak learner" models, then utilizes meta-

learners to optimize how their respective predictions are synthesized to generate an ameliorated overall 

prediction model. Stacking ingests the individual predictions from base-level learners as inputs to a meta-level 

learner model, yielding an enhanced final prediction output. 

Here is how the break of the paper is structured: In Section 2, we describe the relevant literature, and in Section 

3, we offer explanation of the proposed model. In Section 4, the trial analysis and validation are presented, and 

in Section 5, the conclusion is illustrated. 

Related Works  

[8] presented a research work titled “A Neuro-Fuzzy based model for diagnosis of Monkeypox diseases”. It 

designs a system that uses neuro-fuzzy logic and neural networks for Monkeypox disease diagnosis. The model 

was able to differentiate Monkeypox from other pox families using 18 symptoms that are linked to it. The system 

made use of 3 out of 18 Monkeypox symptoms as inputs   

[9] presented a research work titled “A Deep Learning System for Differential Diagnosis of Skin Diseases". The 

model used deep learning network/framework(tensor flow). DLS  distinguishes between 26 of the most common 

skin disorders which account for around 80% of all skin issues seen in healthcare system. The Proposed system 
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was not evaluated against existing deep learning systems and monkeypox is not one of the skin diseases that the 

proposed system is designed to identify.  

[10] designed a Monkeypox classification system using a mobile app. This made use of Android Studio with 

Java, Android SDK 12, TensorFlow Lite. The system Introduced a modified MobileNetV2 model for 

Monkeypox detection with 91.11% accuracy. Developed a basic, cheap, and non-invasive mobile app for 

personal detection and isolation. The system is limited to Android platform and cannot classify other skin 

diseases. 

[11] developed a system to diagnose Monkeypox through selected hybrid CNNs unified with feature selection 

and ensemble learning. The model made use of Monkey-CAD coupled with using a hybrid CNN unified with 

feature selection and ensemble learning (Monkey-CAD extracts features from 8 CNN and it made use also of 

discrete wavelet transform (DWT) to merge features. Monkey-CAD could discriminate among cases with and 

without Monkeypox, achieving an accuracy of 97.1% and 98.7% for both Monkeypox skin image (MSI) and 

skin lesion (MSL) datasets. The study only focused on the diagnosis of Monkeypox through its lesions.    

[12] designed a system to detect Monkeypox using CNN and transfer learning. MobileNet V3-S, EfficientNetV2, 

ResNet50, VGG-19, DenseNet121, Xception. MobileNet V3-S achieved the best performance with an AUC of 

0.99 and F1 score of 0.98. The research did not consider clinical factors (symptoms) but only images. 

[13] developed a system to detect Monkeypox case based on symptoms using XGBoost and Shapley addictive 

explanation methods. This system used XGBoost to detect Monkeypox through its symptoms and Shapley 

addictive to interpret the output of the XGBoost model. Using XGBoost model, it outperformed other methods, 

reaching an accuracy 1.0 in general test and 0.9 in 5 fold cross validation. The proposed system had non-

incorporation of epidemiological data into the model and it focused only on diagnosis on the symptoms. 

[14] developed a system to detect Monkeypox using hyper-parameter tuned based transferable CNN model .This 

made use of hyper-parameter tuned based transfer CNN model coupled with the optimization algorithm (MGS-

ROA) which makes hyper-parameter adjustment easier. The system had an accuracy sensitivity and specificity 

of 93.60% for all. It can only train and validate Monkeypox using its lesions. 

METHODOLOGY 

Data Sets 

Symptoms 

The proposed dataset for the symptoms is published on Kaggle by “Muhammad”, titled “Monkeypox 

PATIENTS Dataset”. This is a SYNTHETIC dataset generated based on a study published by the bmj.com: 

Clinical features and novel presentations of human Monkeypox in a central London center during the 2022 

outbreak: descriptive case series. 

Dataset consists of a CSV which have a record of 25,000 Patients with their corresponding features and a target 

variable indicating if the patient has Monkeypox or not. Features: Patient_ID, Systemic Illness, Rectal Pain, Sore 

Throat, Penile Oedema, Oral Lesions, Solitary Lesion, Swollen Tonsils, HIV Infection, and Sexually 

Transmitted Infection 

Target Variable: Monkeypox. The dataset currently contains boolean and categorical features and in future, we 

might add more data and features to help you identify the patients of Monkey-Pox. The lesion images sample 

data is illustrated in Table 1. 

 

 

 

https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI) 

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XII Issue IV April 2025 

Page 258 
www.rsisinternational.org 

 

    

Table 1: Symptom Data 

 

Lesion Images 

The "MSLD" was developed by gathering and analyzing images from various online sources, including websites, 

portals, and public case reports. To differentiate Monkeypox patients from cases with similar symptoms, the 

"Lesion Dataset" was created, focusing on conditions that closely resemble the Monkeypox rash and initial-stage 

pustules. The proposed lesion images is published by [15] on Kaggle, MSLD v2.0 comprises images from six 

distinct classes, namely Monkeypox (284 images), Chickenpox (75 images), Measles (55 images), Cowpox (66 

images), Hand-foot-mouth disease or HFMD (161 images), and Healthy (114 images). The dataset includes 755 

original skin lesion images sourced from 541 distinct patients, ensuring a representative sample. The lesion 

images sample data is shown In Figure 1. 

 

Figure 1: Lesion Sample Data 

The system implements a bi-modal approach combining CNN-based image analysis (f₁) and XGBoost-based 

symptoms analysis (f₂) for Monkeypox prediction. The architecture utilizes transfer learning with VVG16 (pre-

trained on ImageNet) for visual feature extraction. 

Training Process 

CNN Training (f₁) 

The model leverages transfer learning by utilizing a pre-trained VGG16 architecture, where the lower layers 

(feature extraction layers) are frozen, meaning their weights are not updated during training. This allows the 
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model to retain the knowledge acquired from a large dataset (such as ImageNet) while focusing on fine-tuning 

the more specific layers for the given task. Specifically, the top layers, which are responsible for classification 

or high-level feature interpretation, are fine-tuned. This means the weights in these layers are adjusted during 

training to better fit the new task at hand. 

For the optimization process, binary cross-entropy loss is used, which is particularly suitable for binary 

classification tasks. It measures the difference between the predicted probability distribution and the true labels, 

guiding the model to minimize this loss during training. 

To enhance training efficiency and performance, the Adam optimizer is employed, which adapts the learning 

rate for each parameter, making it effective for complex tasks. Additionally, learning rate scheduling is 

implemented, allowing the learning rate to adjust over time based on the training process. This technique helps 

improve model convergence and overall performance by dynamically controlling the rate at which the model 

learns during different stages of training. 

The CNN model was trained on the preprocessed dataset using a loss function and an optimizer. CNN detected 

features like edges and patterns relevant to Monkeypox lesions  

 O(x,y)= (I ∗  F) ∗  (x,  y) =  ∑m,nI(m,n)⋅F(x−m,y−n)……………………..(1)       

𝑤ℎ𝑒𝑟𝑒  𝐼 𝑖𝑠 𝑖𝑛𝑝𝑢𝑡 𝑖𝑚𝑎𝑔𝑒,  𝐹 𝑖𝑠 𝑓𝑖𝑙𝑡𝑒𝑟,  𝑂 𝑖𝑠 𝑜𝑢𝑡𝑝𝑢𝑡 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑚𝑎𝑝,   

(𝑥, 𝑦) 𝑖𝑠 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 𝑜𝑓 𝑜𝑢𝑡𝑝𝑢𝑡 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑚𝑎𝑝 

XGBoost Training (f₂) 

The model employs a series of advanced techniques to ensure optimal performance and generalization. First, it 

leverages hyperparameter optimization through cross-validation, systematically testing different 

hyperparameter values using multiple subsets of the data to identify the combination that yields the best results 

across all folds, ensuring the model is robust and not overly tuned to one particular set of data. To prevent 

overfitting, it incorporates early stopping, monitoring the model’s performance on a validation set during 

training, and halting the process if the model's performance starts to degrade, thereby avoiding the risk of 

memorizing noise and enhancing its ability to generalize to new data. Lastly, it conducts feature importance 

analysis, which evaluates how much each feature contributes to the model’s predictions, helping to identify the 

most influential variables, refine the model’s inputs, and improve interpretability and performance by potentially 

removing less relevant features. 

Adapting [16] detection of Monkeypox cases based on symptoms using XGBoost and Shapley additive 

explanations methods, XGBoost is an optimized distributed gradient boosting toolkit that has been built to be 

effective, adaptive, and portable [16] and [17]. Chen and Guestrin created the XGBoost algorithm in 2016 [18]. 

It offers parallel tree boosting and is an improved variant of the GBDT (Gradient Boosted Decision Tree) 

approach (also known as GBM) [19]. The model’s anticipated output ŷ can be calculated using an input feature 

vector x = [x1, x2,…, xn]
T as follows: 

     ŷ = ∑  𝑘
𝑘=1 fk(x), fk ∈ Γ …………………………………. (2)    

where K stands for how many weak learners there are. The weak learner’s hypothesis space, Γ, represents the 

function fk (x), which is a prediction score [20] and [17]. 

The XGBoost symptom classifier produced a probability vector p for each image, where p indicates the 

probability that the image belongs to the “Monkeypox class”. For each patient, a probability “p_symptom” is 

calculated to estimate the likelihood of the patient having Monkeypox based on their symptoms. 

   psymptom(i) = ∑ (𝑥 + 𝑎)𝑛𝑚
𝑗=1  …………………………………………….... (3) 

where x(i) 𝑖𝑠 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑝𝑎𝑡𝑖𝑒𝑛𝑡,   
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Stacked Ensemble Training 

The secondary XGBoost model was trained by incorporating the predictions from earlier models, effectively 

using these predictions as features to enhance the model’s performance. During the training process, the model 

undergoes optimization of its feature weights to determine the most influential factors and improve overall 

accuracy. To ensure the model generalizes well to unseen data, cross-validation techniques are used for rigorous 

evaluation, allowing for the assessment of its performance across multiple subsets of the dataset, and reducing 

the risk of overfitting. This process ensures a more robust and reliable model. 

Stacked generalization [21] works by deducing the biases of the generalizer(s) with respect to a provided learning 

set. To obtain the good linear combination of the base learners in regression, cross-validation data and least 

squares under non-negativity constraints was used to get the 2 optimal weights of combination [22]. Consider 

the linear combination of the predictions of the base learners f1, f2, · · · , fm given as:  

   𝑓𝑠𝑡𝑎𝑐𝑘𝑖𝑛𝑔(𝑥) =  ∑ 𝑤𝑗𝑓𝑗(𝑥)
𝑚
𝑗=1       (4)  

   where w is the optimal weight vector learned by the meta learner 

The Stacking Ensemble process involves combining predictions from the CNN and the symptom-based 

XGBoost model into a new dataset. Each row represents a patient with features from both models indicate the 

likelihood The XGBoost model was trained using this combined dataset to produce the final probability of 

Monkeypox based on both the image and symptom data as shown in equation 3 below. 

pfinal(i) =  = ∑η

𝑚

𝑗=1

 ∗  Tj(pcnn(i),  psymptom(i))                                        (5) 

  Tj is jth decision tree in the ensemble, ,  η is learning rate 

XGBoost minimized a loss function for example, Log Loss to optimize the model's predictions as shown in 

equation. 

    L(y, pfinal(i)) =  
1

𝑁
∑[y(i) ∗ log⁡(p_final(i)) +  (1 − y(i))  ∗  log(1− p_final(i))]  

𝑁

𝑖=1

   (6) 

𝑤ℎ𝑒𝑟𝑒 𝑦(𝑖) 𝑖𝑠 𝑡𝑟𝑢𝑒 𝑙𝑎𝑏𝑒𝑙 (0 𝑜𝑟 1) 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑖𝑛𝑔 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒 𝑜𝑟 𝑎𝑏𝑠𝑒𝑛𝑐𝑒⁡𝑜𝑓 𝑀𝑜𝑛𝑘𝑒𝑦𝑃𝑜𝑥 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 

Image Processing Pipeline (f₁) 

In the image processing pipeline (f₁), the input image, is denoted as: 

 Input image: X img ∈ ℝ^(H×W×3) (RGB image) ………………………….(7) 

This represents an RGB image with height (H), width (W), and three color channels (Red, Green, and Blue). The 

first step in the pipeline involves resizing the image to a consistent size of 224×224 pixels. This ensures that all 

images fed into the model have the same dimensions, which is important for efficient processing and uniformity. 

Following the resizing step, the image undergoes normalization, where each pixel value is transformed using the 

given formula:       

      Normalization: x' = (x - μ)/σ  …………………………………………  (8) 

Where, 'x' represents the original pixel value, 'μ' is the mean of the pixel values across the dataset, and 'σ' is the 

standard deviation of the pixel values. 
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Normalization enhance to standardize the image data by adjusting pixel values to a common scale, typically 

improving the model’s performance by reducing sensitivity to varying lighting conditions and intensities.  

Additionally, during the training phase, various data augmentation techniques are applied to artificially expand 

the dataset. These techniques include transformations such as rotation, flipping, cropping, and color adjustments. 

Data augmentation prevented overfitting by creating slightly altered versions of the input images, allowing the 

model to generalize better and improve its robustness in handling diverse real-world images. 

Feature Extraction 

Feature extraction process was performed utilizing the VGG16 architecture with pre-trained ImageNet weights. 

It also incorporates a deep residual learning framework that includes skip connections, with the residual block 

formula defined as: 

   H(x) = F(x) + x …………………………………………  (9) 

  Where F(x) is the residual mapping and x is the identity mapping 

The residual learning building block is defined as: 

y = F(x, {Wi}) + x  ……………………………….......... (10) 

Where x and y are the input and output vectors of the considered layers, respectively. 

Transfer Learning Implementation 

The transfer learning implementation begins with loading the base VGG16 model pre-trained on ImageNet 

weights, with the final classification layer removed. The feature vector is extracted, represented as 

φ(Ximg) ∈ ℝ^2048 ……………………………………..  (11) 

The above representation denotes that the output as the feature extraction function φ transforms the input image 

Ximg into a 2048-dimensional feature vector 

Additional layers are then added, including global average pooling, dense layers with ReLU activation, dropout 

for regularization, and a final prediction layer with a sigmoid activation function. Together, these layers allow 

the model to take the extracted features, process them through a set of non-linear transformations, regularize the 

network to avoid overfitting, and then output a probability score for classification. 

Symptoms Processing Pipeline (f₂) 

The symptoms processing pipeline (f₂) begins with input processing, where the symptom vector is denoted as: 

    X_sym ∈ ℝ^n  ………………………………………  (12) 

Where Xsym is defined as a real-valued vector of length of n, n represents the number of symptoms 

Each symptom is encoded using binary values to indicate presence or absence. Additionally, feature 

preprocessing is performed, which includes handling missing values and applying feature scaling or 

normalization to the data. Together, these preprocessing techniques ensured that the data is clean, consistent, 

and appropriately scaled, which allows the machine learning model to learn more effectively and improve its 

performance. 

XGBoost Model 

The XGBoost model utilizes gradient boosting decision trees (GBDT) with an objective function defined as: 
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obj(θ) = ∑ᵢ l(yᵢ, ŷᵢ) + ∑ₖ Ω(fₖ)  ……………………  (13) 

Where l is the training loss function, Ω is the regularization term, fₖ represents the k-th tree 

The prediction for an instance is computed as: 

ŷᵢ = ∑ₖ fₖ(xᵢ), fₖ ∈ F  …………………………......   (14) 

Where fk belongs to the space of regression trees, denoted as F. 

Ensemble Model Integration 

The ensemble model integrates predictions from both models by fusing their outputs. The combined prediction 

is represented as: 

P(y|X) = G(f₁(X_img), f₂(X_sym)) …………………..  (15) 

Where f₁(X_img) is the CNN model, f₂(X_sym) is the XGBoost model, G is the final ensemble function that 

combines these predictions. 

Final Prediction 

The ensemble XGBoost model combines both predictions with weights learned during training. The result is 

given by: 

y_final = σ(w₁·f₁ + w₂·f₂ + b) ………………….....  (16) 

Where σ represents the sigmoid activation function, w1 and w2 are the weights learned by the both models during 

training,  

RESULTS AND DISCUSSION 

Performance Comparison: 

The performance of each model is measured by four key metrics: accuracy, precision, recall, F1-Score, which 

are defined as follows: 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ⁡
⁡𝑇𝑃⁡

𝑇𝑃 + 𝐹𝑃
 

    𝑅𝑒𝑐𝑎𝑙𝑙 = ⁡
𝑇𝑃⁡

𝑇𝑃⁡+⁡𝐹𝑁
 

  F1 − Score = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⁡∗⁡𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⁡+⁡𝑟𝑒𝑐𝑎𝑙𝑙
 

where (Tp) is true positive; (Tn), true negative; (Fp), false positive; and (Fn), false negative 

These metrics are commonly used in machine learning to evaluate the performance of classification models. To 

compare the performance of the models, we calculated the values of these four metrics for each model, then 

compare the values to see which model has the highest performance. The model with the highest performance is 

considered the best model for prediction accuracy. In addition to these metrics, we also used other techniques to 

evaluate the performance of the models. For example, we used confusion matrices (Figure 6), which are a way 

to visualize the number of true positive, true negative, false positive, and false negative predictions made by the 
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model. Table 5 and 6 shows comparison results of the proposed model with another, and then Table 7 illustrates 

the ensemble model performance metrics. 

The model performance metrics is tracked using the following, as displayed in Table 2, 3 and 4 below. 

CNN Model (f₁) Performance 

Table 2: The performance metrics of the proposed system 

Metric Training Validation Test 

Accuracy 0.945 0.921 0.918 

Precision 0.938 0.915 0.912 

Recall 0.952 0.928 0.925 

F1-Score 0.945 0.921 0.918 

XGBoost Model (f₂) Performance 

Table 3: XGBoost Performance metrics 

Metric Training Validation Test 

Accuracy 0.932 0.912 0.908 

Precision 0.925 0.905 0.901 

Recall 0.940 0.919 0.915 

F1-Score 0.932 0.912 0.908 

Ensemble Model Performance 

Table 4: Ensemble model performance metrics 

Metric Training Validation Test 

Accuracy 1 1 1 

Precision 1 1 1 

Recall 1 1 1 

F1-Score 1 1 1 

The comparison of performance metrics for the CNN (symptom) model, between a model utilizing DenseNet-

121 as a single model and the proposed model, is shown in Table 5. The analogy of performance metrics for the 

clinical (symptom) model, between a model that used XGBoost and SHAP as a single model and the proposed 

model, is presented in Table 6 using standard metrics. The proposed Hybrid model, which combines CNN and 

XGBoost to detect Monkeypox through both images and symptoms, achieved an accuracy of 1.0, as shown in 

Table 7. In contrast, the other two journals analyzed [23] and [13] relied solely on either symptoms or images 

for Monkeypox detection, achieving accuracies of 0.900 and 0.937, respectively. 

 

https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi
http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI) 

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XII Issue IV April 2025 

Page 264 
www.rsisinternational.org 

 

    

Table 5: Comparison of CNN Model with single Model 

 

Table 6: Comparison of XGBoost Model with single Model 

 

Table 7: Ensemble Model Performance metrics 

 

The model achieved a probabilistic accuracy of 1.0 by integrating multiple deep learning models, algorithms, 

ensemble methods, and techniques such as normalization, data augmentation, and optimization. It also leveraged 

the strengths of both the CNN and XGBoost models to further enhance performance. 

The training of the Convolutional Neural Network (CNN) was evaluated across 40 epochs, with performance 

metrics monitored for training and validation sets. The training and validation accuracy, loss, precision, and 

recall are visualized in Figure 2, 3, 4 and 5(graphs shown below). 

The training accuracy steadily increased during the initial epochs, reaching a plateau around 92% by epoch 25. 

This suggests that the CNN effectively learned features from the training images. The validation accuracy also 

improved over time, reaching a peak around 80% before leveling out. The validation curve displays some 

fluctuations, especially between epochs 5 to 15. The validation accuracy, though consistently lower than training, 

has reached a respectable peak and the gap between training and validation accuracy is not as high as in previous 

training iterations. Training loss decreased sharply in the initial epochs and converged towards zero, indicating 

successful learning on the training dataset. Validation loss also decreased, and stabilized to a low level, indicating 

that the model generalized well to the validation set after some early fluctuations. The overall trend was of a 

small downward slope with some instability over time. Training precision increased steadily and reached about 
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95%, while the validation precision also followed a similar trend, plateauing at around 80%. The difference 

between training and validation precision was small, indicating that the positive predictions of the model were 

generally accurate. The training recall achieved a very high value of above 90% at the end of training. Validation 

recall reached a maximum value of about 80%, and also leveled out at that value. 

 

Figure 2: CNN Accuracy graph               Figure 3: CNN Loss graph 

 

Figure 4: CNN Precision graph                     Figure 5: CNN Recall graph   

 

Figure 6:    Confusion matrix 
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The SHAP (Shapley Additive Explanations) plot in Figure 7, shows the relative importance of different symptom 

features in the combined model. The SHAP plot reveals that 'Systemic Illness', 'HIV Infection', and 'Rectal Pain' 

have the greatest impact on the combined model's output. The relative importance of ‘Patient ID’ may reflect 

the importance of individual variations in responses to different risk factors which may not be easy to discern as 

explicit features. Other symptoms, like ‘Swollen Tonsils’, ‘Oral Lesions’, and ‘Solitary Lesion’ have lower 

importance in the combined model. The SHAP values also indicate whether a feature is associated with a higher 

or lower risk of Monkeypox. For instance, ‘Systemic Illness’ and ‘HIV Infection’ are more correlated with 

positive Monkeypox classifications, while ‘Solitary Lesion’ was correlated with negative classifications. The 

SHAP analysis provided insightful information about the importance of various symptoms, which may also 

provide insights for clinicians by highlighting the most important symptoms to look for when diagnosing 

Monkeypox as illustrated in figure 7. These insights can lead to better screening practices and improved 

diagnoses. 

 

Figure 7: SHAP plot (XGBoost) 

CONCLUSION  

This research demonstrated the potential of a Bi-modal approach to detect Monkeypox by combining visual 

features from CNNs with symptoms information using XGBoost. The CNN demonstrated the ability to learn 

visual features from images, while the XGBoost model identified the risk factors that are associated with 

Monkeypox. The outputs of the two algorithms was ensembled using Stacked Generalization by implementing 

XGBoost. The combination of these two models resulted in a more robust classification performance. The 

experimental results indicated that the Hybrid model outperformed other methods used in comparison, reaching 

an accuracy of 1.0. The SHAP analysis provides useful insights into symptom importance, which can assist 

clinicians in better screening practices. The proposed model can be used by individuals conveniently to educate 

or self-diagnose on Monkeypox. 
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