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ABSTRACT 

This work analyzed the adapted general Gauss-type proximal point approach for solving smooth generalized 

equations like 0 ∈ 𝑞(𝑥) + 𝑄(𝑥), where 𝑄: 𝑋 ⇉ 2𝑌 is a set-valued mapping with closed graph and 𝑞: 𝑋 → 𝑌 is a 

single-valued mapping acting between two general Banach spaces 𝑋 and 𝑌.  To confirm the existence and 

convergence of any sequence produced by this technique under appropriate assumptions, we develop the 

convergence criteria of this approach by utilizing metrically regular mapping and gathered both semi-local as 

well as local convergence results. Lastly, we plot a numerical example to compare the semi-local convergence 

result of this technique. 

Keywords: Metrically regular mapping, Set-valued mapping, Semi-local convergence, Fixed point lemma, 

Generalized Equation. 

INTRODUCTION  

The challenge of identifying a point 𝑥 ∈ Ω ⊆ 𝑋 also known as the solution of the problem satisfying the smooth 

Generalized Equation 

0 ∈ 𝑞(𝑥) + 𝑄(𝑥)               (1) 

is the focus of this thesis, where a single-valued function 𝑞: 𝑋 → 𝑌 is smooth while 𝑄: 𝑋 ⇉ 2𝑌 stands for a set-

valued map with closed graph, both  𝑋  and  𝑌  are Banach spaces and  Ω is an open subset of  𝑋 . 

This dissertation deals with smooth generalized equations. Robinson first established the generalized equations 

as an absolute structure for a wide variety of variational issues in his works [1, 2], such as system of inequalities, 

system of nonlinear equations, complementary problems, equilibrium problems, variational inequalities, etc.; 

see in example [3-5]. Additionally, they have enough uses in applied computational sciences, economics, 

mathematical programming, traffic equilibrium problems, analysis of elastoplastic structures, etc.  

In this research, we looked at two different convergent problems for iteratively solving generalized equations. 

The first of these is called semi-local convergence analysis and it focusses based on the data near the starting 

point 𝑥0 , the convergence criterion is established. The second is called local convergence analysis and it 

concentrates on the convergence ball based on the data around a generalized equations solution. Among the most 

popular methods for solving the inclusion (1), the proximal point algorithm (PPA) is the one.  

The PPA approach was first presented by Martinet [6] in 1970 for use in convex optimization. Rockafellar [7] 

examined the PPA under the general framework of monotone inclusion maximization. Numerous authors have 

investigated proximal point algorithm generalizations and discovered uses for this technique to solve particular 

variational issues in the past fifty-five years. The majority of the fast-expanding body of research on this topic 

has focused on various iterations of the algorithm for addressing monotone mapping-related issues, particularly 

monotone variational inequalities; see, for instance, [8,9]. Spingarn [10] was the first to study monotonicity in  

its weaker version; see Iusem et al. [11] for further information. 
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The generalized proximal point algorithm has been made available to Aragon Artacho et al. [12]. They have 

reported the local convergence analysis of the generic (PPA) for the mapping 𝑄 with set values under various 

metric regularity assumptions. For solving (1), Rashid et al. [13] gave the subsequent traditional Gauss-type 

proximal point algorithm (G-PPA). They obtained semi-local as well as local convergence findings in addressing 

problem (1). In his later work [5], Rashid created the G-PPA to solve variational inequality and produced results 

on both semi-local as well as local convergence. 

Let 𝑂 be the neighbourhood of origin and select a sequence of continuous Lipschitz functions 𝑔𝑙: 𝑋 → 𝑌 on 𝑂 

with positive Lipschitz constants 𝜆𝑙 and 𝑔𝑙(0) = 0. Let 𝑅(𝜆𝑙, 𝑥) stand for the subset of 𝑋 for any 𝑥 belongs to 𝑋 

and for a certain sequence of scalars 𝜆𝑙 which are away from 0, that is described as bellow:  

  𝑅(𝜆𝑙, 𝑥) = {𝔡 ∈ 𝑋: 0 ∈ 𝜆𝑙𝔡 + 𝑞(𝑥 + 𝔡) + 𝑄(𝑥 + 𝔡)}.  

 In order to solve the generalized smooth equation (1), Dontchev and Rockafellar developed the following PPA 

in [3]: 

Algorithm 1 (PPA) 

First step: Set 𝑙 = 0, 𝑥0 ∈ 𝑋 and 𝜆 > 0. 

Second step: Stop if 0 ∈ 𝑅(𝜆𝑙, 𝑥𝑙); Otherwise, move on to Third step 

Third step: Enter {𝜆𝑙} ⊆ (0, 𝜆) and if 0 ∉ 𝑅(𝜆𝑙, 𝑥𝑙), select 𝔡𝑙 such     

             that 𝔡𝑙  ∈ 𝑅(𝜆𝑙, 𝑥𝑙). 

Forth step: Compose 𝑥𝑙+1 = 𝑥𝑙 + 𝔡𝑙. 

Fifth step: Replace 𝑙 by 𝑙 + 1 prior to proceeding to Second step. 

Keep in mind that not all of the sequences produced by Dontchev and Rockafellar [3] are convergent, and that 

they are not uniquely defined for a starting point close to a solution. Dontchev and Rockafellar [3] demonstrated 

that their algorithm produces a single, linearly convergent sequence to the solution under specific circumstances. 

Furthermore, it appears that the well-established approach of Alom and Rashid [14] is time-consuming. Some 

acceptable conditions can be utilized to avoid the sequences generated by the algorithm of Dontchev and 

Rockafellar [3] from all convergent. By using the proximal point strategy, they guarantee the validity of a single 

sequence that converges linearly to the outcome. In light of estimates using mathematics, this type of process is 

therefore unsuitable for mathematical applications. We look for an adapted general Gauss-type proximal point 

algorithm (GGPPA) in response to this obstacle. To solve the generalized equation (1) in the simplest manner, 

we suggest the adapted GGPPA with some novel concepts for the key theorem. We demonstrate this by 

substituting the metric regularity criterion for the Lipschitz-like feature. 

Again, let ℛ(𝑔𝑙, 𝑥) denotes the subset of 𝑋 and is defined by 

ℛ(𝑔𝑙, 𝑥) = {𝒹 ∈ 𝑋: 0 ∈ 𝑔𝑙(𝑑) + 𝑞(𝑥 + 𝑑) + 𝑄(𝑥 + 𝑑)}.           (2) 

To show that every sequence generated by the adapted GGPPA exists and to show that it converges, Alom and 

Rashid [14] regarded as the primary thesis that 𝛿 ≤ 𝑚𝑖 𝑛 {
𝑟𝑥̅

2
,

𝑟

2𝜆
,

𝑟𝑦̅

3𝜆
, 1}, (𝜂 + 5)𝜅𝜆 + 𝜈𝜅 ≤ 1 and ‖𝑦̅‖ < 𝜆𝛿, 

during the fundamental theorem in this research, we believe that 𝛿 ≤ 𝑚𝑖 𝑛 {
𝑟𝑥̅

2
,

3𝑟

𝜆
,

3𝑟𝑦̅

4𝜆
 }, (𝜂 + 7)𝜅𝜆 + 𝜈𝜅 ≤ 1 

and ‖𝑦̅‖ <
1

3
𝜆𝛿. We show that our methodology for solving the smooth generalized equation (1) is better than 

the previous one. The difference between our proposed Approach 2 and Algorithm 1 is that the enhanced GGPPA 

generates sequences, all of which are convergent, whereas Algorithm 1 does not. Thus, the revised GGPPA that 

we recommend is provided below: 
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Algorithm 2 (Adapted GGPPA): 

First step: Set 𝑙 = 0, 𝑥0 ∈ 𝑋 and 𝜆 > 0 and 𝜂 ≥ 1. 

Second step: Stop if 0 ∈ ℛ(𝑔𝑙, 𝑥𝑙); Otherwise, move on to Third step. 

Third step: Enter {𝜆𝑙} ⊆ (0, 𝜆), 𝑔𝑙(0) = 0 and if 0 ∉ ℛ(𝑔𝑙, 𝑥𝑙), select 𝒹𝑙 such that 𝒹𝑙 ∈ ℛ(𝑔𝑙, 𝑥𝑙) and 

‖𝑑𝑙‖ ≤ 𝜂 𝑑(0, ℛ(𝑔𝑙, 𝑥𝑙)). 

Forth step: Compose 𝑥𝑙+1 = 𝑥𝑙 + 𝒹𝑙. 

Fifth step: Replace 𝑙 by 𝑙 + 1 prior to proceeding to Second step. 

Based on Algorithm 2, we note that 

(i) When  𝑔𝑙(𝑢) = 𝜆𝑙𝑢, 𝜂 = 1 and ℛ(𝑔𝑙, 𝑥𝑙) is singleton, Algorithm 2 becomes identical to 

Algorithm 1. 

(ii) According to Alom et al. [15], the generalized Gauss-type proximal point technique is similar to 

Algorithm 2 if 𝑞 = 0, 

(iii) if 𝑔𝑙(𝑢) = 𝜆𝑙𝑢, Algorithm 2 is equivalent to the GPPA for solving smooth generalized equation 

introduced by Alom and Rashid [16]. 

For solving (1) in the situation 𝑞 = 0 and analyzing the results of semi-local and local convergence, Alom et al. 

[15] developed the generic version of the G-PPA. Alom et al. [17] established the uniformity of the GG-PPA of 

(1) with situation = 0 . In order to solve the variational inequality problem, Rashid [5] developed the Gauss-

type proximal point approach, which produced the result of semi-local as well as local convergence. Alom et al. 

[18] recently proposed a adapted general form of the Gauss-type proximal point algorithm (GG-PPA) to address 

the generalized equations in the case where 𝑞 = 0. They also conducted an analysis of the algorithm's local and 

semi-local convergence properties. Also, Alom and Rahman [19] introduced the stability analysis of adapted 

GG-PPA for solving (1) in the case 𝑞 = 0 using metrically regular mapping. Alom and Rashid [16] introduced 

the GPPA for the purpose of solving the generalized smooth equation (1) with the combinations of metrically 

regular mapping and Lipschitz-like continuity. Next time, Alom and Rashid [14] introduced the GGPPA in order 

to solve the generalized smooth equation (1) with the combinations of metrically regular mapping and Lipschitz-

like continuity and obtained both the result of semi-local as well as local convergence. Alom et al. [20] 

introduced the adapted GPPA for solving the generalized smooth equation (1) and obtained the result of semi-

local as well as local convergence. 

To the best of our knowledge, no research has been done on semi-local analysis to solve the above generalized 

equations by using only metrically regular mappings which motivates us to research in this field to extend the 

idea. We suggest the adapted GG-PPA for resolving (1) with some changes to the vital theorem of [14] and 

verify this by applying metric regularity condition instead of Lipschitz-like property. We show that our approach 

outperforms the previous method in solving (1) 

Notations and Preliminaries 

Several conventional notations, basic ideas, and mathematical conclusions that will frequently be cited in the 

next section is reviewed in this section of the article. It is assumed that both 𝑋 and 𝑌 are general Banach spaces. 

The formula 𝑄: 𝑋 ⇉ 2𝑌 declare the set valued mapping from 𝑋 to a subset of 𝑌. Allow 𝑟 > 0 and 𝑥 ∈ 𝑋 a closed 

ball with radius 𝑟 and centre at 𝑥 is indicated by the symbol 𝐵𝑟(𝑥) . 

The graph of terms 𝑄 is expressed by and symbolized by 𝑔𝑝ℎ𝑄. 

                    𝑔𝑝ℎ𝑄 = {(𝑎, 𝑏) ∈ 𝑋 × 𝑌: 𝑏 ∈ 𝑄(𝑎)}, 

the domain of 𝑄 is represented by 𝑑𝑜𝑚𝑄 and is expressed by 
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𝑑𝑜𝑚𝑄 = {𝑥 ∈ 𝑋: 𝑄(𝑥) ≠ ∅}, 

and 𝑄−1 is the inverse of 𝑄, which can be stated as 

𝑄−1(𝑏) = {𝑐 ∈ 𝑋: 𝑏 ∈ 𝑄(𝑐)}. 

By ‖∙‖, the symbol stands all the norms. Permit 𝑆 and 𝐿 to be, respectively, subsets of 𝑋. 

𝑑(𝑥, 𝑆) = 𝑖𝑛𝑓 {‖𝑥 − 𝑏‖: 𝑏 ∈ 𝑆} in all cases of 𝑥 ∈ 𝑋, 

 specifies the separation between 𝑥 and 𝑆, where as 

𝑒(𝐿, 𝑆) = 𝑠𝑢𝑝 {𝑑(𝑥, 𝑆): 𝑥 ∈ 𝐿} 

the excess between sets 𝑆 and 𝐿 is defined. 

Definition 1. Inner product space: If there is a complex number (𝑐1, 𝑐2) associated with every pair of vectors 
(𝑐1, 𝑐2) ∈ 𝑉 so that the bellow properties are true, then a complex vector space as an inner product space, 𝑉 is 

moved to: 

i. (𝑐1, 𝑐2) = (𝑐2, 𝑐1̅̅ ̅̅ ̅̅ ̅) , the complex-conjugate is shown by the bar, 

ii. (𝑐1𝑥 + 𝑐2𝑦, 𝑤) = 𝑐1(𝑥, 𝑤) + 𝑐2(𝑦, 𝑤), 

iii. (𝑐1, 𝑐1) ≥ 0 and (𝑐1, 𝑐1) = 0 iff 𝑐1 = 0. 

 

Definition 2. Hilbert space: If a complex inner product space is complete with regard to the metric that its inner 

product induces, it is referred to be a Hilbert space. The metric is produced by the inner product norm.  

Definition 3. Normed Linear space: A space that is linear if any vector 𝑚1 in 𝑋 has a real number associated 

with it, denoted by the symbol "‖𝑚1‖" (also known as the norm of 𝑚1), then 𝑋 is said to be a normed linear 

space. 

i. ‖𝑘𝑚1‖ = |𝑘|‖𝑚1‖, for any 𝑚1 ∈ 𝑋 and 𝑘 ∈ 𝐾, 

ii. ‖𝑚1‖ ≥ 0, and ‖𝑚1‖ = 0 iff 𝑚1 = 0, 

iii. ‖𝑚1 + 𝑚2‖ ≤ ‖𝑚1‖ + ‖𝑚2‖, for any 𝑚2 ∈ 𝑋. 

 

Definition 4. Banach space: If under the metric generated by the norm, a normed linear space is complete as a 

metric space, it is referred to as a Banach space. 

Parallelogram law: In a Hilbert space, if 𝑚1 and 𝑚2 are two vectors, then 

   ||𝑚1 + 𝑚2||2 + ||𝑚1 − 𝑚2||2 = 2(||𝑚1||
2

+ ||𝑚2||2). 

Remark 1. The Banach space 𝐵 converts to a Hilbert space if the norm of it complies with the parallelogram 

law and the inner product on B is expressed by 

4 < 𝑚1, 𝑚2 >= ||𝑚1 + 𝑚2||2 + ||𝑚1 − 𝑚2||2 + 𝑖||𝑚1 + 𝑖𝑚2||2 − 𝑖||𝑚1 − 𝑖𝑚2||2. 

We agree with the definition of mathematically regularity from [5] for mapping with set values.  

Definition 5. Metrically regular Mapping: 

Assuming (𝑥′, 𝑦′) ∈ 𝑔𝑝ℎ𝑄, where 𝑄: 𝑋 ⇉ 2𝑌 denotes a set-valued mapping. Let 𝑟𝑥′, 𝑟𝑦′, and 𝜅 all be greater 

than zero. When  

 𝑑(𝑥, 𝑄−1(𝑦)) ≤ 𝜅 𝑑(𝑦, 𝑄(𝑥)) for each 𝑥 ∈ 𝐵𝑟
𝑥′

(𝑥′), 𝑦 ∈ 𝐵𝑟
𝑦′ (𝑦′),             (3)   
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then at (𝑥′, 𝑦′) on 𝐵𝑟
𝑥′ (𝑥′) relative to 𝐵𝑟

𝑦′ (𝑦′) with constant 𝜅, one can say that the mapping Q is mathematically 

regular.  

We revisit the ideas of Lipchitz-like continuity from [13] for set-valued mappings. Aubin first proposed this 

concept in [21]. 

Definition 6. Lipschitz-like continuity: 

Let (𝑦̅, 𝑥̅) be a member of gphγ and 𝛾: 𝑌 ⇉ 2𝑋 be a mapping with set-values. Assume that 𝑟𝑥̅, 𝑟𝑦̅ and 𝑙 are all 

greater than 0. If the following discrepancy occurs, the mapping 𝛾 is considered Lipschitz-like for any 𝑦1, 𝑦2 

belongs to 𝐵𝑟𝑦̅
(𝑦̅), then at (𝑦̅, 𝑥̅) on 𝐵𝑟𝑦̅

(𝑦̅) relative to 𝐵𝑟𝑥̅
(𝑥̅) together with constant 𝜅, 

 𝑒 (𝛾(𝑦1) ∩ 𝐵𝑟𝑥̅
(𝑥̅), 𝛾(𝑦2)) ≤ 𝜅‖𝑦1 − 𝑦2‖.                                    (4)   

We obtain the following lemma from [15], which proves the connection between a mapping 𝑄 of metric 

regularity at (𝑥̅, 𝑦̅) and the Lipschitz-like continuity of the inverse 𝑄−1 at (𝑦̅, 𝑥̅). 

Lemma 1. Let (𝑥,̅ 𝑦̅) ∈ 𝑔𝑝ℎ𝑄, where 𝑄: 𝑋 ⇉ 2𝑌 be a function with set values. Take 𝑟𝑥̅ and 𝑟𝑦̅ both are not less 

than zero. It becomes at (𝑥̅, 𝑦̅) on 𝐵𝑟𝑥̅
(𝑥̅) relative to 𝐵𝑟𝑦̅

(𝑦̅) the function 𝑄 is metrically regular with constant 𝑐1 

for any 𝑦, 𝑦′ ∈ 𝐵𝑟𝑦̅
(𝑦̅), iff at (𝑦̅, 𝑥̅) on 𝐵𝑟𝑦̅

(𝑦̅) relative to 𝐵𝑟𝑥̅
(𝑥̅) the inverse 𝑄−1: 𝑌 ⇉ 2𝑋 is Lipschitz-like with 

constant 𝑐1, that is, 

  𝑒 (𝑄−1(𝑦) ∩ 𝐵𝑟𝑥̅
(𝑥̅), 𝑄−1(𝑦′)) ≤ 𝑐1‖𝑦 − 𝑦′‖.                (5) 

Proof:  Consider that at (𝑥̅, 𝑦̅) on 𝐵𝑟𝑥̅
(𝑥̅) relative to 𝐵𝑟𝑦̅

(𝑦̅) metrically the mapping Q is regular and 𝑐1 is 

constant. Consider 𝑦1, 𝑦2 belongs to 𝐵𝑟𝑦̅
(𝑦̅).  We must demonstrate that (5) is true. To be able to demonstrate this, 

suppose 𝑥 belongs to 𝑄−1(𝑦1) ∩ 𝐵𝑟𝑥̅
(𝑥̅). We find 

𝑑 (𝑥, 𝑄−1(𝑦2))  ≤ 𝑐1 𝑑 (𝑦2, 𝑄(𝑥)) 

                                                                                   ≤ 𝑐1‖𝑦1 − 𝑦2‖            (6) 

because at (𝑥̅, 𝑦̅) on 𝐵𝑟𝑥̅
(𝑥̅) relative to 𝐵𝑟𝑦̅

(𝑦̅) metrically the mapping Q is regular and 𝑐1 is constant. Therefore 

𝑒(𝑄−1(𝑦2) ∩ 𝐵𝑟𝑥̅
(𝑥̅), 𝑄−1(𝑦2)) = 𝑠𝑢𝑝  {𝑑 (𝑥, 𝑄−1(𝑦2)) ∶ 𝑥 ∈ 𝑄−1(𝑦1) ∩ 𝐵𝑟𝑥̅

(𝑥̅)} 

 according to the definition of access e. This results in the statement that  

                    𝑒(𝑄−1(𝑦2) ∩ 𝐵𝑟𝑥̅
(𝑥̅), 𝑄−1(𝑦2))  ≤ 𝑐1 ‖𝑦1 − 𝑦2‖,  

coupled with (6). This suggests that (5) is met. 

Consider, however, that (5) is true. We must demonstrate that at (𝑥̅, 𝑦̅) on 𝐵𝑟𝑥̅
(𝑥̅) relative to 𝐵𝑟𝑦̅

(𝑦̅), the mapping 

𝑄 is metrically regular with 𝑐1 being constant. Let 𝑥  belongs to 𝐵𝑟𝑥̅
(𝑥̅) and 𝑦2 belongs to  𝐵𝑟𝑦̅

(𝑦̅) to finish 

this. Given that (5) is valid for 𝑦1 belongs to  𝐵𝑟𝑦̅
(𝑦̅), let 𝑦1 belongs to 𝑄(𝑥).  As a result, 𝑥 belongs to 

𝑄−1(𝑦1) ∩ 𝐵𝑟𝑥̅
(𝑥̅). The result 

𝑑 (𝑥, 𝑄−1(𝑦2))  ≤ 𝑒 (𝑄−1(𝑦1)  ∩ 𝐵𝑟𝑥̅
(𝑥̅), 𝑄−1(𝑦2)) 

≤ 𝑐1 ‖𝑦1 − 𝑦2‖ 
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is then obtained from the definition of excess 𝑒. From the inequality above, if we select the minimum with regard 

to 𝑦1 belongs to 𝑄(𝑥) on both sides,  we obtain  

𝑑 (𝑥, 𝑄−1(𝑦2))  ≤ 𝑐1 𝑑(𝑦2, 𝑄(𝑥)) 

which is true for any values of 𝑥 belongs to 𝐵𝑟𝑥̅
(𝑥̅) and 𝑦2 belongs to 𝐵𝑟𝑦̅

(𝑦̅).  As a result, it can be seen that at 

(𝑥̅, 𝑦̅) on 𝐵𝑟𝑥̅
(𝑥̅) relative to 𝐵𝑟𝑦̅

(𝑦̅), 𝑐1 is constant and the mapping Q is metrically regular. As a result, the proof 

of Lemma-1 is finished.  

The Lyusternik-Graves theorem was borrowed from [22]. We carry out that a set if 𝑠 is bigger than 0, then 𝑧 

belongs to 𝐺, which is a locally closed subset of 𝑋. As a result, the set  𝐺 ∩ 𝐵𝑠(𝑧) is closed.  

Lemma 2. Lyusternik-Graves theorem: Assuming that (𝑥,̅ 𝑦̅) ∈ 𝑔𝑝ℎ𝑄, 𝑄: 𝑋 ⇉ 2𝑌  consideration is given to 

𝑔𝑝ℎ𝑄 being locally closed and 𝑄 being a mapping with set values. For any 𝑦̅, let 𝑄 be metrically regular at 𝑥̅ 

and have constant 𝜅 > 0. Consider a function 𝑔 ∶ 𝑋 → 𝑌 that is continuous at 𝑥̅ and with a Lipschitz constant 𝜆 

such that 𝜆 is less than 𝜅−1. For 𝑦̅ + 𝑔(𝑥̅), the mapping 𝑔 + 𝑄 is metrically regular at 𝑥̅ and has constant 
𝜅

1−𝜅𝜆
.  

In [23], Dontchev and Hagger established the fixed-point lemma for set-valued mappings, which generalized the 

fixed-point theorem from [16]. This lemma is indispensable for proving the existence of any sequence. 

Lemma 3. Banach fixed point Lemma: 

Assume that 𝛹 ∶ 𝑋 ⇉  2𝑋 is a mapping with predetermined values. Assume that 𝑟 belongs to (0, ∞)  , 𝜂0 belongs 

to 𝑋,, and 0 <∝< 1 is such that 

  𝑑(𝜂0, 𝛹(𝜂0)) < 𝑟(1−∝)                  (7) 

and for all 𝑥1, 𝑥2 ∈ 𝐵𝑟(𝜂0), 

                        𝑑(𝑥1, 𝛹(𝑥2)) ≤ 𝑒(𝛹(𝑥1) ∩ 𝐵𝑟(𝜂0), 𝛹(𝑥2)) ≤∝ ‖𝑥1 − 𝑥2‖                 (8)  

are each satisfied. This means that 𝜙 has a fixed point in 𝐵𝑟(𝜂0), indicating that 𝑥 belongs to 𝐵𝑟(𝜂0) exists and 

𝑥 ∈ 𝛹(𝑥).  There is just one fixed point of  𝛹 in 𝐵𝑟(𝜂0), if 𝛹 is also single-valued.  

Convergence Analysis of the adapted GGPPA 

Consider that both X and Y are general Banach spaces. Let 𝑄 ∶ 𝑋 ⇉ 2𝑌 be a mapping with set values which has 

locally closed graph, and let 𝑞: 𝑋 → 𝑌 be a smooth function on 𝛺 ⊆ 𝑋. Let 𝑟𝑥̅, 𝑟𝑦̅, 𝜈, and 𝜅 all be greater than 0 

such that 𝜈𝜅 is less than 1. We define 

  𝑟∗ = 𝑚𝑎𝑥 {
2𝑟𝑥̅+𝜅𝑟𝑦̅

1−𝜈𝜅
,

2𝜈𝑟𝑥̅+𝑟𝑦̅

1−𝜈𝜅
}                   (9) 

It is evident from (9) that 𝑟𝑥̅ < 𝑟∗ and 𝑟𝑦̅ < 𝑟∗. 

To prove the adapted GGPPA's semi-local convergence conclusion, we employ the following lemma. 

Lemma 4. The set valued mapping 𝑄 ∶ 𝑋 ⇉ 2𝑌 should have a locally closed graph at (𝑥,̅ 𝑦̅). To define 𝑟∗, use 

(9). Assume that with constant 𝜅, the mapping 𝑄 is metrically regular at (𝑥,̅ 𝑦̅) on 𝐵𝑟∗(𝑥̅) × 𝐵𝑟∗(𝑦̅). With 𝑄(𝑥̅) =
0, let 𝑞: 𝑋 → 𝑌 be the mapping with Lipschitz continuous on 𝐵r∗(x̅) with Lipschitz constant𝜈. Then at (𝑥,̅ 𝑦̅) on 

𝐵rx̅
(x̅) × 𝐵ry̅

(y̅) with constant 
𝜅

1−𝜈𝜅
, the function 𝑞 + 𝑄 is metrically regular. 

Proof. We find that 
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 𝑑(𝑥, 𝑄−1(𝑦)) ≤ 𝜅 𝑑(𝑦, 𝑄(𝑥)) for any 𝑥 ∈ 𝐵𝑟∗(𝑥̅),  𝑦 ∈ 𝐵𝑟∗(𝑦̅) 

based on our assumption regarding 𝜛. We will demonstrate that  

          𝑑(𝑥, (𝑞 + 𝑄)−1)(𝑦) ≤
𝜅

1−𝜈𝜅
𝑑(𝑦, (𝑞 + 𝑄)(𝑥) for any 𝑥 ∈ 𝐵rx̅

(x̅) and 𝑦 ∈ 𝐵ry̅
(y̅). 

For the purpose of completing this, we'll start with the induction of 𝑙 and confirm that a sequence {𝑥𝑙} ⊆ 𝐵𝑟∗(𝑥̅), 

with 𝑥0 = 𝑥 , like that, for 𝑙 = 0, 1, 2, …; meets the subsequent claims:  

𝑥𝑙+1 ∈ 𝑄−1(𝑦 − 𝑄(𝑥𝑘))
      

(10)
 

and 

  ‖𝑥𝑙+1 − 𝑥𝑙‖ ≤ (𝑣𝜅)𝑙‖𝑥1 − 𝑥‖                        (11) 

It is evident that (10) holds true when 𝑙 = 0. Using the second condition in clause (9), we have 2𝑣𝑟𝑥̅ + 𝑟𝑦̅ ≤

𝑟∗(1 − 𝑣𝜅)and for 𝜈𝜅 < 1, (1 −  κ) is positive. This implies that  2𝑣𝑟𝑥̅ + 𝑟𝑦̅ ≤ 𝑟∗that is, 𝑣𝑟𝑥̅ + 𝑟𝑦̅ ≤ 𝑟∗

 
Hence, 

for any 𝑥 belongs to 𝐵rx̅
(x̅) and 𝑦 belongs to 𝐵ry̅

(y̅, ) we observe that 

  ‖(𝑦 − 𝑞(𝑥)) − 𝑦̅‖ = ‖𝑦 − 𝑦̅ + 𝑞(𝑥̅) − 𝑞(𝑥)‖ 

≤ ‖𝑞(𝑥) − 𝑞(𝑥̅)‖+‖𝑦 − 𝑦̅‖ 

≤ 𝑣‖𝑥 − 𝑥̅‖ + ‖𝑦 − 𝑦̅‖ 

≤  𝑣𝑟𝑥̅ + 𝑟𝑦̅ ≤ 𝑟∗                (12) 

It becomes 𝑦 − 𝑞(x) belongs to 𝐵r∗(𝑦̅). We have 𝑥1 ∈ 𝑄−1(𝑦 − 𝑞(𝑥)) as 𝑄 has a locally closed graph with 𝑥0 =
𝑥.

 
This demonstrates that (10) is real for 𝑙 = 0. Additionally, we are able to write 

             

‖𝑥1 − 𝑥‖ ≤ 𝑑(𝑥, 𝑄−1(𝑦 − 𝑞(𝑥))) ≤ 𝜅𝑑(𝑦, (𝑞 + 𝑄)(𝑥))     (13) 

by utilizing the 𝑄's metric regularity condition. Moreover, 

‖𝑥1 − 𝑥‖ = ‖𝑥1 − 𝑥̅ + 𝑥̅ − 𝑥‖ 

≤ ‖𝑥1 − 𝑥̅‖ + ‖𝑥̅ − 𝑥‖ 

≤ 𝑟𝑥̅ + 𝑑 (𝑥̅, 𝑄−1(𝑦 − 𝑞(𝑥))) 

≤ 𝑟𝑥̅ + 𝜅𝑑(𝑦 − 𝑞(𝑥), 𝑄(𝑥̅)) 

≤ 𝑟𝑥̅ + 𝜅‖𝑦 − 𝑦̅‖ + 𝜅‖𝑞(𝑥) − 𝑞(𝑥̅)‖ 

≤ 𝑟𝑥̅ + 𝜅𝑟𝑦̅ + 𝑣𝜅𝑟𝑥̅ 

= (1 + 𝑣𝜅)𝑟𝑥̅ + 𝜅𝑟𝑦̅        (14) 

Therefore 

‖𝑥1 − 𝑥‖ ≤ ‖𝑥1 − 𝑥̅‖ + ‖𝑥̅ − 𝑥‖ 

≤ (1 + 𝑣𝜅)𝑟𝑥̅ + 𝜅𝑟𝑦̅ + 𝑟𝑥̅ 
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= (2 + 𝑣𝜅)𝑟𝑥̅ + 𝜅𝑟𝑦̅ + 𝑟𝑥̅               (15) 

As 𝜈𝜅 < 1, we obtain that 

(2 + 𝑣𝜅)𝑟𝑥̅ + 𝜅𝑟𝑦̅ <
2𝑟𝑥̅ + 𝜅𝑟𝑦̅

1 − 𝑣𝜅
≤ 𝑟∗ 

 based on the first condition in (9). Thus, we write from (15) that 

‖𝑥1 − 𝑥‖ ≤ 𝑟∗ 

This becomes 𝑥1 ∈ 𝐵r∗(𝑥̅). By applying (15), we are able to type that 

‖(𝑦 − 𝑞(𝑥1)) − 𝑦̅‖ = ‖𝑦 − 𝑦̅ + 𝑞(𝑥̅) − 𝑞(𝑥1)‖ 

≤ ‖𝑦 − 𝑦̅‖+‖𝑞(𝑥1) − 𝑞(𝑥̅)‖ 

                                                            ≤ ‖𝑦 − 𝑦̅‖ + 𝑣‖𝑥1 − 𝑥̅‖ 

≤ 𝑟𝑦̅ + 𝑣[(2 + 𝑣𝜅)𝑟𝑥̅ + 𝜅𝑟𝑦̅] 

   = 2𝑣𝑟𝑥̅ + 𝑟𝑦̅ + 𝑣𝜅(𝑣𝑟𝑥̅ + 𝑟𝑦̅)      (16)               We 

discover from the second requirement in clause (9) that 

2𝑣𝑟𝑥̅ + 𝑟𝑦̅ ≤ 𝑟∗(1 − 𝑣𝜅) 

and as (1 −  𝜅) suggests a positive number less than 1 , it follows that 

2𝑣𝑟𝑥̅ + 𝑟𝑦̅ ≤ 𝑟∗, that is  𝑣𝑟𝑥̅ + 𝑟𝑦̅ ≤ 𝑟∗

 

So, we get from (16) that 

  ‖(𝑦 − 𝑞(𝑥1)) − 𝑦̅‖ ≤ 𝑟∗(1 − 𝑣𝜅) + 𝑣𝜅𝑟∗ = 𝑟∗ 

It becomes 𝑦 − 𝑞(x1) ∈ 𝐵r∗(𝑦̅) is true. Given that 𝑄 has a locally closed graph, it is evident that 𝑥2 ∈ 𝑄−1(𝑦 −

𝑞(𝑥1)) and (10) is accurate for 𝑙 equal to 1. We can now write by using 0x
 
equal to x  and the metric regularity 

assumption on 𝑄 that 

   ‖𝑥2 − 𝑥‖ ≤ 𝑑 (𝑥, 𝑄−1(𝑦 − 𝑞(𝑥1))) 

≤ 𝜅𝑑(𝑦 − 𝑞(𝑥1), 𝑄(𝑥)) 

                                                      ≤  𝜅𝑑(𝑦 − 𝑞(𝑥1), 𝑦 − 𝑞(𝑥) 

≤ 𝜈𝜅‖𝑥1 − 𝑥‖                                    (17) 

From (14) and (17), We are able to write  

            ‖𝑥2 − 𝑥̅‖ ≤ ‖𝑥2 − 𝑥‖ + ‖𝑥 − 𝑥̅‖ 

≤ 𝑣𝜅‖𝑥1 − 𝑥‖ + 𝑟𝑥̅ 

≤ 𝑣𝜅[(1 + 𝑣𝜅)𝑟𝑥̅ + 𝜅𝑟𝑦̅] + 𝑟𝑥̅ 

= (1 + 𝑣𝜅 + (𝑣𝜅)2)𝑟𝑥̅ + (𝑣𝜅)𝜅𝑟𝑦̅ 
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=
1

1−𝑣𝜅
𝑟𝑥̅ +( 𝑣𝜅)𝜅𝑟𝑦̅               (18) 

Using 
1

1−𝑣𝜅
<

2

1−𝑣𝜅
 and 𝑣𝜅 <

1

1−𝑣𝜅
  for any values of 𝜆𝜅 such that 𝜆𝜅<1 and the first condition in (9), we gain 

from (18) that 

‖𝑥2 − 𝑥̅‖ <
2

1 − 𝑣𝜅
𝑟𝑥̅ +

1

1 − 𝑣𝜅
 𝜅𝑟𝑦̅ =

2𝑟𝑥̅ + 𝜅𝑟𝑦̅

1 − 𝑣𝜅
≤ 𝑟∗ 

This becomes 𝑥2 ∈ 𝐵𝑟∗(𝑥̅). We are able to write by applying the metric regularity condition on 𝑄 that 

‖𝑥2 − 𝑥‖ ≤ 𝑑(𝑥1, 𝑄−1(𝑦 − 𝑞(𝑥1)) 

≤ 𝜅𝑑(𝑦 − 𝑞(𝑥1), 𝑄(𝑥1)) 

≤ 𝜅𝑑(𝑦 − 𝑞(𝑥1), 𝑦 − 𝑞(𝑥)) 

≤  𝑣𝜅‖𝑥1 − 𝑥‖ 

 
≤  𝑣𝜅‖𝑥1 − 𝑥‖. So, for 𝑙 = 1, (11) is accurate. This demonstrates that (10), (11) holds for the built-in points  

𝑥1, 𝑥2, … when 𝑙 = 0,1. Suppose  𝑥1, 𝑥2, … … 𝑥𝑛 are built so that (10) and (11) are applicable to 𝑙 =
0, 1, 2, … . . 𝑛 − 1. We must make 𝑥𝑛+1 sure that (10) and (11) are valid for 𝑙 = 𝑛 by induction hypothesis. First, 

we'll demonstrate that 𝑥𝑖  belongs to 𝐵𝑟∗(𝑥̅) for all .,.....,2,1 ni =  Inferring that from (11) 

  ‖𝑥𝑖 − 𝑥‖ ≤ ∑ ‖𝑥𝑗+1 − 𝑥𝑗‖ ≤ ∑ (𝑣𝜅)𝑗‖𝑥1 − 𝑥‖𝑖−1
𝑗=0

𝑖−1
𝑗=0  

≤  
1

1−𝑣𝜅
‖𝑥1 − 𝑥‖                (19) 

In addition, we are able to write  

‖𝑥𝑖 − 𝑥‖ ≤ ‖𝑥𝑖 − 𝑥‖ + ‖𝑥𝑖 − 𝑥̅‖ 

≤
1

1 − 𝑣𝜅
‖𝑥1 − 𝑥‖ + ‖𝑥𝑖 − 𝑥̅‖ 

≤ [(1 − 𝑣𝜅)𝑟𝑥̅ + 𝜅𝑟𝑦̅]+𝑟𝑥̅

 

=
2𝑟𝑥̅+𝜅𝑟𝑦̅

1−𝑣𝜅
≤ 𝑟∗            (20) 

by using (19), (14), and the first condition in (9). From (20) for i  equal to n  and by applying the second 

circumstance in (9), it demonstrates that 𝑥𝑖 belongs to 𝐵r∗(𝑥̅) for any 𝑖 = 1,2, … . . 𝑛 and  

  

‖(𝑦 − 𝑞(𝑥𝑛)) − 𝑦̅‖ ≤ ‖𝑦 − 𝑦̅‖ + ‖𝑞(𝑥̅) − 𝑞(𝑥𝑛)‖ 

≤ ‖𝑦 − 𝑦̅‖ + 𝑣‖𝑥𝑛 − 𝑥̅‖ 

≤ 𝑟𝑦̅ + 𝑣 (
2𝑟𝑥̅ + 𝜅𝑟𝑦̅

1 − 𝑣𝜅
) 

=
2𝜆𝑟𝑥̅ + 𝑟𝑦̅

1 − 𝑣𝜅
≤ 𝑟∗ 
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Therefore, y − 𝑞(xn) belongs to 𝐵𝑟∗(𝑦̅). As a result, 𝑥𝑛+1 ∈ 𝑄−1(𝑦 − 𝑞(𝑥𝑛)) because the graph of 𝑄 is locally 

closed. It suggests that (10) holds true when 𝑙 = 𝑛. Applying the metric regularity assumption on 𝑄, we arrive 

at  

‖𝑥𝑛+1 − 𝑥𝑛‖ ≤ 𝑑 (𝑥, 𝑄−1(𝑦 − 𝑞(𝑥𝑛))) 

                                                               ≤ 𝜅𝑑(𝑦 − 𝑞(𝑥𝑛), 𝑄(𝑥𝑛)) 

                                                              ≤  𝜅𝑑(𝑦 − 𝑞(𝑥𝑛), 𝑦 − 𝑞(𝑥𝑛−1) 

                                                              ≤ 𝜅‖𝑞(𝑥𝑛) − 𝑞(𝑥𝑛−1)‖ 

                                                         ≤ 𝑣𝜅‖𝑥𝑛 − 𝑥𝑛−1‖ < (𝑣𝜅)𝑛‖𝑥1 − 𝑥‖                           (21) 

Due to the completion of the induction steps, (10) and (11) are true for all 𝑙. We discover from (21) that 𝑥0 = 𝑥, 

  ‖𝑥𝑛+1 − 𝑥‖ ≤ ∑ ‖𝑥𝑖+1 − 𝑥𝑖‖
𝑛
𝑖=0  

≤ ∑(𝑣𝜅)𝑖‖𝑥1 − 𝑥‖

𝑛

𝑖=0

 

≤
1

1−𝑣𝜅
‖𝑥1 − 𝑥‖         (22) 

Applying the relation  
1

1−𝑣𝜅
‖𝑥1 − 𝑥‖ + ‖𝑥 − 𝑥̅‖ ≤ 𝑟∗from (20), we can determine from (22) that 

  ‖𝑥𝑛+1 − 𝑥̅‖ ≤ ‖𝑥𝑛+1 − 𝑥‖ + ‖𝑥 − 𝑥̅‖ ≤
1

1−𝑣𝜅
‖𝑥1 − 𝑥‖+‖𝑥 − 𝑥̅‖ ≤ 𝑟∗ 

Consequently, 𝑥𝑛+1 belongs to 𝐵𝑟∗(𝑥̅). Thus {𝑥𝑘} is a sequence of Cauchy and all of its members are in 𝐵𝑟∗(𝑥̅), 

as we can see from (21). Then, assuming the limit in (10) and the local closeness of 𝑔𝑝ℎ𝑄 satisfying 𝑥̂ ∈
𝑄−1(𝑦 − 𝑞(𝑥̂))i.e., 𝑥̂ ∈ (𝑞 + 𝑄)−1(𝑦) i.e., the sequence ends up at some 𝑥̂ ∈ 𝐵𝑟∗(𝑥̅), i.e., 𝑥̂ = lim

𝑙→∞
𝑥𝑙 

Using (11) and (13), we discover 

  𝑑(𝑥, (𝑞 + 𝑄))
−1

(𝑦) ≤ ‖𝑥̂ − 𝑥‖ 

= lim
𝑙→∞

‖𝑥𝑙 − 𝑥‖ ≤ lim
𝑙→∞

∑‖𝑥𝑖+1 − 𝑥𝑖‖

𝑙

𝑖=0

 

≤ lim
𝑙→∞

∑(𝑣𝜅)𝑖‖𝑥1 − 𝑥‖

𝑙

𝑖=0

 

≤
1

1 − 𝑣𝜅
‖𝑥1 − 𝑥‖ 

≤
𝜅

1 − 𝑣𝜅
𝑑(𝑦, (𝑞 + 𝑄)(𝑥))

 

As a result, the Lemma 4’s proof is finished.  

Let’s say that (𝑞 + 𝑄) is metrically regular at (𝑥̅, 𝑦̅) on 𝐵𝑟𝑥̅
(𝑥̅) × 𝐵𝑟𝑦̅

(𝑦̅) with constant  
𝜅

1−𝜈𝜅
 and 𝑔𝑝ℎ(𝑞 +

𝑄)⋂(𝐵rx̅
(x̅) × 𝐵ry̅

(y̅)) is closed. Consider a single valued function 𝑔: 𝑋 → 𝑌 with 𝑔(0) = 0, it has a Lipschitz  
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constant 𝜆 and is Lipschitz continuous about the origin, meaning that 𝜅(λ + 𝜈) < 1. Define a mapping 𝑄𝑥 by 

 𝑄𝑥(∙) = 𝑔(∙ −𝑥) + 𝑞(∙) + 𝑄(∙) for any 𝑥 ∈ 𝑋. 

Then for any 𝑠 ∈ 𝑋 and 𝑦 ∈ 𝑌, we obtain 

 𝑠 ∈ 𝑄𝑥
−1(𝑦) ⇔ 𝑦 ∈ 𝑔(𝑠 − 𝑥) + 𝑞(𝑠) + 𝑄(𝑠).               (23) 

In particular, 𝑥̅ ∈ 𝑄𝑥̅
−1(𝑦̅) for each (𝑥̅, 𝑦̅) ∈ 𝑔𝑝ℎ(𝑞 + 𝑄).                    (24) 

Here 𝑔(∙ −𝑥̅) is Lipschitz continuous on 𝑂 + 𝑥̅ with constant 𝜈. Lemma 4 is therefore applied, and we assume 

that the mapping  𝑄𝑥̅ is metrically regular at (𝑥̅, 𝑦̅) on 𝐵𝑟𝑥̅
(𝑥̅) × 𝐵𝑟𝑦̅

(𝑦̅) with constant 
𝜅

1−𝜅(𝜆+𝜈)
. So, by Lemma 1, 

we say that the mapping 𝑄𝑥̅
−1 is Lipschitz-like at (𝑦̅, 𝑥̅) on 𝐵𝑟𝑦̅

(𝑦̅) × 𝐵𝑟𝑥̅
(𝑥̅) with constant 

𝜅

1−𝜅(𝜆+𝜈)
, that is,  

 𝑒(𝑄𝑥̅
−1(𝑦) ∩ 𝐵𝑟𝑥̅

(𝑥̅), 𝑄𝑥̅
−1(𝑦′)) ≤

𝜅

1−𝜅(𝜈+𝜆)
||𝑦 − 𝑦′|| for all 𝑦, 𝑦′ ∈ 𝐵𝑟𝑦̅

(𝑦̅).          (25) 

Suppose that 

 lim
𝑥→𝑥̅

𝑑(𝑦̅, 𝑞(𝑥) + 𝑄(𝑥)) = 0.                                        (26) 

Write 

 𝑟̅ = 𝑚𝑖𝑛 {𝑟𝑦̅ −
𝜈𝑟𝑥̅

2
,

𝑟𝑥̅(1−𝜅(𝜈+2𝜆))

4𝜅
}.                (27) 

Then 

 𝑟̅ > 0 ⇔ 𝜆 < min {
2𝑟𝑦̅

𝑟𝑥̅
,

1−𝜈𝜅

2𝜅
}.                 (28) 

To prove the convergence result of the adapted GGPPA, we need the following lemma. The refinement of the 

evidence for [35] serves as the proof. 

Lemma 5. Given a constant 
𝜅

1−𝜅(𝜈+𝜆)
, let 𝑄𝑥̅(∙)  be metrically regular at (𝑥̅, 𝑦̅) on 𝐵𝑟𝑥̅

(𝑥̅) × 𝐵𝑟𝑦̅
(𝑦̅) such that (27) 

and (28) are fulfilled. Consider 𝐵rx̅
(0) ⊆ 𝑂 and 𝑥 ∈ 𝐵𝑟𝑥̅

2

(𝑥̅). Then, 𝑄𝑥̅
−1(⋅)  is Lipschitz-like at (𝑦̅, 𝑥̅) on 

𝐵𝑟̅(𝑦̅) × 𝐵𝑟𝑥̅
2

(𝑥̅) with constant 
𝜅

1−𝜅(𝜈+2𝜆)
, that is,  e(𝑄𝑥

−1(𝑦1) ∩ 𝐵rx̅
2

(x̅), 𝑄𝑥
−1(y2)) ≤

𝜅

1−𝜅(𝜈+2𝜆)
||𝑦1 − 𝑦2|| for all 

𝑦1, 𝑦2 ∈ 𝐵𝑟̅(𝑦̅).    

In order to finish our primary conclusion, assuming a series of functions 𝑔𝑙: 𝑋 → 𝑌 such that 𝑔𝑙(0) = 0  are 

Lipschitz constants 𝜆𝑙 are fulfilled by Lipschitz continuity near the origin, which is identical for all 𝑙. 

 

 𝜆 = sup
𝑙

𝜆𝑙 <
1−𝜈𝜅

𝜅
.               (29) 

When we swap out 𝑔 in (23) for 𝑔𝑙, we get the mapping 𝑄𝑥(∙) as follows: 

 

𝑄𝑥
𝑙 (∙) = 𝑔𝑙(∙ −𝑥) + 𝑞(∙) + 𝑄(∙) for each 𝑙 = 0, 1, 2, ….              (30) 

and rewrite equation (25) in the manner shown below: 
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       𝑒(𝑄𝑥
𝑙 −1

(𝑦) ∩ 𝐵𝑟𝑥̅
(𝑥̅), 𝑄𝑥

𝑙 −1
(𝑦′)) ≤

𝜅

1−𝜅(𝜈+𝜆)
||𝑦 − 𝑦′|| for all 𝑦, 𝑦′ ∈ 𝐵𝑟𝑦̅

(𝑦̅).   (31) 

Then, we have from (2) that 

ℛ(𝑔𝑙, 𝑥) = {𝑑 ∈ 𝑋: 0 ∈ 𝑄𝑥
𝑙 (𝑥 + 𝑑)} = {𝑑 ∈ 𝑋: 𝑥 + 𝑑 ∈ 𝑄𝑥

𝑙 −1
(0)}.            (32) 

Again, we specify the mapping 𝑉𝑥
𝑙: 𝑋 → 𝑌 by 

 𝑉𝑥
𝑙(∙) = 𝑔𝑙(∙ −𝑥̅) − 𝑔𝑙(∙ −𝑥) for each 𝑥 ∈ 𝑋,                 (33) 

Additionally, the set valued mapping  𝛹𝑥
𝑙: 𝑋 ⇉ 2𝑋 by 

 𝛹𝑥
𝑙(∙) = Q𝑥

𝑙 −1
[𝑉𝑥

𝑙(∙)].                   (34) 

Thus, for each 𝑥′, 𝑥′′ ∈ 𝑋, 

||𝑉𝑥
𝑙(𝑥′) − 𝑉𝑥

𝑙(𝑥′′)|| = ||𝑔𝑙(𝑥′ − 𝑥̅) − 𝑔𝑙(𝑥′ − 𝑥) − 𝑔𝑙(𝑥′′ − 𝑥̅) + 𝑔𝑙(𝑥′′ − 𝑥)|| 

                     ≤ ||𝑔𝑙(𝑥′ − 𝑥̅) − 𝑔𝑙(𝑥′′ − 𝑥̅)|| +||𝑔𝑙(𝑥′ − 𝑥) − 𝑔𝑙(𝑥′′ − 𝑥)||.               (35) 

We now give the following essential result and its proof given a set of suitable conditions with initial point 𝑥̅, 

arbitrary sequence produced by the GGPPA is guaranteed to exist and to converge semi-locally. 

Theorem 1. Let's say that (𝑞 + 𝑄) is metrically regular at (𝑥̅, 𝑦̅) on 𝐵𝑟𝑥̅
(𝑥̅) × 𝐵𝑟𝑦̅

(𝑦̅) with constant 
𝜅

1−𝜈𝜅
 and 

𝑔𝑝ℎ(𝑞 + 𝑄)⋂(𝐵𝑟𝑥̅
(𝑥̅) × 𝐵𝑟𝑦̅

(𝑦̅)) is closed. Consider a single valued function 𝑔: 𝑋 → 𝑌 with 𝑔(0) = 0, which 

holds the Lipschitz continuity property around the origin with Lipschitz constant 𝜆 such that 𝜅(λ + 𝜈) < 1. Allow 

0 < δ ≤ 1 to be such that  

(a) 𝛿 ≤ 𝑚𝑖𝑛 {
𝑟𝑥̅

2
 ,

3𝑟

𝜆
,

3𝑟𝑦̅

4𝜆
 }, 

(b) (𝜂 + 7)𝜅𝜆 + 𝜈𝜅 ≤ 1, 

(c) ‖𝑦̅‖ <
1

3
𝜆𝛿. 

Then there is some 𝛿 is greater than zero so that one or more sequences {𝑥𝑙} are produced using Algorithm 2 and 

every sequence that is produced converges to a solution  𝑥∗ ∈ 𝐵𝛿̂(𝑥̅) of (1), i.e., 𝑥∗ verifies that 0 ∈ 𝑞(𝑥∗) +
𝑄(𝑥∗). 

Proof.  Consider that 

𝑡 =
𝜅

1 − 𝜅(𝜈 + 2𝜆)
. 

Then by applying the assumption (𝜂 + 7)𝜅𝜆 + 𝜈𝜅 ≤ 1 with 𝜂 > 1, we have                       

𝑡𝜂𝜆 ≤
𝜂 (

1 − 𝜈𝜅
𝜂 + 7 )

1 − 𝜈𝜅 − 2 (
1 − 𝜈𝜅
𝜂 + 7 )

=
𝜂

𝜂 + 5
< 1. 

Assumptions ‖𝑦̅‖ <
1

3
𝜆𝛿 and lim

𝑥→𝑥̅
𝑑(𝑦̅, 𝑞(𝑥) + 𝑄(𝑥)) = 0 allow us to take 0 < 𝛿 ≤ 𝛿 such that for each 

𝑥0 ∈ 𝐵𝛿̂(𝑥̅), 

𝑑(0, 𝑞(𝑥0) +  𝑄(𝑥0)) <
1

3
𝜆𝛿.                                                          (36) 
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By mathematical induction, we will then show that Algorithm 2 generates many sequences, with each sequence 

{𝑥𝑙} generated by Algorithm 2 satisfies the followings: 

                                                    ||𝑥𝑙 − 𝑥̅|| ≤ 2𝛿,                                            (37)  

and  

                          ||𝑥𝑙+1 − 𝑥𝑙|| ≤ (𝑡𝜂𝜆)𝑙+1𝛿  for every 𝑙 = 0, 1, 2, … ….                  (38) 

In order to prove the inequalities (37) as well as (38), we define the constant 𝑟̂𝑥 by 

                                              𝑟̂𝑥 =
3𝜅

1−𝜅(𝜈+𝜆)
(||𝑦̅|| + 𝜆||𝑥 − 𝑥̅||)               (39) 

By the assumptions (𝜂 + 7)𝜅𝜆 + 𝜈𝜅 ≤ 1 and ‖𝑦̅‖ <
1

3
𝜆𝛿 with 𝜂 > 1, we have 

                                   𝑟̂𝑥 ≤
7𝜅𝜆

1−𝜅(𝜈+𝜆)
𝛿 ≤

7

𝜂+6
𝛿 ≤ 𝛿 < 2𝛿 for every 𝑥 ∈ 𝐵2𝛿(𝑥̅).       (40) 

 Clearly (37) holds for 𝑙 = 0. To prove that (38) is valid for 𝑙 = 0, we must establish that 𝑥1 exists i.e., 

ℛ(𝑔0,𝑥0) ∩ 𝑟̂𝑥̅(0) ≠ ∅. To do this, we will consider the mapping 𝛹𝑥0
0  defined by (34) and apply Lemma 3 to 

𝛹𝑥0
0  with 𝜂0 = 𝑥̅, 𝑟 = 𝑟̂𝑥0

 and 𝛼 =
2

3
. It is sufficient to show that axioms (7) and (8) of Lemma 3 are valid for 𝛹𝑥0

0  

with 𝜂0 = 𝑥̅, 𝑟 = 𝑟̂𝑥0
 and 𝛼 =

2

3
. By the definition of 𝛹𝑥0

0  in (34), we are able to write  𝛹𝑥0
0 (𝑥̅) = 𝑄𝑥̅

0−1
[𝑉𝑥0

0 (𝑥̅)]. 

Therefore, we obtain  

                                       𝑑 (𝑥̅, 𝛹𝑥0
0 (𝑥̅)) = 𝑑(𝑥̅, 𝑄𝑥̅

0−1
[𝑉𝑥0

0 (𝑥̅)]).                         (41) 

Now that we know what metric regularity is, we are able to write 

𝑑(𝑥̅, 𝑄𝑥̅
0−1

[𝑉𝑥0
0 (𝑥̅)]) ≤

𝜅

1 − 𝜅(𝜈 + 𝜆)
𝑑 (𝑉𝑥0

0 (𝑥̅), 𝑄𝑥̅
0(𝑥̅)) 

                                                                          =
𝜅

1−𝜅(𝜈+𝜆)
||𝑦̅ − 𝑉𝑥0

0 (𝑥̅)||                        (42) 

as y̅ ∈ 𝑄𝑥̅
0(𝑥̅) according to the set valued mapping definition 𝑄𝑥

𝑙 : 𝑋 ⇉ 2𝑌. Consequently, we derive (41) and (42) 

                                            𝑑(𝑥̅, 𝛹𝑥0
0 (𝑥̅)) ≤

𝜅

1−𝜅(𝜈+𝜆)
||𝑦̅ − 𝑉𝑥0

0 (𝑥̅)||                        (43) 

Using the selection of λ and the concept of Lipschitz continuous mapping,  

we derive from the mapping's definition 𝑉𝑥
𝑙: 𝑋 → 𝑌 in (33) that 

                                          ||𝑉𝑥0
0 (𝑥) − 𝑦̅|| = ||𝑔0(𝑥 − 𝑥̅) − 𝑔0(𝑥 − 𝑥0) − 𝑦̅||  

                                                                      ≤ ||𝑔0(𝑥 − 𝑥̅) − 𝑔0(𝑥 − 𝑥0)|| + ||𝑦̅|| 

                                                                      ≤ 𝜆0||𝑥0 − 𝑥̅|| + ||𝑦̅|| 

                                                                       = 𝜆||𝑥0 − 𝑥̅|| + ||𝑦̅||.                         (44) 

As 𝑥0 ∈ 𝐵𝛿̂(𝑥̅) ⊆ 𝐵𝛿(𝑥̅) ⊆ 𝐵2𝛿(𝑥̅), then by the assumption 
4

3
𝜆𝛿 ≤ 𝑟𝑦̅ in (a) and by the assumption ||𝑦̅|| <

1

3
𝜆𝛿 

in (c), we write from (44) that 

https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi


INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI) 

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XII Issue IV April 2025 

Page 1311 
www.rsisinternational.org 

 
  
 

 

                                       ||𝑉𝑥0
0 (𝑥) − 𝑦̅|| ≤

4

3
𝜆𝛿 ≤ 𝑟𝑦̅.                               (45)             

This shows that for every 𝑥 ∈ 𝐵2𝛿(𝑥̅), 𝑉𝑥0
0 (𝑥) ∈ 𝐵𝑟𝑦̅

(𝑦̅). More specifically,  

||𝑉𝑥0
0 (𝑥̅) − 𝑦̅|| = ||𝑔0(𝑥̅ − 𝑥̅) − 𝑔0(𝑥̅ − 𝑥0) − 𝑦̅|| 

                                                             ≤ ||𝑔0(0) − 𝑔0(𝑥̅ − 𝑥0)|| + ||𝑦̅|| 

                                                             ≤ 𝜆0||𝑥0 − 𝑥̅|| + ||𝑦̅|| 

                                                             = 𝜆||𝑥0 − 𝑥̅|| + ||𝑦̅||                                          (46) 

                                                              ≤
4

3
𝜆𝛿 ≤ 𝑟𝑦̅. 

This implies that 𝑉𝑥0
0 (𝑥̅) ∈ 𝐵𝑟𝑦̅

(𝑦̅). By using (42) in (43), we obtain 

         𝑑(𝑥̅, 𝛹𝑥0
0 (𝑥̅)) ≤

𝜅

1 − 𝜅(𝜈 + 𝜆)
(||𝑦̅ − 𝑉𝑥0

0 (𝑥̅)|| 

                                                                           ≤
𝜅

1−𝜅(𝜈+𝜆)
(||𝑦̅|| +  𝜆||(𝑥0 − 𝑥̅)||).        (47) 

By using (47) in (39) with 𝑟 = 𝑟̂𝑥0
 and =

2

3
 , we get 

𝑑(𝑥̅, 𝛹𝑥0
0 (𝑥̅)) ≤ (1 −

2

3
) 𝑟̂𝑥0

= (1 − 𝛼)𝑟. 

This demonstrates that axiom (7) of Lemma 3 is valid. Now, we demonstrate that axiom (8) of Lemma 3 is also 

valid. For this, consider 𝑥′, 𝑥′′ belongs to 𝐵𝑟̂𝑥0
(𝑥̅). Therefore, we get 𝑥′, 𝑥′′ ∈ 𝐵𝑟̂𝑥0

(𝑥̅) ⊆ 𝐵2𝛿(𝑥̅) by using (40). 

By the first assumption 2𝛿 ≤ 𝑟𝑥̅ in (a), We are able to write 𝑥′, 𝑥′′ ∈ 𝐵𝑟̂𝑥0
(𝑥̅) ⊆ 𝐵2𝛿(𝑥̅) ⊆ 𝐵𝑟𝑥̅

(𝑥̅). Then from 

(45), we obtained that 𝑉𝑥0
0 (𝑥′),  𝑉𝑥0

0 (𝑥′′) ∈ 𝐵𝑟𝑦̅
(𝑦̅). By using the characterization of the set-valued mapping 

𝛹𝑥
𝑙: 𝑋 ⇉ 2𝑋 from (34) and using the concept of metric regularity, we can express the relationship as  

                                 𝑑 (𝑥′,  𝛹𝑥0
0 (𝑥′′)) = 𝑑 (𝑥′, 𝑄𝑥̅

0−1
[𝑉𝑥0

0 (𝑥′′)]) 

                                                                       ≤
𝜅

1 − 𝜅(𝜈 + 𝜆)
𝑑( 𝑉𝑥0

0 (𝑥′′), 𝑄𝑥̅
0(𝑥′)]) 

                                                                       =
𝜅

1 − 𝜅(𝜈 + 𝜆)
𝑑( 𝑉𝑥0

0 (𝑥′′), 𝑉(𝑥′)]) 

                                                                        =
𝜅

1−𝜅(𝜈+𝜆)
||𝑉𝑥0

0 (𝑥′) −  𝑉𝑥0
0 (𝑥′′)||.              (48) 

Now, by using (35) in (48) and by the definition of Lipschitz continuous function, we observe that 

                                     𝑑 (𝑥′,  𝛹𝑥0
0 (𝑥′′)) ≤

𝜅

1 − 𝜅(𝜈 + 𝜆)
(||𝑔0(𝑥′ − 𝑥̅) − 𝑔0(𝑥′′ − 𝑥̅)|| 

                                                          +||𝑔0(𝑥′ − 𝑥0) − 𝑔0(𝑥′′ − 𝑥0)||) 

                                     ≤
2𝜆0𝜅

1 − 𝜅(𝜈 + 𝜆)
||𝑥′ − 𝑥′′|| 

https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi


INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI) 

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XII Issue IV April 2025 

Page 1312 
www.rsisinternational.org 

 
  
 

 

                                                                            ≤
2𝜆𝜅

1−𝜅(𝜈+𝜆)
||𝑥′ − 𝑥′′||.                           (49) 

By assumption (b), the above inequality becomes 

𝑑 (𝑥′,  𝛹𝑥0
0 (𝑥′′)) ≤

2

𝜂 + 6
||𝑥′ − 𝑥′′|| <

2

3
||𝑥′ − 𝑥′′|| = 𝛼||𝑥′ − 𝑥′′||. 

Thus, the axiom (8) of Lemma 3 is also valid. Given that axioms (7) and (8) of Lemma 3 are valid, We can 

determine that a fixed point exists 𝑥1̂ ∈ 𝐵(𝑥̅) so that 𝑥1̂ ∈ 𝛹𝑥0
0 (𝑥1̂), that translates to  𝑉𝑥0

0 (𝑥1̂) ∈ 𝑄𝑥̅
0(𝑥1̂), that is 

0 ∈ 𝑔0(𝑥1̂ − 𝑥0) + 𝑄(𝑥1̂). This shows that 𝑥1̂ − 𝑥0 ∈ ℛ(𝑔0,𝑥0) and thus ℛ(𝑔0,𝑥0) ∩ 𝑟̂𝑥̅(0) ≠ ∅. 

Consequently, as 𝜂 > 1, we can choose 𝑑0 ∈ ℛ(𝑔0,𝑥0) such that 

                                                       ||𝑑0|| ≤ 𝜂 𝑑 (0, ℛ(𝑔0,𝑥0)).               (50) 

By Algorithm 2, 𝑥1 = 𝑥0 + 𝑑0 is specified. Therefore, the point 𝑥1 is generated by Algorithm 2. Additionally, 

from the definition of ℛ(𝑔0,𝑥0), from (2) we are able to write  

ℛ(𝑔0,𝑥0) = {𝑑0 ∈ 𝑋: 𝑥0 + 𝑑0 ∈ 𝑄𝑥0
0−1

(0)}, 

and so 

                                          𝑑 (0, ℛ(𝑔0,𝑥0)) = 𝑑 (𝑥0, 𝑄𝑥0
0−1

(0)).                

Since 𝑄𝑥̅
𝑙 (∙) is metrically regular at (𝑥̅, 𝑦̅) on 𝐵𝑟𝑥̅

(𝑥̅) relative to 𝐵𝑟𝑦̅
(𝑦̅) with constant 

𝜅

1−𝜅(𝜈+𝜆)
, as a consequence 

of Lemma 5 the mapping 𝑄𝑥̅
𝑘−1

(∙)  is Lipschitz-like at (𝑦̅, 𝑥̅) on 𝐵𝑟̅(𝑦̅) relative to 𝐵𝑟𝑥̅
2

(𝑥̅) possessing the constant 

𝜅

1−𝜅(𝜈+2𝜆)
 for every 𝑥 ∈ 𝐵𝑟𝑥̅

2

(𝑥̅).More specifically, 𝑄𝑥0
0 −1

(∙) is Lipschitz-like at (𝑦̅, 𝑥̅) on 𝐵𝑟̅(𝑦̅) relative to 𝐵𝑟𝑥̅
2

(𝑥̅) 

with constant 
𝜅

1−𝜅(𝜈+2𝜆)
 as the ball 𝐵𝑟𝑥̅

2

(𝑥̅) contains the point 𝑥̅.  Furthermore, by the assumption ‖𝑦̅‖ <
1

3
𝜆𝛿 in 

(c) and the assumption 𝛿 ≤
3𝑟̅

𝜆
 in (a), we obtain that   

                             ||𝑦̅|| <
1

3
𝜆𝛿 ≤ 𝑟̅.                       

It shows that 0 ∈ 𝐵𝑟̅(𝑦̅). According to Lemma 5, with constant 𝑡 =
𝜅

1−𝜅(𝜈+2𝜆)
, the mapping 𝑄𝑥0

0 (∙) is metrically 

regular at (𝑥̅, 𝑦̅) on 𝐵𝑟𝑥̅
2

(𝑥̅) relative to 𝐵𝑟̅(𝑦̅). Therefore, using Lemma 1, we get 

                                       𝑑 (𝑥0, 𝑄𝑥0
0 −1

(0)) ≤ 𝑡 𝑑 (0, 𝑄𝑥0
0 (𝑥0)). (51) 

 The equation (36) implies that  

                                        𝑑 (𝑥0, 𝑄𝑥0
0 −1

(0)) ≤ 𝑡 𝑑 (0, 𝑄𝑥0
0 (𝑥0)) 

            = 𝑡 𝑑(0, 𝑞(𝑥0) + 𝑄(𝑥0)) 

                                                                 =
1

3
𝑡𝜆𝛿 ≤ 𝑡𝜆𝛿.                                                 (52) 

 As a result, we conclude that  

                                               𝑑 (0, ℛ(𝑔0,𝑥0)) = 𝑑 (𝑥0,  𝑄𝑥0
0 −1

(0)) 
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                                                                               ≤ 𝑡𝜆𝛿,                           (53) 

which we get from (32) and use in (52). By using (53), we obtain from Algorithm 2 that  

                                 ||𝑥1 − 𝑥0||= ||𝑑0|| ≤ 𝜂 𝑑 (0, ℛ(𝑔0,𝑥0)) 

                                                                         ≤ (𝑡𝜂𝜆)𝛿.                            (54) 

It follows from this that (38) is valid for 𝑙 = 0.  

Assuming that Algorithm 2 produced the coordinates  𝑥1, 𝑥2, … . . , 𝑥𝑛 we can conclude that (37), (38) hold for 

𝑙 =  0,1,2, … , 𝑛 − 1. We demonstrate that there exists 𝑥𝑛+1 such that (37), (38) are satisfied for 𝑙 = 𝑛. The 

assumptions (37) and (38) are real for every 𝑙 ≤ 𝑛 − 1, Consequently, we derive the relationship 

                                              ||𝑥𝑛 − 𝑥̅|| ≤ ∑||𝑑𝑖||

𝑛−1

𝑖=0

+ ||𝑥0 − 𝑥̅|| 

≤ 𝛿 ∑(𝑡𝜂𝜆)𝑖+1 + 𝛿

𝑛−1

𝑖=0

 

                                                                   ≤
𝑡𝜂𝜆

1−𝑡𝜂𝜆
𝛿 + 𝛿 ≤ 2𝛿,                          (55) 

and so 𝑥𝑛 ∈ 𝔹2𝛿(𝑥̅). It shows that (37) is valid for 𝑙 = 𝑛. Using much the same reasoning as when  𝑙 = 0, We 

can deduce that the mapping 𝑄𝑥𝑛
𝑛 −1(∙) is Lipschitz-like at (𝑦̅, 𝑥̅) on 𝐵𝑟̅(𝑦̅) relative to 𝐵𝑟𝑥̅

2

(𝑥̅) with constant 𝑡 =
𝜅

1−𝜅(𝜈+2𝜆)
. Then, by using algorithm 2 once more, we have  

 ||𝑥𝑛+1 − 𝑥𝑛|| ≤ ||𝑑𝑛|| ≤ 𝜂 𝑑(0, ℛ𝑛(𝑥𝑛)) 

                                                                        ≤ 𝜂 𝑑 (𝑥𝑛, 𝑄𝑥𝑛
𝑛 −1(𝑦)) ≤ 𝜂𝑡 𝑑(0, 𝑄𝑥𝑛

𝑛 (𝑥𝑛)) 

                               ≤ 𝜂𝑡 𝑑(0, 𝑞(𝑥𝑛) + 𝑄(𝑥𝑛)) 

                                         ≤ 𝜂𝑡 𝑑(0, −𝑔𝑛−1(𝑥𝑛 − 𝑥𝑛−1)) 

                                                        ≤ 𝜂𝑡 ||𝑔𝑛−1(0) − 𝑔𝑛−1(𝑥𝑛 − 𝑥𝑛−1))|| 

                            ≤ 𝜂𝑡𝜆𝑛−1||𝑥𝑛 − 𝑥𝑛−1|| 

                                                                           ≤ 𝑡𝜂𝜆 ||𝑥𝑛 − 𝑥𝑛−1||              (56) 

                                                                            ≤ 𝑡𝜂𝜆(𝑡𝜂𝜆)𝑛𝛿 = (𝑡𝜂𝜆)𝑛+1𝛿. 

This demonstrates that (38) is real for 𝑙 = 𝑛. Therefore (37), (38) are valid for every 𝑙. This suggests that {𝑥𝑙} is 

a Cauchy sequence which is produced by Algorithm 2 and hence there exists 𝑥∗ ∈ 𝐵𝑟𝑥̅
(𝑥̅) such that 𝑥𝑛 → 𝑥∗. 

Thus, passing to the limit 𝑥𝑛+1 ∈ 𝑄𝑥𝑛
𝑛−1

(𝑦) and since 𝑔𝑝ℎ(𝑞 + 𝑄) ∩ (𝐵𝑟𝑥̅
(𝑥̅) × 𝐵𝑟𝑦̅

(𝑦̅)) is closed, it follows that 

0 ∈ 𝑞(𝑥∗) + 𝑄(𝑥∗). Thus the proof  is completed. 

Imagine that 𝑙𝑖𝑚
𝑥→𝑥̅

𝑑(0, 𝑞(𝑥) + 𝑄(𝑥)) = 0.                (57) 

Theorem 1 is simplified to the subsequent consequence, it explains how the Algorithm 2 sequence locally 

converges, when 𝑥̅ is a special case solution of (1), that is, 𝑦̅ = 0. 
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Corollary 1 Let's say that 0 ∈ 𝑞(𝑥̅) + 𝑄(𝑥̅) is satisfied and that 𝜂 > 1, 𝜆 > 1. Assume that (𝑞 + 𝑄) has a locally 

closed graph with constant 
𝜅

1−𝜅(𝜈+𝜆)
 at (𝑥̅, 0) and is metrically regular there. Select a scalar sequence of length 

{𝜆𝑙} ⊆ (0, 𝜆). Then, there exists 𝛿 > 0  such that every sequence produced by Algorithm 2 with the beginning 

point 𝑥0 ∈ 𝐵𝛿̂(𝑥̅)  terminates to a solution 𝑥∗ satisfying that 0 ∈ 𝑞(𝑥∗) + 𝑄(𝑥∗). 

Proof. According to our presumption, (𝑞 + 𝑄) is metrically regular at (𝑥̅, 0), where a locally closed graph with 

constant 
𝜅

1−𝜅(𝜈+𝜆)
 exists. Then, there are constants 𝑟𝑥̅ > 0 and 𝑟0 > 0 such that with constant 

𝜅

1−𝜅(𝜈+𝜆)
, (𝑞 + 𝑄)  

is metrically regular at (𝑥̅, 0) on 𝐵𝑟𝑥̅
(𝑥̅) × 𝐵𝑟0

(0)) (0), indicating that the inequality below is valid. 

𝑑(𝑥, (𝑞 + 𝑄)−1(𝑦)) ≤
𝜅

1−𝜅(𝜈+𝜆)
𝑑(𝑦, (𝑞 + 𝑄)(𝑥)) for all 𝑥 ∈ 𝐵𝑟𝑥̅

(𝑥̅), 𝑦 ∈ 𝐵𝑟0
(0). 

Think of 𝑠𝑢𝑝𝑙𝜆𝑙 = 𝜆 ∈ (0,1) as being such that (𝜂 + 7)𝜅𝜆 + 𝜈𝜅 ≤ 1 and 𝑥0 ∈ 𝐵δ̂(x̅). For every 𝑦0 close to 

origin so that 𝑔𝑝ℎ(𝑞 + 𝑄) is locally closed at (𝑥0, 𝑦0), since 𝑥0 is very close to 𝑥.̅ Allow us to take 0 < 𝛿 ≤ 𝛿 

in order to achieve  

𝑑(0, 𝑞(𝑥0) + 𝑄((𝑥0)) ≤ 𝜆𝛿 

 for any 𝑥0 ∈ 𝐵𝛿̂(𝑥̅) . Since (𝑞 + 𝑄) is metrically regular at (𝑥̅, 𝑦̅) on 𝐵𝑟𝑥̅
(𝑥̅) × 𝐵𝑟𝑦̅

(𝑦̅) with constant 
𝜅

1−𝜅(𝜈+𝜆)
, 

one gets that  

             𝑑(𝑥, (𝑞 + 𝑄)−1(𝑦)) ≤
𝜅

1−𝜅(𝜈+𝜆)
𝑑(𝑦, (𝑞 + 𝑄)(𝑥)) for all 𝑥 ∈ 𝐵𝑟𝑥̅

(𝑥̅), 𝑦 ∈ 𝐵𝑟0
(0), 

 where 0 < 𝑟𝑥̅ ≤ 𝑟𝑥̂̅ such that 
𝑟𝑥̅

2
≤ 𝑟̃ and  𝑟0 −

𝑟𝑥̅𝜆

2
> 0. Then 

                                                  𝑟̅ = 𝑚𝑖𝑛 {𝑟0 −
𝜆𝑟𝑥̅

2
,

𝑟𝑥̅(1−𝜅(𝜈+2𝜆))

4𝜅
} > 0 and 

𝑚𝑖𝑛 {
𝑟𝑥̅

2
 ,

3𝑟

𝜆
,
3𝑟0

4𝜆
 } > 0. 

We can therefore select 0 < 𝛿 ≤ 1 so that  

 𝛿 ≤ 𝑚𝑖𝑛 {
𝑟𝑥̅

2
 ,

3𝑟

𝜆
,

3𝑟0

4𝜆
 }. 

It is now common practice to check that Theorem 1's assumptions are all true. Therefore, we may finish the 

proof of the corollary by using Theorem 1 

Numerical Test 

A numerical test is provided in this part to validate the result of semi-local convergence of the adapted GGPPA 

Example 1 Consider 𝑋 = 𝑌 = ℝ, 𝜅 = 0.2, 𝑥0 = 0.2, 𝜆 = 0.1 , 𝜈 = 0.4 and 𝜂 = 3. Select a set-valued mapping 

𝑄 on ℝ by 𝑄(𝑥) = {−5𝑥 + 1, 4𝑥 + 3} and a smooth function 𝑞 on ℝ by 𝑞(𝑥) = 𝑥 − 1. Also, choose a Lipchitz 

continuous function 𝑔𝑙 by 𝑔𝑙(𝑥)=
𝑥

3
, where 𝑔𝑙(0) = 0. The mapping (𝑞 + 𝑄) with set-values is thus defined as 

𝑞(𝑥) + 𝑄(𝑥) = {−4𝑥 + 1, 5𝑥 + 2} on ℝ. Afterward, Algorithm 2 yields a sequence that eventually meets to 

𝑥∗ = 0.25. 

Take into consideration 𝑞(𝑥) + 𝑄(𝑥) = −4𝑥 + 1. Then from the statement, it is clear that 𝑞 + 𝑄 is metrically 

regular at (0.2, 0.2) ∈ 𝑔𝑝ℎ(𝑞 + 𝑄) and 𝑔𝑙 is Lipschitz continuous in the neighbourhood of origin with Lipschitz 

constant 𝑠𝑢𝑝𝑙𝜆𝑙 = 𝜆 = 0.1. Then from (1), we have that 

https://rsisinternational.org/journals/ijrsi
https://rsisinternational.org/journals/ijrsi


INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI) 

ISSN No. 2321-2705 | DOI: 10.51244/IJRSI |Volume XII Issue IV April 2025 

Page 1315 
www.rsisinternational.org 

 
  
 

 

                            ℛ(𝑔𝑙 , 𝑥𝑙) = {𝑑𝑙 ∈ ℝ ∶ 0 ∈ 𝑔𝑙(𝑑𝑙) + 𝑞(𝑥𝑙 + 𝑑𝑙) + 𝑄(𝑥𝑙 + 𝑑𝑙)} 

         = {𝑑𝑙 ∈ ℝ ∶  𝑑𝑙 =
3(1−4𝑥𝑙)

11
}. 

However, if ℛ(𝑔𝑙 , 𝑥𝑙) ≠ ∅, we get that  

0 ∈ 𝑔𝑙(𝑥𝑙+1 − 𝑥𝑙) + 𝑞(𝑥𝑙+1) + 𝑄(𝑥𝑙+1). 

According to this,  

 x𝑙+1 =
3−x𝑘

11
. 

As a result, we deduce from (56) that  

||d𝑙|| ≤
ηκλ

1 − κ(ν + 2λ)
||d𝑙−1||. 

We can observe that for the specified values of η, κ, λ and ν, 
ηκλ

1−κ(ν+2λ)
< 1. This demonstrates that the sequence 

created by Algorithm 2 meets linearly, supporting the algorithm's result of semi-local convergence. The 

generalized equation has a solution 0.25 for 𝑙 =  4, according to the following table 1, which was generated by 

the Matlab application. 

    x             (𝑞 + 𝑄)(x) 

0.2000           0.2000 

0.2545           -0.0182 

0.2496            0.0017 

0.2500           -0.0002 

0.2500            0.0000 

 

Table 1: Identifying a solution  

The graphic depiction of (𝑞 + 𝑄)(x) is shown in the following figure: 

 

Figure 1: The graph of (𝑞 + 𝑄)(x). 
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Final Observations 

The semi-local as well as local convergence findings for the adapted GGPPA specified by Algorithm 2 have 

been developed in this work. The generalized smooth equation (1) can be solved with the following assumptions: 

𝑞 is a smooth differentiable function, 𝑞 is a set valued mapping that is metrically regular, 𝑞 has a locally closed 

graph, and 𝑔𝑙: 𝑋 → 𝑌 is a sequence of Lipschitz continuous functions such that 𝑔𝑙(0) = 0 around the origin with 

Lipschitz constant 𝜆. In the event when 𝑔𝑙(𝑢) = 𝜆𝑙(𝑢), 𝜂 = 1, and  ℛ(𝑔𝑙 , 𝑥𝑙) is a singleton, the findings of this 

study align with those found in [3]. We have supported the study of semi-local convergence of the adapted 

GGPPA with a numerical example. The outcome builds upon and enhances the outcome found in [3, 14]. Next 

time, we will try to analyze the convergence of the Gauss-type proximal point method for non-smooth 

generalized equations. 
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