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INTRODUCTION 

According to [2], Artificial Intelligence's revolutionary potential is bringing about a fundamental revolution 

in every aspect of the world, impacting everything from product development to medical diagnosis. It also 

has several subfields, particularly in the practice of medicine, including computer vision (CV), deep learning 

(DL), and machine learning (ML). 

Women's quality of life is greatly impacted by endometriosis, a chronic gynecological disorder that can lead 

to infertility and discomfort [10]. Even though it is common, non-invasive diagnosis is still difficult. 

Researchers have used information from imaging, blood tests, genetics, and symptoms to investigate 

different Machine Learning (ML) methods. Methods such as LASSO regression and logistic regression have 

demonstrated potential [11]. Significant restrictions still exist, nonetheless, which impair patient outcomes 

and clinical adoption. 

First, current research frequently relies on a small number of data sources or a single data type, which may 

cause important information that could improve diagnostic accuracy to be missed. For instance, research that 

only looks at symptom data may overlook important information from other sources. Second, many machine 

learning models used in contemporary research are "black boxes," which means that their decision-making 

procedures are opaque [12]. This lack of interpretability limits trust and prevents broad clinical adoption by 

making it challenging for medical professionals to comprehend the process used to generate diagnosis. 

When using XAI to diagnose endometriosis, decision confidence and trustworthiness are greatly increased 

(Antoniadi et al., 2021). By having a thorough understanding of how an AI system makes a diagnosis, 

clinicians can make well-informed decisions regarding its application, which will increase the degree of trust 

and adaptability of the technology in the medical field. Based on the features it prioritizes, it can detect any 

bias in the model's predictions. 

Several machine learning (ML) approaches such as logistic regression, LASSO regression, and U-Net 

models to mention a few have been explored for non-invasive diagnosis, leveraging data from symptoms, 

genetic markers, blood tests, and imaging techniques. 

This study aims to address the limitations of symptoms as a single data source and lack of interpretability by 

using 3 structured data types and leverage on SHAP for model’s prediction interpretability. 

METHODS 

Data Set Overview 

This dataset includes features such as patient demographics (age, gender, etc.), clinical history (previous 

diagnoses, family medical history, etc.), and symptom profiles (pain levels, specific symptom onset, and 

duration). The structured data was initially collected and stored in a structured format (CSV) containing 
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various patient attributes. Each row in the dataset represents an individual patient, with columns capturing 

specific clinical and demographic characteristics, in total there are 1208. 

 

Figure 1. Framework for DNN integrated with SHAP. (Source: Researcher) 

Data Preparation and Preprocessing 

Data Cleaning was carried out by identifying missing values in critical fields (such as symptom severity or 

age) and handled by either filling them with median values (for numerical features) or using "Unknown" (for 

categorical data). A few outliers were noted and reviewed and adjusted or removed as necessary. Categorical 

variables, such as patient gender or categorical symptom levels, were encoded to numerical values using 

one-hot encoding techniques and label encoding (for ordinal data). This conversion was necessary to ensure 

compatibility with machine learning models that generally require numerical input. Numerical features, 

including age and symptom severity, were standardized to have a mean of zero and a standard deviation of 

one. This normalization was applied to maintain consistent data ranges and prevent any single feature from 

disproportionately impacting the model due to its scale. Because of the potential dimensionality of the 

dataset, a feature selection step was applied to retain only the most informative features. And correlation 

matrix visualization was used to visualize the relationships between one-hot encoded features in the non-

image dataset, with values ranging from -1 (strong negative correlation) to 1 (strong positive correlation). 

Data Organization 

Data was organized into folders based on patient ID, symptoms, patient physical examination result, and 

pateint History. The dataset was split into 80% training, and 20% testing sets. 

Model Selection (Dense Neural Network) and training 

The data was used to train a dense neural network. The model iteratively learned from the data using 

backpropagation and optimization techniques. The training process was designed to optimize classification 

performance while maintaining interpretability. A dense feedforward neural network was implemented, 

consisting of multiple fully connected layers. ReLU was used for hidden layers, while a sigmoid activation 

function was applied in the output layer for binary classification. The Adam optimizer was used with a 

learning rate of 0.001 to ensure stable convergence. Binary cross-entropy was selected to measure 

classification performance. Training was conducted using a batch size of 32 over 50 epochs, with early 

stopping implemented to prevent overfitting. 

This model was selected because of it’s ability to capture complex relationships between pateint attributes 

while maintaining flexibility and scalability. More importantly, it is compatible witrh SHAP, it allows 

detailed feature attribution. These ensures that model’s decision making process remains transparent and 

interpretable. 

SHAP Integration  

The Shapely Additive explanations (SHAP) method is based on Shapley values, a concept from cooperative 

game theory that ensures fair feature attribution. SHAP works with local explanations and global 
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explanations and provides both. It also gives consistent and theoretical explanations. It is based on game 

theory ensuring that feature attributions are mathematically consistent and fair. SHAP handles feature 

interaction, features like clinical symptoms, patient history may interact in complex ways, SHAP captures 

these features without interaction that may affect the overall result. 

The mathematical expression for SHAP values is given by 

𝜑𝑖 =  ∑
|𝑆|!(𝑁|−|𝑆| − 1)!

|𝑁|!𝑠𝑐𝑁{𝑖} |𝑓(𝑠 ∪ {𝑖}) − 𝑓(𝑠)|        

Were  

𝜑𝑖: SHAP value for feature I (its contribution to the prediction) 

𝑁: the set of all features. 

𝑠𝑐𝑁|{𝑖}: A subset of features excluding features i 

𝑓(𝑠): The model output when using only the features in S 

𝑓(𝑠 ∪ {𝑖}): The model output when adding features, I to subset S 

The fraction weights each subset’s contribution, ensuring fair allocation across all possible feature subset. 

Tools  

Python Programming Language 

Python served as the primary programming language due to its versatility and extensive libraries for machine 

learning, medical imaging, and data analysis. With key libraries that include NumPy and Pandas for data 

manipulation and preprocessing of data, such as symptoms, clinical history, and demographic data, 

Matplotlib and Seaborn for visualizing data distributions and model evaluation metrics, Scikit-Learn for data 

preprocessing, splitting datasets, and evaluation metrics calculation. 

Google Colab 

Google Colab was used as the main development environment, providing GPU support for model training 

without the need for local high-performance hardware. It provides free GPU and TPU resources, ease of 

collaboration, integration with Google Drive, and a notebook interface for iterative development and 

documentation. 

TensorFlow and Keras 

TensorFlow and its high-level API, Keras, were utilized for building, training, and evaluating the U-Net 

model with a dual attention mechanism. 

RESULTS AND DISCUSSION 

Designing a Dense Model with SHAP  

Data Preparation and Preprocessing 

For consistency of dataset and to ensure quality, the required pre-processing steps were taken as recorded 

easlier to ensure a reliable model. Figure 3.1 and Figure 3.2 shows the visualization of the datasets after data 

cleaning, one-hot encoding, normalization, and feature selection. 
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Figure 3.1. Visualization of dataset viewed per attribute 

 

Figure 3.2. Visualization of correlation matrix of one-hot encoded features 

The correlation matrix visualizes the relationships between one-hot encoded features in the non-image 

dataset, with values ranging from -1 (strong negative correlation) to 1 (strong positive correlation). From 

Figure 4.2, it is observed that there is minimal redundancy because most features exhibit low to moderate 

correlations with values that is closer to 0, it can be induced from this that no features need to be removed 

because of high correlation. The correlation result also shows that features like severality in pelvic pain and 

presence of palpable masses show moderate correlation about 0.66. this figure suggests that this relationship 
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might be clinically significant and it might be necessary to further investigate for potential interaction. There 

is absence of correlation close to 1 or -1 this indicates that there is no multicollinearity which can adversely 

affect the model performance. This result shows that we can retain all the features. The datasets were further 

scaled for easy analysis. 

Data Splitting 

The dataset was divided into training and testing sets to ensure robust model evaluation. 80% training, and 

20% testing was applied to this as like MRI dataset splitting. Table 4.2shows the result of accurate splitting 

to training and testing sets. 

Table 3.1. Results of non-image Training and Testing Set Splitting 

Training set (80%) 966 

Test set (20%) 242 

Dence layer training 

The non-image data was used to train the dense layer at the result as shown in Table 4.8a and Table 4.8b 

respectively. The classification report gives precision, recall, F1-score, and support for binary classification 

task. The two classes are labelled as “False” and “True”, these represents the negative and the positive cases, 

respectively. When the model predicts “False” which is a total of 59 samples class, it is correct 81% of the 

time, out of all the actual false cases, the model correctly identifies 87% of them. A balance between 

precision and recall was noted with F1-Score of 84% which indicates a strong classification performance. 

The model classified 183 samples as positive class, when it predicts “true” it is correct 87% of the time. Out 

of all the true cases, the model correctly identifies 81% of them as seen with the recall of 81% and F1-score 

of 83% shoes a strong balance of precision and recall for detecting positive cases. 

The model correctly classifies 87% of all test samples, with Macro average: precision as 84% as average 

precision across both samples, recall at 84%, and F1-score as 83.5% across both classes. Weighted average 

precision of 86%, recall 87%, and F1-score at 87% balance across precision and Recall in each classes. It is 

generally observed that the model performance can be said to be good and reliable with accuracy of 87% 

Integration with SHAP 

Figure 4.8 shows SHAP explanation on Non-image data. 

Longer menstrual cycles tend to increase the likelihood of endometriosis, while shorter cycles (blue) 

decrease it, Patients reporting left-side pelvic pain are more likely to be classified as having endometriosis, 

Older patients (red) tend to be at higher risk, while younger patients (blue) have a lower risk. Pelvic Pain 

Severity & Pain Intensity also indicates increased likelihood of diagnosis. The moderate Impact Features 

includes Pelvic Pain Frequency which is that Frequent pelvic pain is associated with a higher prediction for 

endometriosis, having undergone surgeries contributes to the model’s prediction, a known family history of 

endometriosis increases the probability of diagnosis, and urinary urgency & constipation. And Less 

Impactful Features included Dysmenorrhea Severity (Severe & Moderate) while still relevant, they have a 

lower impact compared to other pain-related features, Nodules in Cul de Sac which indicates the presence of 

nodules contributes to diagnosis but with lower overall impact, and Diarrhea (Yes). 

Table 3.2a: Classification Report 

  precision Recall F1-score Support 

FALSE 0.81 0.87 0.84 59 

TRUE 0.87 0.81 0.83 183 
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Table 3.2b 

Accuracy     0.87 206 

macro Aveg 0.84 0.84 0.835 206 

Weighted Avg 0.86 0.87 0.87 206 

 

Figure 3.4. SHAP Explainability 

DISCUSSION 

The dataset was analyzed using a Dense Neural Network (DNN), leveraging structured patient data such as 

demographics, clinical history, symptoms profiles, and the result of physical examination for endometriosis 

diagnosis. Preprocessing steps ensured data quality through missing data handling, feature encoding, 

standardization, and feature selection. 

The model’s performance, evaluated using precision, recall, F1-Score, and accuracy, demonstrated strong 

classification ability. The overall accuracy of 87% indicates that the DNN effectively distinguished between 

positive and negative cases. The precision for positive cases (87%) and negative cases (81%) suggest that the 

model reliably predicts endometriosis while minimizing false positives. The recall scores 87% for negative 

and 0.81 for positive cases reflect the model’s sensitivity to identify both conditions. The macro-average F1-

score of 87% further confirms the model’s balanced performance across classes. 
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To enhance interpretability, SHAP analysis was applied, identifying key features such as pain severity, 

previous diagnosis, and symptoms onset as primary contributors to model predictions. This feature 

attribution analysis provided transparency, allowing for clinical validation of the model’s decision-making 

process. 

CONCLUSIONS 

DNN-based analysis of structured data produced reliable and interpretable results, demonstrating its potential 

as an independent diagnosis tool for endometriosis. 
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