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ABSTRACT  

Anesthesia is a critical medical intervention used to ensure patients remain unconscious, pain-free, or immobile 

during surgical and diagnostic procedures. The choice of anesthetics is influenced by the type of surgery, the 

patient’s medical history, and the preferences and expertise of the anesthesiologist. Anesthetics is usually 

administered through inhalation, intravenous injection, or a combination of both. Administering anesthesia 

during medical procedures is vital to patient care, requiring precision, flexibility, and real-time adaptability. In 

this work, we propose a new machine learning model that relies on LSTM and a fully connected neural network 

to control the patient's anesthetic state during surgery for all stages including induction, maintenance, and 

emergence, using a synergy of Propofol and Remifentanil. Propofol is used primarily for sedation, whereas 

Remifentanil is mainly used for pain relief. Since the duration of their effect is very short, constant infusion of 

both drugs is necessary to maintain the patient’s sedation state. Experience indicates that the synergistic effect 

of both drugs yields better control of the anesthesia level. This model is meant to elevate the burden that comes 

with the task of anesthesia control in real-time but shouldn’t take complete control as the presence of 

anesthesiologists remains vital to monitor its performance.  

Keywords: Anesthesia, Machine Learning Predictive Model, LSTM, Fully Connected Neural Network, 

Personalized Medicine. 

I. INTRODUCTION 

Anesthesia is a critical medical intervention used to ensure patients remain unconscious, pain-free, or immobile 

during surgical and diagnostic procedures. It involves administering specific anesthetics that are carefully 

selected based on the type of surgery, the patient’s age, medical history, and other factors. Moreover, the choice 

of anesthetics is also influenced by the preferences and expertise of anesthesiologists. Anesthetics can be general 

which means they tend for all aspects of anesthesia, like inducing unconsciousness, pain relief, and muscle 

relaxation. There are two types of anesthetics: (i) inhalation anesthetics (administered via the raspatory system) 

like gases or vapors that are inhaled using a mask or endotracheal tube, and (ii) intravenous anesthetics 

(administered via an injection through the veins) are categorized based on their physiological effects into 

hypnotics, analgesics, and neuromuscular blocking (NMB) drugs [1]. Hypnotics, such as propofol, induce 

unconsciousness during surgery, with propofol being widely preferred due to its rapid metabolism and lower 

risk of side effects. Analgesics, like opioid-based remifentanil, alleviate pain sensations. NMB drugs cause 

skeletal muscle paralysis by blocking nerve signals at the neuromuscular junction, facilitating procedures like 

endotracheal intubation and mechanical ventilation. These three drug types (shown in Fig. 1) collectively achieve 

the main goals of general anesthesia: unconsciousness, pain relief, and muscle relaxation. 

 

Fig. 1 The three main goals of general anesthesia. 
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Anesthesia is administered and managed in three distinct stages: (1) Induction: This initial phase involves 

transitioning the patient from a conscious state to unconsciousness or from full sensation to partial or complete 

sensory loss. (2) Maintenance: this stage is dedicated to monitoring the patient’s vital signs, such as blood 

pressure, oxygen saturation, and heart rate, to adjust the dosage or type of anesthetic agents. This ensures the 

patient remains stable, unconscious, pain-free, and appropriately relaxed throughout the surgery. (3) Emergence: 

The final phase involves reducing or discontinuing the anesthetic agents, allowing the patient to regain 

consciousness and normal bodily functions. This process must be carefully managed to ensure smooth and safe 

recovery from the anesthetic state. Anesthesia is a highly specialized field that requires precise monitoring and 

expertise to tailor the treatment to the patient’s individual needs, ensuring safety and comfort throughout the 

surgical process [2]. Approximately 266 million surgeries are performed worldwide each year, many of which 

require general anesthesia. Effective management of anesthesia plays a key role in operating room efficiency 

and the length of procedures. This is influenced by factors such as the time needed to achieve target anesthetic 

concentrations and the efficiency of drug delivery, which affect both the induction of anesthesia and the timing 

of patient emergence [3].  

Problem Statement 

The main issue with anesthesia control delivery is the human factor. The task of sustaining a stable hypnotic 

state is complex, as the anesthesiologist needs to monitor, accurately assess, and adapt to the patient’s vital signs 

variability to deliver the precise drug dosage [4]. This means that the anesthesiologist must be an expert and 

well-rounded in his field to the point that he/she can predict the patient’s response to certain drug infusions, and 

this is quite challenging, given that every patient responds differently to different anesthetic agents. There’s also 

the issue of human fatigue, as some surgeries might last for days, hence, the anesthesiologist can't maintain the 

same level of attention and readiness to make constant decisions for drug infusion during the surgery. Even if 

there are shifts between anesthesiologists, where another anesthesiologist is ready to take over if one feels tired, 

there’s the issue of transition delay. Also, some hospitals might lack staff in the anesthesiology department. 

Lastly, anesthesiologists rely on different monitoring tools, some are expensive. Some devices are advanced, but 

they are also limited in providing a complete picture of the patient’s physiological signs, and this can lead 

anesthesiologists to imprecise administration of anesthetic agents, causing fluctuation in the hypnotic state 

(patient might inadvertently wake up). 

RELATED WORK 

The safe and personalized administration of anesthetics during surgery is a major concern in clinical practice, 

necessitating precision, adaptability, and a personalized approach [5]. Integrating machine learning into 

anesthesia control can improve the accuracy and efficiency of its delivery, as well as ensure patient safety by 

reducing human errors such as over or under-dosing episodes [6]. Anesthesiologists have historically been at the 

forefront of developing closed-loop devices. As early as the 1950s, Bickford and colleagues introduced 

automated volatile anesthetic delivery systems guided by electroencephalogram (EEG) data [7]. Modeling plays 

a critical role in both feed-forward and feed-backward control systems. In automated anesthesia, these 

approaches are commonly known as target-controlled infusion (TCI) and closed-loop drug delivery, respectively. 

Both aim to regulate a system where the anesthetic drug infusion rate serves as the input, and the (measured) 

clinical effect acts as the output [8]. 

In 2023 the authors of [9] proposed an interoperative EEG model that uses gradient boosting to accurately detect 

loss and recovery of consciousness during anesthesia, showcasing high precision. Whereas in [10], the authors 

suggested a framework that predicts continuous depth of anesthesia using SWT and fractal features. This model 

achieved 97.1% classification accuracy and superior regression performance. Also in 2023, the authors of [11] 

introduced machine learning models and artificial intelligence (AI) to allow objective and personalized 

nociception-antinociception prediction in the patient safety era for the design and evaluation of closed-loop 

analgesia controllers.  

Earlier in 2021 the authors of [12] published a study that considered machine learning for anesthesiologist 

decisions on remifentanil, with LSTM showing promising performance, enhancing anesthesia decision-making 

potential. In a different attempt, Liu et. al (2019) analyzed EEG signals using a convolution neural network to 
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model the patient’s consciousness level based on the anesthesiologist's experience. The model achieved 93.50% 

accuracy [13]. Similarly, Asai et. al [14] proposed an anesthetics dose prediction model to avoid post-induction 

hypotension using electronic anesthesia records. Their model used ridge regression on electronic records with 

promising results. 

METHODOLOGY 

 The traditional method for anesthesia control relies on the anesthesiologist’s experience and clinical judgment, 

such methods are prone to subjective judgment and human error. To address this issue, we propose an ensemble 

machine learning model that uses LSTM and a fully connected neural network (Dense) with the help of a dropout 

layer to control and predict the drug dosages of Propofol and Remifentanil. This model will utilize real-time 

patient data for patients during the administration of anesthesia. ML’s exponential growth in medicine is made 

possible by the availability of large datasets and improvement in computing power, as it is a computer-controlled 

technique that automates analytical model building [15]. The data was obtained from a large clinical database 

called VitalDB (https://vitaldb.net/dataset/) [16]. The data in this set consists of intraoperative bio signals and 

clinical information related to 6388 surgical patients, the data includes many features, but we only focus on 

seven to avoid overfitting, and to encourage generalization to make informed decisions. Both drugs, Propofol 

and Remifentanil, are characterized by a rapid onset and offset, meaning they take effect in a short period, and 

they wear out also in a fast manner [17]. So, to sustain a stable unconsciousness and analgesia state, a constant 

infusion of a combination of these drugs is necessary. This might seem flawed, but in contrast, the behaviour of 

the combination of these drugs is perfect for all three stages of anesthesia: induction, maintenance, and 

emergency. This might be obvious for induction and emergency because both require a fast change of anesthetic 

state, otherwise, it won’t be convenient for physicians to wait long before they start operating on the patient 

(induction), same for emergencies, where a prolonged recovery can result in complications. Maintenance on the 

other hand, can’t be achieved with drugs that have prolonged effects, as the effect of overdosing is not 

recoverable and might result in prolonged unconsciousness, raspatory depression, and delayed emergency. In 

other words, it’s hard to fine-tune drugs with prolonged effects to sustain a certain range of anesthetic states. 

The value that we seek to maintain is the BIS (Bispectral index), which is a measurement of brain activity. Its 

values range from 0 to 100, 0 means there’s no brain activity at all, and 100 indicates fully awake. For surgery 

purposes, the BIS value has to be within the range of 40 to 60 to sustain an unconscious state with minimum side 

effects (See Fig. 2). It relies on the concertation of Propofol and Remifentanil in the effect-site, so to control it, 

we need to control these two drugs. Finally, this model will elevate the burden that comes with the task of 

anesthesia control but shouldn’t take complete control as the presence of anesthesiologists remains vital to 

monitor its performance. 

 

Fig. 2 Bispectral index range interpretation. 

System Description 

In healthcare, machine learning algorithms helped in disease diagnosis, treatment recommendation, and patient 

recovery prediction, laying the framework for personalized medicine. Machine learning algorithms analyze 

extensive datasets comprising patients’ information, surgical details, and medical histories. The insights gained 

will be used to develop a customized anesthetic prediction model that optimizes medication administration based 
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on individual patient characteristics. Our system utilizes Long-Short Time Memory (LSTM) for the Propofol 

and Remifentanil dosage prediction since LSTMs are perfect for sequential data where the order is crucial; given 

that this characteristic aligns with the behavior exhibited by this discipline of anesthesia control, where previous 

dosages determine the current required dosage. The model seeks to mitigate the risks posed by unpredictable 

patient responses. Leveraging trained algorithms to analyze individual characteristics, it enables safer and more 

precise anesthetic protocols, potentially improving patient outcomes and recovery. During surgery, the system 

will continuously monitor data, updating predictions in real time to adapt to evolving conditions [5]. 

Both LSTM networks are considered within a single layer, their outputs are passed to the next layer which is a 

fully connected neural network. This neural network aims at predicting the BIS value, but before that, we need 

to add a third layer: the dropout to avoid overfitting. The dropout layer randomly disables neurons in the fully 

connected neural network to ensure a model with generalized behavior. The last layer is a single sigmoid neuron 

that outputs the value for the BIS in the range 0-1 (will be multiplied by 100 to accurately represent the BIS 

value). In this section, we will illustrate the working principle of the model and how it’s constructed. 

Data Cleaning and Preprocessing 

The most vital aspect for the model to work correctly is the kind of data used to train it. For medicine-related 

research and applications, a well-known database named VitalDB contains rich and valuable datasets for 

physiological and demographic data from patients that undergone surgeries. Out of these physiological and 

demographic data, we are interested in a few that we believe are enough for building an effective machine-

learning agent that can control the infusion rate at an expert level. The seven parameters are: Propofol Volume, 

Remifentanil Volume, Age, Sex, Height, Weight, and BIS level.  

• Removing records with an initial BIS level lower than 80; the usual initial BIS level is between 90 and 

100, but due to the huge drop that would result in the number of records if we were to go with 90 instead 

of 80 (which can lower the model’s accuracy), we think 80 is a good threshold for indicating patient’s 

awareness and also maintaining a reasonable number of records for the training and testing phases. Also, 

eliminating records with the last BIS level that is less than 80, as the last BIS level should indicate the 

patient’s recovery status. 

• Removing records where patients are under the age of 20, and the reason behind such selection criteria is 

to minimize variability and focus on a specific population. 

• Removing records where patients are overweight or underweight, our thresholds are: 130 KG and 40 KG 

respectively. These thresholds are guessed, and the logic is similar to the previous selection criteria, which 

is to ignore outliers and account only for a specific population. 

• Removing records with anesthesia type that are not general. 

• Fill in records that have zero or no values with the last non-zero values. Also, fill in the records that have 

no values in their initial readings with zeros. 

• Change the values in the Propofol volume and Remifentanil volume columns to rates by subtracting the 

immediate last reading from the current. 

• Adding additional records at the top of the dataset with zero values. These zeroed records are used for the 

LSTM training as this type of neural network takes inputs as sequence, and so the idea is to feed the first 

sequences that are zeros so that the last value of the sequence is a real value, and the LSTM will have to 

predict the following output to this real value. 

Example: Assuming we want to pass the first sequence to the LSTM and assume that the number of zeroed 

records added at the beginning of the dataset is 119, then, the length of the sequence is 120 where the 120th value 

is the value that belongs to the first record before adding the additional zeroed records. The sequence is then 

passed to the LSTM as a single input. After implementing these selection criteria on the dataset, the input should 

be ready to be fed into the model for training. 

Model Design 

An ensemble machine learning model was developed for the BIS level prediction and Propofol and Remifentanil 

dosage control. The first layer of the ensemble consists of two LSTM models, with the following specifications  
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in Table 1. 

Table 1: LSTM Models Specifications 

Hyperparameters LSTM1 (Propofol) LSTM2 (Remifentanil) 

Nodes 8 8 

Time Steps 120 120 

Activation Function Leaky ReLU Leaky ReLU 

The inputs to these LSTM neural networks are sequences of the length of 119. Each entry in the sequences is 

organized in an orderly manner, corresponding to each time step, and the next step that we wish to predict will 

be the 120th in the sequence. The outputs for both drugs, along with the covariates (age, gender, height, and 

weight) are concatenated and flattened to be processed by the fully connected neural network, which consists of 

a single hidden layer with neurons (activated using ReLU activation function) and an output neuron activated 

using the sigmoid activation function. To maintain a model of smooth and generalized nature we add a dropout 

layer that regularly disables neurons in the hidden layer. The percentage set for neurons to be disabled in the 

hidden layer is 20%. So, we get an output that represents the BIS level in the range of 0-1, to better resemble the 

range we can multiply the output by 100. The other two outputs are simply the control dosages taken from the 

last entry (which is predicted) output from the LSTM networks. You may reference Fig. 3 for better 

comprehension of the model’s architecture. 

 

Fig. 3: Model Architecture 

 EXPERIMENTATION & DISCUSSION 

Model Performance & Comparison 

 The model exhibits promising performance as seen in Fig.4, where the predicted values are smooth and stable 

with a Mean Absolute Percentage Error of less than 17% (it would’ve been less than 10%, but due to fluctuation 

and added noises during device readings, the MAPE showed an increase). It was observed that the percentage 

of predicted BIS values that are maintained within the 40-60 range, is more than 81%, the rest of the predictions 

are either outliers or related to the induction and emergence stages. 
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Fig. 4 Actual vs predicted BIS, Propofol & Remifentanil. 

Unfortunately, the goal was to also do an extended comparison and analysis with another model that performs 

the same task with relatively the same type of machine learning, but the literature lacked any ensemble-based 

machine learning model that predicts BIS and attempts to control Propofol and Remifentanil, which indicates 

the novelty of our model. Moreover, testing proportional hazards assumption results showed that the model fitted 

reasonably well to the data and met the proportional hazards assumption [18]. 

 Advantages and Limitations 

The model excels in three aspects: (1) the usage of real-time data during actual operations. There’s nothing more 

valuable for training a model than the quality of the dataset. Not only does the data resemble real anesthetic 

administration on real patients, but also the abundance of recorded readings holds significance to the model’s 

accuracy. (2) the model training time is less than 5 minutes, with an impressive performance. (3) the model 

predicts the administration of not only a single anesthetic agent but two, to give a synergetic effect by combining 

both Propofol and Remifentanil which has the prospect of yielding more control on the BIS level with relatively 

fewer dosages. 

 The limitation can be summarized as the lack of wider population coverage, in the preprocessing step, we’ve 

removed many records that don’t comply with our selection criteria, like age, weight, type of anesthesia, and 

more. Restrictions were put on the dataset to get a cleaner and population-specific dataset. Thus, the model is 

promising with a portion of the dataset, but it lacks consideration to rare cases, which indicates that the model 

architecture lacks improvements to include predictions for all cases. The improvements to the model might be 

as simple as changing the hyperparameters and implementing try-and-error to derive the optimum. 

CONCLUSION & FUTURE WORK 

 Using a synergy of Propofol and Remifentanil, a new ensemble machine learning model that relies on LSTM 

and fully-connected neural networks to control a patient’s anesthetic state during surgery in all stages including 
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induction, maintenance, and emergence has been proposed. Although ML-guided anesthesia has a great impact 

on the quality and the cost-effectiveness of the patient’s access to healthcare, ML applications for clinical 

anesthesia might raise ethical challenges and safety concerns [19].  For example, a patient’s life may depend on 

an anesthesiologist’s ability to regain control from the machine learning model if the latter fails to deliver the 

right amount of anesthesia, hence maintaining some clinical and cognitive skills will be necessary.  

Possible future extensions may include considering an additional relaxant drug like Succinylcholine (usually 

used to render patients paralyzed during surgeries, particularly for those who suffer from involuntary muscle 

movements). Another enhancement could be to create a human dynamics simulator, in the sense: that the 

simulator is the environment where we can generate and observe physiological signs during drug infusion as if 

we are administering the agent on a real patient, this can allow us to test on a new and reliable data. A special 

problem in modern medicine is the diagnosis and monitoring of the condition of children who have had critical 

surgery [17]. The causes of the onset and development of diseases are individual. Currently, we are testing the 

proposed model on child anesthesia. 
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