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ABSTRACT

Harmonic function is one of an important branches of complex analysis. The first study of complex — valued,
harmonic mappings defined on a domain D c C was given by Clunie and Sheil-Small [1]. Harmonic
functions have been studied by different researchers such as Silverman [6]. In the present paper, a new class
of harmonic univalent functions will be introduced. Various properties of functions belong to this class
which include coefficient bounds, growth bounds, a closure property, extreme points, neighborhood and a
convex combination will be obtained.
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INTRODUCTION

Let U = {z € C: |z| < 1} be the open unit disc and let S;; denote the class of all complex valued, harmonic,
sense-preserving, univalent functions f in U normalized by f(0) = f'(0) — 1 = 0 and expressed as f(z) =

h(z) + g(z) where h and g belong to the linear space H(U) of all analytic functions on U take the form
h(z) =z+Yp-, ayz"™, and g(z) = Yp=q bpz™. (1.2)

Thus for each f € Sy takes the form

f(2)=z+)7, az™ + m, z € U. (1.2)

Clunie and Sheil-Small [1] proved that S is not compact and the necessary and sufficient condition for f to
be locally univalent and sense-preserving in any simply connected domain U is that |h'(2)| > |g'(2)].

Darus and Ibrahim [2] introduced the generalized derivatives operator, denoted by Dgﬁ,&f (z) for f € A as
follows:

Dipsf (2) =z + Xy [B(n — DA = 8) + 1]*a, 2", (1.3)
where 6 >0, >0, A>0,, § # A, keN,={0,1,2,...}.

In this paper the operator D(’;’B,Af(z) will be introduced for f = h + g where h and g given by (1.1) and it
will be given by

D§ pf (2) = D p sh(2) + (—1)*D§ p(g(2), z €T, (1.4)
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where,

Dipsh(2) =z + X5, [Bn — DA —6) + 1]* a,z™,

D pc9(2) = Ti=y [Bln — DA = 8) + 1]* byz™, (1.5)
for6§>0, >0, A>0, § #Aandk € N, ={0,1,2,...}.

We further denote by S;; the subclass of Sy; consist of harmonic functions of the form

fkx = h+ g (1.6)

where

h(Z) = 2= Einy lanl2"
() = (~1F ) Ibylz", z€U, bl <1
n=1

A class of harmonic univalent functions is introduced as the following:

Definition 1.1. The function f = h + g defined by (1.2) is in the class SX (5, B, A, ) if

ng‘};&f(z)}
ER{DZE,B,J(Z) = (1.7)

where0<a<1,6§=>0, >0, A>0, § #A,keN;,={0,12,...}.

-0 : : . . .
Note that, the class S;(0,0,0, @) = Sy(«) is the class of sense-preserving harmonic univalent functions f

—k
which are starlike of order a in U, was studied by Jahangiri [3] and the class S;(0,1,1, ) is the class of
Salagean-type harmonic univalent functions introduced by Jahangiri et al. [4].

We further denote by Ek(& B,A, @), the subclass of SK(8,B,A, a),where Qk(& B,A @) = SE(S,B,Aa)N
Sy.

MAIN RESULTS

In the next theorem, a sufficient coefficient bound related to the class SX (8, B, A, a) shall be obtained
Theorem 2.1. Let f = h + g be given by (1.2). Furthermore, let

S, Q40 — allay| + Xy XA+ alby < 1—a (2.2)
Where

QF=[fn-DA-8)+1], a=[f(n—1DA-6) +1],

a,=1,0<a<1,8=0, >0, A>0, § #Ak €N,, thenf € SK(5,B,A ).

Proof. According to (1.7), we have
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k+1
R {D‘Zﬁ"f (Z)} >
Dsyﬁ,,{f (2)

This is equivalent to R (AEZ;) > a,

where A(z) = D§%f (2) and B(2) = D +f (2).
Using the fact that, R(w) > a if |1 —a + w| = |1 + a — w|, it suffices to show that
|A(2) + (1 — a)B(2)| = |A(2) — (1 + @)B(2)|.
Substituting values of A(z) and B(z), and with simple calculations, we get
ID55f (2) + (1 — D pof (2)| = IDEff (2) — (1 + @)D g 4f (D).
|z + X2, O la,z" + (—1)F+1YE Qk+lp, 77
+(1— )|z + T2, QFayz™ + (DK T2, OFb, 27|
> |z + X2, O la,z" + (m1)F R, Qk+1p, zn
—(1+a)[z+32, Oka,z" + (—1)k X2, Okb,z7.
|2 —a)z+ X2, QF[Q + (1 — a)]a,z"
(=D 7o, OF[Q — (1 = )by 27|
—|—az+ X2, QF[Q — (1 + a)]a,z"
+(-D*Zr; Q4 [-Q = (1 + a)]b,z"|
> 2(1 - a)|z| — L3-, Q420 - 2a]|an]|z|"
oy Q¥[2Q + 2a] | by | |2
> 2(1— @)lzl{l — By O[22 [an 2™

Q
2y 0 [ Bz
>0
by assumption. Hence the proof is complete.

Theorem 2.2. Let f,, = h + g; be given by (1.6). Then

fi €S, (8,8, a) if and only if

Y=z Q[Q - allay| + Xoy Q4[Q+a]lby] <1 -a, (2.2)
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where
QA =[pn—1DA-8) +1],Q=[p(n—1)(A—-5) + 1]
a,=1,0<a<1,6=20, >0, A>0, § #Ak €N,.

Proof. Since §Z(6, B,A a) c SK(5,B,A a), we only need to prove the "only if" part of the theorem. Note
that a necessary and sufficient condition for f,, = h + g, given by (1.6) to be in Ek(d, B, A, @) is that

P+l
97 SﬁAf(Z)}
{D5 ﬁAf(Z)

which is equivalent to

Dk+1f _ Dk f
ER{ 5,84 k(]f) abs L k(Z)} > 0
Dg g S 1(2)

R {(1—a)z—2,°f=2 Qk[Q-alayz"-(-1)k 32, QkE+a] bnz_"} >0
z-yx, Qkanz”+(—1)k27°f=1 Qkp,zn -

The above condition must holds for all values of z, |z| = r < 1. Choosing z on the positive real axis where
0<z=r<1. Wehave

(-3, O*[Q-ajanr™ ' - (- ¥ 27°{’=1ﬂ"[n+a]bn”__1} >
{ 1-32, Qkaprn=1+ (DK T, Qkpyrn-1 = 0. (2.3)

If the condition (2.2) does not hold, then the numerator in (2.3) is negative for r sufficiently close to 1. Thus
there exists z, =1, in (0,1) for which the quotient in (2.3) is negative. This contradicts the required

condition for f;, € Ek (6,B, A, @) and so the proof is complete.
In this section, growth bounds for f; € Ek (6, B, A, @) are obtained.

—k
Theorem 2.3. Let fi, € Sy (6,B,A, ), thenfor |z] = r < 1, we have

1-a Q"(Q + a)
|b1|> )

1
|fk(z>|<(1+|bl|)r+ﬂk<Q o

1-a Q"(Q+a)b
Q—a a—a )7 g

1
|fe(2)| = (1 = |br - @(

where Qf = [B(A—6) + 115, Q= [B(A = 6) + 1].
a,=1,0<a<1,8>0, >0, A>0, § #Lk €N,

Proof. The first inequality will be proved. The argument for the second inequality is similar and will be
omitted. Let f; € Ek (6, B, A, ). Taking absolute value of f, we obtain

fie(@| < A+ [biDr + X5, (lag| + b Dr™
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< (1+ |biDr + X5z (lan] + [bp])r?

Q(Q )

< (L DT + g Trimz (o2 (1l + b)) 72

< (1 + by )y + o (1 = 2D ) 2

nk(n

ok
< (A + by )r + 5 (522 = T2y | ) 72

—k
Next, we prove closure property related to the class S (8,5, A, ).

Theorem 2.4. Let the functions f;, () defined by
fiu@ = 2= Y lanilz™ + (~1F Y [by 77,
n=2 n=1

. —k
be inthe class Sy (8,B,A, @), foreveryi =1,2,...,m

Then the convex combination of f,. denoted by %, t;fi,(2) are also in the class Sy (5 B, A, a), where
1 =1,

o<t <1

Proof. According to the definition of convex combination of f;., we can write
SRy tifi(2) = 2= ey (B2 tilan])z
+(=DFErs, Gy tilbniDz™

Further, since fi.(z) are in Ek (6,B,A ), forevery (i = 1,2,...,m), then by (2.2), we have

n=2 i=1 n=1 i=1
> QKO > OF[Q + a
e P et T
i=1 n=2 n=1
<1

—k
Therefore Y12, tify, € Sy (6,8, A a).
—k
Next, we present the extreme points related to the class Sy (6, B, A, @).

Theorem 2.5. A function f € §Z (6,B,A ) if and only if f can be expressed as

f(2) = Xn=1 Xnhn(2) + Yagn(2)), (2.4)
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where
hy(2) = h,(2) = 1@ o > 2
1(2)_2' n(Z)_Z Qk(ﬂ—a)z ) nz=g,
k_1—-¢a on N
gn(Z) =Z+(—1) mZ , n= 1, Z (Xn+Yn) = 1, Xn = O,Yn = 0,

n=1

Qf=[pn—-1DA-8)+1]% a=[pn—-1)A-6)+1], 0<a<1, §=0,>0, >0, § #AkE
No.

In particular, the extreme points of EZ (8,8, A a) are {h,,} and {g,}.

Proof. Note that for f of the form (2.4), we may write

f(2) = Xn=1 Xnhy + Ygn)

o0 o) oo 1-a n
= Zn=1 (o +Yo)z = B, +(-D" ity grgoe 2™
Then

0 Qk(ﬂ—a) 1-a o Qk(ﬂ—a) 1-a
n=2 ( 1-a )Qk(ﬂ.—a) Xn + Zn:l ( 1-a )Qk(ﬂ—a) n

= Z??:Z Xn + Z1°1°=1 Yn
= ?10=1 Xn - Xl + Z??:l Yn
= 1 - Xl

<1

So, f € EZ (8,8, A, a). Conversely, suppose that f € §Z(6, B, A ).

Set
Qk Q- a)
Xn=T|an|,OSa<1,OSXnS1, TLZZ,
Qk(Q — a)
Yn=ﬁ|bn|,OSa<1,0sYnsl, 7’1.21,
we define

X1 =1=2720 Xn— 2n=1 Ve
Therefore, f can be written as

f(@) =z-2X7; lay|z™ + (_1)k ne1 |bplz™
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o ((A-o)Xn, n __1\k Voo (1-a)¥n
n=2 Qk(ﬂ—a)z +( 1) n=1 Qk(ﬂ_a)z

=7z —

=z + Yn=z (ha(2) — 2 Xy + 2521 (9n(2) — 2)Yn

=D ha@Xt Y ga @V +2(1= ) Xy= D V)
n=2 n=1 n=2 n=1

= Z?;;l (hn(Z)Xn + gn(z)yn)
as required.

Following Avci and Zlotkiewicz [5], we refer to the y —neighborhood of a function f € S/ (a) will be
defined by

Ny (f) ={F(2) =z + X3-5 Anz" + Lp=q Buz™
Yn=2 n(lan — An| + |by — Byl) + |by — B1| < v}

In our case, let us define the generalized y —neighborhood of f to be the set
M) = (F@): ) (Bi—DA—8) + D
n=2

[(-Q - a)(lan - Anl + (-Q + a))lbn - Bnl]
+(1+a)|b; —B1| < (1 —a)y} (2.5)
Now, we see the following theorem:

Theorem 2.6. Let f € SK(6, B, A, a) be given by (1.2). If f satisfies the conditions

[ee]

D nBm=DA=8) + D@ - lan] + @+ @b

n=2
S(A-a)— 1+ a)lb, (2.6)
where

Ok =[Bn—1DA-8)+1]50=[B(n—1DA—-6)+1],0<a<1,6§>0, B>0,1>0, §#AkE€
No,

y <s(1-Z20by)), (27)
then NP (f) c SE(8,B, A, ).

Proof. Let f satisfies (2.6) and F(z) be given by
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F(z) =z + Bz + Z (A2 + Bz,

n=2

which belong to N,” (f). In other words, it suffices to show that F satisfies the condition

NP(F) = Ty [ Al + 2B, 1(B(n — D= 6) + DF + 22 By < 1.
\We observe that

- Q
M) = Z Al + e Byl

1+a
Br-DO=8) +D*+T—IB|

- Q+a
=Z[—|A an+an|+m|3n—bn+bn|
n=2

(Bn— 1A= 8) + D)* + 5By — by + by |

Q—a

Voo Q+a
= 2n=2 [T

|An an|+ | n_bnl](ﬁ(n_l)(}\_(s)'l'l)k

1+«

+ 30 [ lanl + 2215, 1] (B(n = D= 8) + 1 + 2By — by | + 22y

Q+a

= T2 [ |An — anl + T 1By — by (B(n — DA = 8) + D*

© Q
+ 2By — by | + 25y [ an] + T |y
K 1+a
B —DA=8)+ 1D+ 1bil
=¥+ T by + 3 55 M |an] + | By ]

Bn—1DA-8+ 1Dk

<Y+l 45 (1= by,

Now this last expression is never greater than one provided that

y<1-0lbyl =5 (A= b)) = 5 (1= b,

Remark 2.1. Other works related to harmonic univalent functions can be found in [[7]-[10]].

CONCLUSION

In this paper, we obtained some results concerning the coefficient bounds, growth bounds, a closure
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property, extreme points, neighborhood and a convex combination of harmonic univalent Function in the
open unit disc, which are related to the differential operator. We suggest to introduce a new subclass of p-
valent starlike functions with negative coefficients in the open unit disc which is defined by a generalised
derivative operator.
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