

Towards Age-Inclusive Urban Futures: A Review of Retirement Cities for Senior Citizens

Adnan Aminuddin*, Nazni Noordin, Muhammad Syahmizan Azmi, Jazimin Zakaria, Zaherawati Zakaria

Faculty of Administrative Science & Policy Studies, University Technology MARA, Cawangan Kedah, Kampus Sungai Petani, Malaysia

*Correspondence Author

DOI: https://dx.doi.org/10.47772/IJRISS.2025.909000796

Received: 29 September 2025; Accepted: 06 October 2025; Published: 30 October 2025

ABSTRACT

The rapid growth of the global aging population poses new challenges for urban environments, as cities must adapt to meet the diverse needs of older adults. Despite the increasing interest in age-friendly urban planning, there remains a lack of comprehensive understanding of how retirement cities can be conceptualized as inclusive, sustainable, and livable environments for senior citizens. Addressing this gap, the present study aims to analyze the research landscape on retirement cities through Scopus AI Analytics, with a particular focus on age-inclusive urban futures. Using Scopus AI (as of September 11, 2025), the study employed a structured search query to extract and examine scholarly insights through five analytical layers: Summary, Expanded Summary, Concept Map, Topic Experts, and Emerging Themes. Findings indicate that retirement cities are characterized by interrelated domains, including age-friendly urban design, transportation accessibility, community facilities, and sustainable planning. Consistent themes highlight the enduring importance of inclusive urban design, while novel themes such as smart cities and digital inclusion suggest a paradigm shift toward technology-enabled aging futures. Insights from leading experts, including Joost van Hoof, Jeroen Dikken, and Maxwell Douglas Hartt, reinforce the critical role of participatory approaches in urban planning for seniors. The study contributes theoretically by reframing retirement cities as dynamic socio-technical systems and offers practical guidance for policymakers and planners to design age-inclusive environments. Limitations include reliance on secondary sources and the need for comparative and longitudinal research. Future work should further investigate the intersection of digital innovation, universal design, and sustainable urban planning for aging populations.

Keywords: Retirement Cities, Age-Friendly Urban Design, Elderly Mobility and Accessibility, Community Facilities for Seniors, Sustainable Urban Futures

INTRODUCTION

Growing life expectancy associates with the speed of world globalization have grasp the attention on the intersection of aging and city development. This scenario supported by scholars point of views argued that by 2050, the world's population aged 60 years and older is expected to double, raising urgent questions about how cities can adapt to meet the needs of aging populations (Han et al., 2021). The shift of this demographic landscape underlines the need for age-inclusive urban futures, with the integration of built environments, infrastructure, and policies are designed with careful consideration to support active aging, social participation, and equitable access to urban resources. Considering this, the notion of senior citizens retirement cities has become a theoretical and practical foundation for reshaping urban living for the elderly.

Urban planning scholarship has long recognized the importance of inclusive design, emphasizing walkability, safety, and neighbourhood-level accessibility as critical for senior well-being (Yang et al., 2024; Hwang & Ziebarth, 2015). At the global arena, the World Health Organization's Age-Friendly Cities (AFC) initiative provides a global framework for fostering accessibility, participation, and well-being among seniors (Chapon,

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue IX September 2025

2011; Zur & Rudman, 2013), however there are significant regional differences in how these concepts are applied domestically. Some of the evidence for instance, Malaysia is witnessing a concentration of senior populations in urban centres, requiring spatially responsive policies (Ali et al., 2025), while Brazil struggles with limited municipal adoption of age-friendly certification (De Oliveira Lopes et al., 2021). In contrast, China's Future Community Initiative demonstrates how integrated urban renewal strategies can enhance community participation for older residents (Tang et al., 2025).

Despite this expanding academic corpus of work, several crucial gaps still exist. Present studies regularly concentrate on discrete spheres such as housing, transportation, or social participation without systematically integrating findings across disciplines or locations. Moreover, the discourse on retirement cities frequently gravitates toward either luxury developments or niche case studies (Smets, 2012), leaving limited understanding of affordable, inclusive, and scalable models of senior-friendly urban environments. In addition to that, there is also paucity of usage of advanced analytical tools to map knowledge hierarchies, identify topic specialists, and discover emerging research ideas within this area.

Hence, this study highlighting these gaps by conducting a review of retirement cities for senior citizens using **Scopus AI analytics**. Specifically, it aims to analyse the breadth and depth of the research area, generate a **concept map** of key themes, identify leading **topic experts**, and highlight **emerging trends** that shape the discourse on age-inclusive urban futures. Moreover, this review provides a comprehensive lens through which retirement cities can be understood not merely as housing solutions but as integral components of sustainable, age-friendly urban development.

This study provides three major contributions which are (i) provides a comprehensive summary of worldwide evidence on retirement cities and age-inclusive urban planning, (ii) leverages AI-driven analytics in producing novel perspectives the field's intellectual and thematic structure and (iii) provides practical and applicable suggestions for researchers, legislators and urban planners in developing inclusive settings for elderly.

METHODS

This review employed **Scopus AI Analytics** as the principal research tool to systematically analyse and synthesize the scholarly landscape on retirement cities and age-inclusive urban futures for senior citizens. The data retrieval and analysis were conducted on **11 September 2025**, ensuring that the review incorporated the most recent and relevant contributions within this evolving field. Scopus AI was chosen due to its advanced bibliometric functions, ability to generate both quantitative and qualitative insights, and capacity to reveal conceptual frameworks, expert networks, and thematic trajectories in a transparent and reproducible manner (Baas et al., 2020; Elsevier, 2023).

A targeted **search strategy** was developed to ensure comprehensiveness while maintaining conceptual focus. The Boolean search string applied was:

("age-inclusive" OR "age-friendly" OR "inclusive design" OR "universal design") AND ("urban" OR "city" OR "metropolitan" OR "local") AND ("futures" OR "development" OR "planning" OR "visions") AND ("retirement" OR "aging" OR "elderly" OR "senior") AND ("cities" OR "communities" OR "environments" OR "spaces") AND ("sustainability" OR "resilience" OR "accessibility" OR "liveability").

To reflect the study's goal of examining how retirement cities are conceptualized within the larger agenda of age-inclusive urban futures, this string was created to capture interdisciplinary intersections between age-friendly and inclusive design principles, urban and regional planning, retirement communities, sustainability, resilience, and liveability.

Once the search was executed, Scopus AI produced a **Summary**, which outlined the dominant themes and most cited concepts, such as age-friendly cities, inclusive planning, and senior housing environments. This summary provided a high-level orientation to the intellectual contours of the field. The **Expanded Summary** offered a deeper thematic synthesis, highlighting how studies increasingly converge around three focal areas: (i) the integration of age-friendly frameworks into urban planning, (ii) sustainable and resilient community design for

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue IX September 2025

senior citizens, and (iii) the role of accessibility and liveability in enhancing quality of life for older adults. These insights supported the identification of both well-established discourses and fragmented debates within the literature (Zhou et al., 2022).

To visualize conceptual relationships, Scopus AI generated a Concept Map, which displayed clusters of interconnected keywords and research streams. Four primary clusters emerged: (1) policy and governance of age-friendly cities, (2) mobility, walkability, and transport accessibility, (3) housing, neighbourhood design, and retirement community planning, and (4) social participation, intergenerational integration, and digital inclusion. The mapping exercise found substantial connections between sustainability and accessibility studies, as well as unexplored connections like the integration of AI technologies into age-friendly urban planning.

The **Topic Experts** function identified leading scholars whose contributions have shaped the field through highly cited publications and central roles in collaborative networks. These experts were instrumental in advancing both theoretical models (such as the World Health Organization's Age-Friendly Cities framework) and applied interventions in regional contexts ranging from Southeast Asia to Europe. Acknowledging these experts not only offers intellectual foundation for the review but also point the way for forthcoming multidisciplinary collaborations.

Finally, Scopus AI highlighted several **Emerging Themes**. Key among them were (i) the use of **digital and smart-city solutions** to improve senior accessibility, (ii) the prioritization of **affordable housing in retirement city models**, (iii) increasing emphasis on **climate resilience and sustainability in age-inclusive planning**, and (iv) the alignment of retirement city development with the **United Nations Sustainable Development Goals** (**SDGs**). These themes reflect a paradigm shift from viewing retirement cities merely as specialized housing clusters toward understanding them as integrated, inclusive, and sustainable urban futures.

In summary, this methodological approach enabled a rigorous, AI-enhanced methodical review of the literature. By leveraging Scopus AI's domains, this study systematically analysed the research landscape on retirement cities and age-inclusive urban futures. This approach directly addresses the study's aim: to map the conceptual frameworks, identify leading experts, and highlight thematic trajectories shaping the discourse on building sustainable and inclusive urban environments for senior citizens.

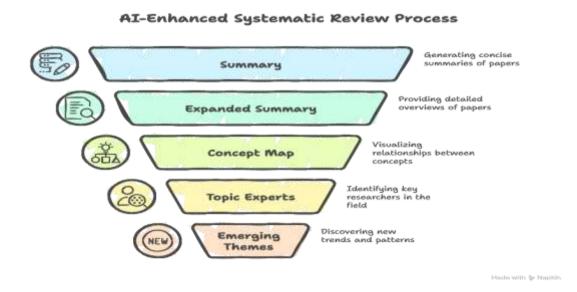


Figure 1: Scopus AI-Enhanced Systematic Review Process

RESULT AND DISCUSSION

This study utilised Scopus AI as in-trend mechanism in analysing the possible domains and relevant themes

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue IX September 2025

provided hierarchical overview of the study area on 11 September 2025. As indicates in Figure 1, the findings outlined four crucial features which are the Summary and Expanded Summary, Concept Map, Topic Experts and Emerging Themes.

A. Summary and Expanded Summary

This section produced on 11 September 2025 offers a combined opinions in describing the peculiar of retirement cities for senior citizens. The output from the analysis enlightens four interconnected dimensions which influence towards the age-inclusive urban features for the retirees. The core peculiar highlight is **recreational**, **healthcare**, **social and economic elements**.

(i) Recreational Peculiar

This element influences remarkably towards the senior citizens' way of life and psychosomatic condition. Empirical studies supported on this interconnection by emphasised that the level of health among seniors increased progressively due to the readiness of recreational amenities (Aguome et al., 2024). In addition to that, the recreational facilities act as impetus for senior citizens in choosing where they will live in and to do their social life (Onose et al., 2020).

(ii) Social Peculiar

This element is crucial in promoting active social lifestyle through lively community engagement or group-based group activities. As people retired, they may be facing with isolation and drastic decreased in social activities due to the age factor. This situation supported by study in Tehran revealed that post-retirement will results in decrease in social way of life which emphasised the need for supportive social network within urban atmosphere (Torani et al., 2015). Move over, this element do have association with social interaction influenced by neighbourhood walkability and accessibility (Negron-Poblete & Lord, 2014).

(iii) Healthcare Peculiar

This element portrays that medical facilities coupled with common good amenities significantly contribute towards a sound retirement city for old folks. Empirically, senior citizens in Korea listed this peculiar as most crucial need as compared to the geographical area (Kim & Park, 2022). In line with this, the seniors will feel secured and promote their independent life as the location of the healthcare amenities are in short distance. Other than that, the seniors expected the amenities provided are inclusive of preventive care, rehabilitation, and long-term wellness programs (Yang et al., 2024). This highlights the need for retirement cities to integrate healthcare delivery into the broader urban ecosystem, ensuring inclusivity, affordability, and accessibility.

(iv) Economic Peculiar

This element interrelated with seniors' financial availability and their free time after retirement. The design of the cities for retirees should take into account aspects of economic strength and organization of buildings that represent elderly-friendly attributes. In fact, urban dweller seniors are more ostensively go for travel due to their economic strength and due to the location of the retirement cities itself (Omelan et al., 2016). On the other hand, the seniors' way of life does been impacted by other attractions in the cities such as events on local cultures, variety of trading premises as well as service-based economic This aligns with broader urban studies literature, which emphasizes that the availability of cultural events, markets, and service-oriented economic tasks (Han et al., 2021).

B. Concept Map

The concept map generated through Scopus AI on 11 September 2025 provides a structured visualization of the key dimensions shaping the development of retirement cities for senior citizens (Figure 2). At the centre of the framework is the core theme of *Retirement Cities*, which branches into three critical domains: **transportation accessibility, community facilities, and urban design**. Each of these domains represents a foundational element in creating environments that are age-inclusive, sustainable, and conducive to active aging.

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue IX September 2025

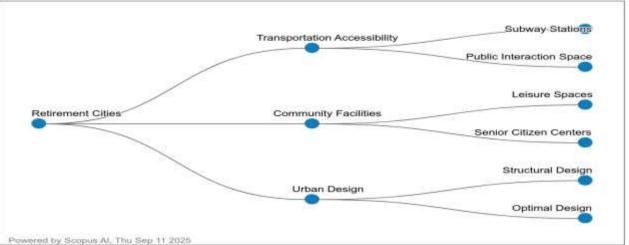


Figure 2: Concept Map of Retirement Cities

As indicates in Figure 2, the core theme generated by Scopus AI is Retirement Cities while there are three domains associated with retirement cities. The three domains are Transportation Accessibility, Community Facilities and Urban Design. The later sections will discuss on the main attributes on retirement cities and the linkages between retirement cities and all three domains.

Core theme: Retirement Cities

Retirement cities' foundation integrates wide range of modernised and developed cities embed that offer surrounding and atmosphere that fit for elderly with relevant dimensional features such as economic and social aspects. There are various retirement cities model existed and the model of college towns adapted as retirement societies and communities transpire in this study area. This scenario supported by Hu et al. (2008) argued that retirees take into account to college town by assessing the cities' environments that much influencing towards designing the urban area as retirement place.

Secondly, the **urban shrinkage model** to be utilised as retirement cities. This model suggests that the population decreasing and the area been unoccupied proposed to be converted into retirement cities through re-aligning the current needs without jeopardising the environmental quality of the next generations Nefs et al. (2013). Hence, the cities should complement both sides, the aging society and the future generation with the sustainable remarks.

Thirdly, the **social significance model** signifies retirement cities as not just a construction of buildings but also reflect the construction of socio-cultural elements. The vital point here is that the development of relevant retirement cities should be the catalyst towards social engagement and sense of belonging (McHugh and Larson-Keagy, 2005)

Fourthly, the model of abroad retirement. This model suggests the retirees migrate to other states due to attractive pull factors. As highlighted by Goh and Lii (2014) the Asia-Pacific region offers diverse cultural segmentation, financial-wise destination and health related facilities for the selection of the senior citizens. Hence, the element of mobility among people especially the senior citizens, accessibility to healthcare facilities and diversity of cultures are vital in shaping future retirement cities.

Lastly, **gated retirement communities'** model which focusing on the elements of security, separateness, and lifestyle facilities. These elements highlight that the future retirement cities integrate the social class and identification which result the argument towards individual's assets and holdings together with the inflexibility of access in the design. often reflect broader social dynamics of class and identity, raising questions about equity and accessibility in their design.

Domain 1: Transportation Accessibility

Transportation accessibility underlines as the basis for retirement cities that enable senior citizens independence,

engaging in social activities and access to the need services. Argued by Fatima, Moridpour, and Saghapour (2020) enlighten that elderly favourites are associate with closeness and ease of access to healthcare, trading and business mall as well as the recreational places. In addition to that, the transport system should be offered with as catalyst for social engagement and improve elderly's well-being.

On top of that, scholars also contribute to the body of knowledge on this area by listing potential attributes towards transportation accessibility. Among the attributes are **travel time and mobility efficiency and Geographical Information Systems (GIS).** Fatima, Moridpour, Saghapour, and de Gruyter (2019) identified that the journey time, distance to public transportation facilities influenced the elderly commuting with the public transport. Hence, the future cities for retirement purpose need to ensure walking distance, frequencies of transport availability and safe foot-traveller facilities. Furthermore, Kocatepe et al. (2016) highlight that GIS are beneficial for the elderly groups in locating the places in short time and able to access the required facilities such as the hospital or healthcare centre without hassle.

In summary, the linkage between retirement cities and transportation accessibility acknowledges the time, distance, safety and GIS technology in enhancing healthier, sustainable, and socially connected retirement communities. These findings underscore that transportation is not merely an infrastructural component of retirement cities but a defining characteristic of their success in fostering age-inclusive urban futures.

Domain 2: Community Facilities

The elderly's way of life is very much correlate with the community facilities in order to engage with social activities and enhance their well-being. The core and essential elements of the community facilities need to be embed with the psychosomatic needs of the elderly. This can be seen through the availability of leisure spaces as suggested by Xia, Skitmore, Zuo, and Buys (2015). These facilities may give positive impact to the elderly in relation to their social engagement, promoting teamwork and togetherness in order to boost the quality of life among the elderly. In addition, Kim and Park (2022) also revealed a strong correlation between community facilities and lifestyle among elderly as compared to health-related amenities. The researchers also argue that community facilities preferences differ among elderly in different locations.

Moreover, other scholar mentioned on the benefits from the community facilities in promoting **social interaction** and **community identity**. Xia et al. (2015) enlighten that such places play a vital role as impetus for enhancing unity and sense of belonging. Hence, these facilities are important in avoiding loneliness that may have risk towards the elderly's health condition.

In summary, the linkage between retirement cities and community facilities are much related with the **healthcare** access, recreational opportunities, and social integration. The elderly's preferences for retirement cities suggest that elements of community hub, health-related service providers and relaxation places as the attributes towards age-inclusive urban futures.

Domain 3: Urban Design

The retirement cities able to be sustain and attract potential elderly groups with unique and modernised design. These elements may have impact on elderly's movement, engagement and survival in the urban setting atmosphere. One of the key catalysts for urban transformation is through the migration after retirement. Nefs, Alves, Zasada, and Haase (2013) highlight that shrinking cities can become retirement locations by transforming unoccupied areas into age-inclusive premises.

The elderly groups' health condition and social participation correlate with urban design. Dorato (2019) stressed that elderly's quality of life enhanced by supporting freer movement, improving social collaboration and encourage freedom. In addition, some evidence from scholars signifies the elderly's preferences towards retirement cities also relate with the design of the cities. Han (2025) highlight that layout has the most significant impact on elderly adaptability compared to design of the road, arrangement of lighting, and the seating availability.

However, the preferences of the design differ from one person to another. Brüchert, Baumgart, and Bolte (2022) proved that the elderly urban design preferences determined by level of income, aspect of education, and neighbourhood features. This notion suggest that retirement cities should fit their urban settings in fulfilling demand from different backgrounds and lifestyles.

Topic Experts

The expertise of leading scholars in the field of age-friendly urban environments offers critical perspectives on the development of retirement cities. Joost J. van Hoof, a highly cited researcher, emphasizes the lived experiences of older residents as central to defining age-friendliness. His contributions highlight the importance of developing validated assessment tools, such as age-friendliness questionnaires, which allow urban planners and policymakers to evaluate and improve city environments systematically (van Hoof, 2021). Furthermore, his research on typologies of older adults underscores that retirement cities must recognize the diversity within senior populations, especially regarding attitudes toward sustainability and environmental practices (van Hoof et al., 2019). These findings suggest that retirement cities should adopt evidence-based frameworks that integrate both inclusivity and ecological responsibility.

Building on this foundation, Jeroen J. Dikken has advanced the understanding of age-friendly cities by focusing the voices of older adults in planning processes. Dikken's research emphasizes participatory approaches, stressing that older residents must not only be recipients of services but also active contributors in shaping their environments (Dikken et al., 2020). By developing and applying assessment tools to capture older adults' perceptions of urban environments, Dikken provides policymakers with actionable insights into which community features support or hinder active aging. This reinforces the idea that retirement cities cannot be designed solely on theoretical models but must be co-created with the very populations they intend to serve.

Maxwell Douglas Hartt contributes a complementary perspective by focusing on the built environment and its relationship to inclusivity in public and recreational spaces. His work identifies age-unfriendly design features, such as poorly maintained sidewalks, inadequate seating, and inaccessible recreational facilities, as significant barriers to senior well-being (Hartt, 2021). Conversely, Hartt demonstrates that age-sensitive design interventions in public spaces—such as accessible play areas, safe pathways, and mixed-use zones—can enhance both physical activity and social interaction among seniors. These insights underscore the importance of prioritizing recreational and social spaces in the design of retirement cities, aligning physical infrastructure with broader health and social goals.

Together, the contributions of van Hoof, Dikken, and Hartt reveal the multidimensional nature of retirement cities. Van Hoof's emphasis on validated frameworks and typologies ensures that retirement cities are both evidence-driven and tailored to diverse senior populations. Dikken's participatory lens ensures that planning processes reflect the authentic needs and aspirations of older residents. Hartt's focus on addressing deficiencies in public space design highlights the tangible infrastructural changes required to foster inclusivity. Taken collectively, these perspectives position retirement cities not as static spaces but as dynamic environments where continuous feedback and adaptation are essential.

The integration of these expert insights suggests that the successful development of retirement cities requires an interdisciplinary approach that combines rigorous assessment, participatory governance, and responsive urban design. Importantly, their findings converge on the principle that retirement cities must go beyond providing basic infrastructure; they must actively promote health, autonomy, social participation, and environmental sustainability. By grounding urban planning in expert research and lived experiences, retirement cities can become models of age-inclusive, resilient, and sustainable urban futures.

Emerging Themes

The analysis of emerging themes in the scholarship on retirement cities reveals a consistent emphasis on age-friendly urban design and planning as the foundational approach to creating inclusive environments for older adults. Research on age-friendly design foregrounds the integration of spatial justice, accessibility, and public space enhancement to foster equitable and liveable urban environments for aging populations (Yang et al., 2024).

Studies indicate that incorporating sustainable retrofit strategies—such as barrier-free walkways, safe lighting, and accessible recreational areas—can significantly improve well-being and encourage active participation among seniors (Revellini, 2022; Onose et al., 2020). This consistent theme underscores the value of urban planning that goes beyond physical infrastructure to incorporate social participation and health promotion, thereby positioning age-friendly cities as a global priority for sustainable development (Han et al., 2021).

Alongside these consistent findings, the field has witnessed the rise of themes that further refine the concept of age-inclusivity. One such rising theme is the intersection of retirement migration and urban shrinkage, where declining cities are being reconceptualized as opportunities for reimagined, senior-friendly living environments. Shrinking cities can leverage vacant land and adapt green spaces to attract retirees while simultaneously addressing urban renewal challenges (Nefs et al., 2013). Furthermore, studies on diverse regional approaches, such as China's Future Community Initiative and Brazil's efforts toward meeting WHO's age-friendly certification standards, highlight the growing momentum in adapting urban models to reflect local demographics and cultural needs (Tang et al., 2025; de Oliveira Lopes et al., 2021). This emerging interest indicates that retirement cities are increasingly being viewed not only as demographic necessities but also as drivers of broader urban regeneration and social cohesion.

A novel theme gaining traction in the literature is the integration of smart cities and digital inclusion for older adults. Digital technologies, particularly ICT-enabled transportation systems and smart mobility solutions, are being recognized as transformative tools for supporting senior independence and connectivity (Bokolo, 2023; Vargas-Acosta et al., 2019). Research suggests that smart city initiatives can bridge the digital divide by equipping older adults with accessible platforms and services, thereby promoting inclusion in civic and social life (Lord et al., 2024). By embedding older adults into the digital ecosystems of smart cities, urban planning is shifting toward models where technology is not a barrier but a facilitator of age-friendliness. This theme is novel because it represents a paradigm shift in how retirement cities are conceptualized, moving from purely physical adaptations to hybrid physical-digital infrastructures.

Another novel theme is the focus on universal design for inclusive urban mobility. Unlike earlier discussions that targeted only senior citizens, this theme emphasizes the broader applicability of universal design principles to support older adults, individuals with disabilities, and other marginalized groups. Research demonstrates that mobility-friendly infrastructure—such as step-free access, tactile paving, and inclusive public transit design—fosters social inclusion and reduces disparities in urban accessibility (Fatima et al., 2020; Ravensbergen et al., 2022). Importantly, universal design reframes retirement cities as spaces not of segregation but of integration, where all residents can navigate urban environments safely and equitably. This theme reflects a shift from age-specific planning toward inclusivity across life stages and abilities, ensuring that urban environments remain resilient and adaptive to diverse population needs.

Taken together, the consistent, rising, and novel themes reveal a research trajectory that is both grounded in foundational age-friendly principles and adaptive to emerging challenges and opportunities. While consistent themes affirm the importance of physical design and spatial equity, rising themes highlight the role of demographic transitions and global policy diffusion in shaping retirement cities. Novel themes, in contrast, demonstrate how technological innovations and universal design principles are expanding the scope of what constitutes an age-inclusive city. Future research should test hypotheses on how these themes interact, such as whether smart city technologies enhance the social participation outcomes already observed in age-friendly design, or how universal design can be systematically embedded into shrinking urban contexts.

Future Research

Even with these valuable facts and figures, the design for modernised and urban cities do facing with some challenges such as inconsistent policy, financial barrier and different views of urgency (Nefs et al., 2013). Hence, future research should focus on multidisciplinary methods to eliminate the hindrances. In addition, comparative longitudinal studies may be applied across developed and developing nations in assessing policy effectiveness and resilience.

CONCLUSION

This review has explored the evolving concept of retirement cities through a synthesis of consistent, rising, and novel themes in the scholarly literature, supported by insights from Scopus AI analytics and topic experts. The findings highlight that retirement cities are shaped by multiple interrelated characteristics, including age-friendly urban design, accessible transportation systems, community facilities, and inclusive urban planning. Consistent themes reveal that the foundational principles of age-friendly cities—such as spatial equity, sustainable retrofit strategies, and public space inclusivity—remain central to ensuring senior citizens' well-being. Rising themes, including retirement migration and the adaptive reuse of shrinking cities, indicate that demographic and spatial transitions present opportunities for reimagining retirement cities as hubs of regeneration. Novel themes, particularly the role of smart city technologies and universal design for urban mobility, suggest a paradigm shift toward hybrid physical-digital infrastructures that support inclusivity across life stages and abilities.

From a theoretical perspective, this study contributes to the conceptualization of retirement cities as dynamic, multidimensional environments rather than static enclaves. By integrating frameworks of age-friendliness, sustainability, and universal design, the research advances urban studies and gerontology literature by positioning retirement cities within broader debates on inclusive urban futures. It highlights that retirement cities must be understood not only in terms of physical space but also as socio-technical systems that mediate autonomy, participation, and quality of life for older adults.

The practical implications of this review are significant for policymakers, urban planners, and community stakeholders. Designing retirement cities requires prioritizing accessible transportation networks, investing in healthcare and recreational facilities, and ensuring that planning processes meaningfully include older adults. Emerging opportunities lie in leveraging smart city technologies to bridge digital divides, enhance mobility, and promote social participation. Furthermore, integrating universal design principles into infrastructure development ensures that retirement cities are not exclusive to seniors but foster inclusivity for diverse populations, thereby aligning with the United Nations' Sustainable Development Goals (SDGs).

Despite these contributions, several limitations must be acknowledged. The review primarily relied on secondary sources and Scopus AI-derived analytics, which may exclude relevant insights from non-indexed or emerging local case studies. Additionally, while the themes identified provide a comprehensive overview, there remains a gap in longitudinal evidence that evaluates how retirement cities evolve over time. The lack of direct policy frameworks explicitly designed for retirement cities also limits the generalizability of findings across different cultural and socio-economic contexts.

Future research should therefore adopt comparative, longitudinal, and interdisciplinary approaches to deepen understanding of retirement cities. Comparative studies across diverse geographic regions can reveal how cultural, policy, and environmental contexts shape retirement city models. Longitudinal research can track the effectiveness of interventions such as smart mobility solutions or community retrofitting over time. Finally, future work should explore the intersection of technology and inclusivity more fully, investigating how digital infrastructures can be co-designed with seniors to ensure accessibility, trust, and equity. Addressing these areas will strengthen both theoretical knowledge and practical applications, paving the way for retirement cities that are resilient, inclusive, and supportive of healthy aging.

ACKNOWLEDGEMENTS

The authors would like to express their sincere gratitude to the Kedah State Research Committee, UiTM Kedah Branch, for the generous funding provided under the Tabung Penyelidikan Am. This support was crucial in facilitating the research and ensuring the successful publication of this article.

REFERENCES

1. Ali, A. S. M., Masron, T., Junaini, S. N., Kimura, Y., Ahmad, A., & Bismelah, L. (2025). Aging in motion: Mapping the dynamic interplay between urban growth and senior citizen density in Sarawak, Malaysia (1980–2020). International Social Science Journal. https://doi.org/10.1111/issj.12594

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue IX September 2025

- Aguome, N. M., Ewurum, N. I., Ifeanacho, K. P., Abaa-Okorie, L. C., & Ugwu, C. G. (2024). Public recreational facilities as catalyst for urban aging-in-place decision in developing countries. Cities, 155, 105448. https://doi.org/10.1016/j.cities.2024.105448
- 3. Bokolo, A. J. (2023). Inclusive and safe mobility needs of senior citizens: Implications for age-friendly cities and communities. Urban Science, 7(4), 103. https://doi.org/10.3390/urbansci7040103
- 4. Brüchert, T., Baumgart, S., & Bolte, G. (2022). Social determinants of older adults' urban design preference: A cross-sectional study. Cities and Health, 6(2), 360–374. https://doi.org/10.1080/23748834.2020.1870845 https://doi.org/10.1177/0261018311430457
- 5. Chapon, P.-M. (2011). The WHO age-friendly cities program raises the issue of strategic planning, coordination and local political structure [Le programme « Ville-amie des aînés » Soul eve la question de la gouvernance, de la coordination et de l'organisation des territoires]. Gériatrie et Psychology Neuropsychiatrie du Vieillissement, 9(2), 151–155. https://doi.org/10.1684/pnv.2011.0268
- 6. De Oliveira Lopes, P., Da Silva, S. R., Da Silva, T. C., Fragoso, Y. D., & Zanesco, A. (2021). Age-friendly city: Future perspectives for the Brazilian cities [Cidade amiga do idoso: Perspectivas futuras para as cidades brasileiras]. Dementia & Neuropsychologia, 15(3), 295–298. https://doi.org/10.1590/1980-57642021dn15-030001
- 7. Fatima, K., Moridpour, S., & Saghapour, T. (2020). Elderly transport preference within local urban areas. ACM International Conference Proceeding Series, 100–106. https://doi.org/10.1145/3450292.3450309
- 8. Fatima, K., Moridpour, S., Saghapour, T., & de Gruyter, C. (2019). Comparison of elderly public transport accessibility indices: Time-based methods. Australasian Transport Research Forum (ATRF) 2019 Proceedings. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85085016088
- 9. Goh, P. I., & Lii, P.-C. (2014). Evaluating international retirement migration options within Asia Pacific: The TOPSIS method. ICIC Express Letters, 8(7), 2063–2068.
- 10. Han, J., Chan, E. H. W., Qian, Q. K., & Yung, E. H. K. (2021). Achieving sustainable urban development with an ageing population: An "age-friendly city and community" approach. Sustainability, 13(15), 8614. https://doi.org/10.3390/su13158614
- 11. Han, S. (2025). Design of urban and rural elderly care public areas integrating person-environment fit theory. Nonlinear Engineering, 14(1), 20250096. https://doi.org/10.1515/nleng-2025-0096
- 12. Hwang, E., & Ziebarth, A. (2015). Walkability features for seniors in two livable communities: A case study. Housing and Society, 42(3), 207–221. https://doi.org/10.1080/08882746.2015.1121681
- 13. Kim, H.-S., & Park, S. (2022). Elderly needs in community facilities within residential areas: Comparing the differences between metropolitan cities, small and medium-size cities, and rural areas. Journal of the Architectural Institute of Korea, 38(5), 15–24. https://doi.org/10.5659/JAIK.2022.38.5.15
- 14. Kim, S.-H., Kim, H.-B., & Gon Kim, W. (2003). Impacts of senior citizens' lifestyle on their choices of elderly housing. Journal of Consumer Marketing, 20(3), 210–226. https://doi.org/10.1108/07363760310472245
- 15. Kocatepe, A., Ozguven, E. E., Ozel, H., Horner, M. W., & Moses, R. (2016). Transportation accessibility assessment of critical emergency facilities: Aging population-focused case studies in Florida. In Lecture Notes in Computer Science (Vol. 9755, pp. 407–416). Springer. https://doi.org/10.1007/978-3-319-39949-2 39
- 16. Lord, S., Negron-Poblete, P., & Després, M. (2024). Aging at home in the diversity of urban and rural forms in Québec, Canada. Retraite et Société, Hors-série(HS1), 55–76. https://doi.org/10.3917/rs1.hs1.0056
- 17. McHugh, K. E., & Larson-Keagy, E. M. (2005). These white walls: The dialectic of retirement communities. Journal of Aging Studies, 19(2), 241–256. https://doi.org/10.1016/j.jaging.2004.07.004
- 18. Nefs, M., Alves, S., Zasada, I., & Haase, D. (2013). Shrinking cities as retirement cities? Opportunities for shrinking cities as green living environments for older individuals. Environment and Planning A, 45(6), 1455–1473. https://doi.org/10.1068/a45302
- 19. Negron-Poblete, P., & Lord, S. (2014). Walkability of urban neighbourhoods near seniors' residences in the Montreal area: Application of the MAPPA audit tool [Marchabilité des environnements urbains autour des résidences pour personnes âgées de la région de Montréal: Application de l'audit

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue IX September 2025

- MAPPA]. Cahiers de Géographie du Québec, 58(164), 233-257. https://doi.org/10.7202/1031168ar
- 20. Omelan, A., Podstawski, R., & Raczkowski, M. (2016). Tourist activity of senior citizens (60+) residing in urban and rural areas. Physical Culture and Sport, Studies and Research, 72(1), 51–65. https://doi.org/10.1515/pcssr-2016-0028
- 21. Onose, D. A., Iojă, I. C., Niţă, M. R., Vânău, G. O., & Popa, A. M. (2020). Too old for recreation? How friendly are urban parks for elderly people? Sustainability, 12(3), 790. https://doi.org/10.3390/su12030790
- 22. Qian, T., Fu, Z., Chen, J., Qin, S., Xi, C., & Wang, J. (2023). Evaluating multiscale and multimodal transport inequalities in Chinese cities with massive open-source path data. Journal of Geographical Systems, 25(2), 237–264. https://doi.org/10.1007/s10109-022-00402-9
- 23. Ravensbergen, L., Van Liefferinge, M., Isabella, J., Merrina, Z., & El-Geneidy, A. (2022). Accessibility by public transport for older adults: A systematic review. Journal of Transport Geography, 103, 103408. https://doi.org/10.1016/j.jtrangeo.2022.103408
- 24. Revellini, R. (2022). SMARTAGING in Venice: Toward a definition of age-friendly neighbourhood. Studies in Health Technology and Informatics, 297, 185–192. https://doi.org/10.3233/SHTI220838
- 25. Smets, A. J. H. (2012). Housing the elderly: Segregated in senior cities or integrated in urban society? Journal of Housing and the Built Environment, 27(2), 225–239. https://doi.org/10.1007/s10901-011-9252-7
- 26. Tang, W., Lu, Y., Yu, S., Xia, B., Skitmore, M., & Liu, Y. (2025). Does the future community initiative enhance community age-friendliness? Evidence from Zhejiang Province, China. Habitat International, 159, 103360. https://doi.org/10.1016/j.habitatint.2025.103360
- 27. Torani, S., Delgoshaei, B., Hosseini, A. F., Ziaeifar, H., & Raadabadi, M. (2015). Relationship between social well-being and health-related quality of life level among senior retirees of Tehran University of Medical Sciences. Asian Social Science, 11(18), 116–122. https://doi.org/10.5539/ass.v11n18p116
- 28. Vargas-Acosta, R. A., Becerra, D. L., Gurbuz, O., Villanueva-Rosales, N., Nunez-Mchiri, G. G., & Cheu, R. L. (2019). Smart mobility for seniors through the urban connector. In 2019 IEEE International Smart Cities Conference (ISC2) (pp. 241–246). IEEE. https://doi.org/10.1109/ISC246665.2019.9071732
- 29. Xia, B., Skitmore, M., Zuo, J., & Buys, L. (2015). Review of community facilities in Australian retirement villages: A content analysis. Australasian Journal on Ageing, 34(3), 144–148. https://doi.org/10.1111/ajag.12153
- 30. Yang, M., Yaman, R., & Ismail, F. Z. (2024). Age-inclusive urban design: A review of sustainable retrofit strategies for elderly well-being. Journal of Infrastructure, Policy and Development, 8(5), 3797. https://doi.org/10.24294/jipd.v8i5.3797
- 31. Zur, B., & Rudman, D. L. (2013). WHO age friendly cities: Enacting societal transformation through enabling occupation. Journal of Occupational Science, 20(4), 370–381. https://doi.org/10.1080/14427591.2013.805456