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ABSTRACT

In the manufacturing industry, improving product quality and reducing defects are crucial objectives. This
study investigates the use of combinatorial testing to analyse defect patterns in a manufacturing setting. We
utilised a dataset containing various defects attributes on available open-source Kaggle datasets. Pairwise test
cases were generated using hybrid metaheuristics to systematically explore interactions between these
attributes. The proposed method significantly reduced the number of test cases while ensuring comprehensive
coverage of pairwise interactions, compared to exhaustive testing. Results indicate that the combinatorial
testing approach effectively identifies defect patterns, reducing the time span for defect identification. The
integration of reward and penalty mechanisms with the Roulette Wheel algorithm in our hybrid metaheuristic
optimisation process further enhanced the efficiency of candidate solutions for combinatorial testing. This
study provides a practical framework for improving defect detection and quality control in manufacturing
settings, highlighting the benefits of advanced combinatorial testing techniques.
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INTRODUCTION

The modern manufacturing industry is continually evolving, with quality control becoming more critical as
products and processes grow increasingly complex [1][2]. Standard approaches to defect analysis often
overlook the complex interactions among multiple variables in a manufacturing process. One promising
approach to achieve this is through combinatorial testing [3], which systematically examines interactions
among multiple factors to identify defect patterns. This research investigates the use of combinatorial testing
paired with hybrid metaheuristics to analyse defect patterns in manufacturing settings. This combined
approach aims to enhance the detection and understanding of defects, leading to improved quality control and
operational efficiency [4].

Studies focused on defect pattern analysis in manufacturing have traditionally relied on statistical methods and
machine learning techniques. However, these methods often require extensive historical data and may not
effectively capture interactions between multiple process parameters. Statistical Quality Control (SQC) and
control charts, for instance, typically assume that variables are independent and normally distributed.
However, this assumption does not always hold true in complex manufacturing environments, leading to
potential failures in detecting defects that arise from interactions among multiple variables [5].

Similarly, Root Cause Analysis (RCA) methods, which often rely on historical data, may not be effective in
dynamic and high-dimensional settings where new types of defects can emerge from interactions between
process variables [6]. Furthermore, while Pareto Analysis focuses on identifying the most significant factors
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contributing to defects, it may overlook the complex interplay between less significant factors that collectively
have a substantial impact [7].

Recent studies have highlighted the effectiveness of combinatorial testing in various fields, including software
engineering and network security [8]. Combinatorial testing could significantly reduce the number of tests
required while maintaining high defect detection rates in software systems. Applying this approach to
manufacturing could yield similar benefits by identifying defects resulting from complex interactions among
process variables.

Hybrid metaheuristics have gained popularity for their ability to tackle complex optimisation problems by
combining different heuristic methods [9][10]. Blum and Roli [11] discussed how these algorithms leverage
the strengths of individual heuristics to produce more robust and efficient solutions. In manufacturing, hybrid
metaheuristics can optimise the combinatorial testing process, making it feasible to analyse many variable
combinations without excessive computational costs.

Recent advancements in manufacturing, especially those aligned with Industry 4.0, emphasize the need for
intelligent systems capable of real-time defect detection and analysis [12][13][14][15]. This research aligns
with these advancements by proposing a methodology that integrates combinatorial testing and hybrid
metaheuristics, supporting real-time and accurate defect pattern analysis.

METHODOLOGY
A. Hybrid Relay Algorithm

The hybrid metaheuristic optimisation algorithm uses a 4 x 100 relay concept incorporating reward and penalty
mechanisms. The Hybrid Relay (HR) consists of four metaheuristic algorithms that are Jaya Algorithm,
Cuckoo Search, Sine Cosine Algorithm and Flower Pollination Algorithm. The selection is generated via the
Roulette Wheel algorithm that will generate a unique combination representing the four algorithms as In Figure
1.

START/FINISH

via Roulette Wheel ‘
ig\-' = Py ™ Ju
(S 3

1t MH 2nd MH  3rd MH 4th MH

MH — metaheuristic (Runner as
metaheuristic)

Metaheuristic used:

1. Jaya 2. Cuckoo 3. Sine Cosine 4.
Flower Pollination

Fig. 1. Relay Hybrid Algorithm Model

Figure 2 shows the decision-making process, as well as the different possible outcomes and the probability of
each outcome. The first decision point is whether the value of RelayBest is greater than or equal to XBest. If
it is, the algorithm rewards the current relay sequence by using the same relay sequence. If RelayBest is less
than XBest, the algorithm penalizes the current sequence by generating a new sequence with probability
greater than 0.5 and selects the next sequence using the Roulette Wheel algorithm.
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Relay

RelayBest > XBes XBest > RelayBest
¥ d
Reward: repeat same relay Penalty: pa

existing relay new relay

Fig. 2. Reward and Penalty implementation
B. Covering Array

There is at least one covering array (CA) for every t-way combination of parameter values. With t is the
number of related parameters to be interacted known as the interaction strength. For example, when
considering two parameters, it constitutes 2-way testing; with three parameters, it corresponds to 3-way
testing, and so forth. CAs have proven useful in numerous industries, and researchers are exploring the best
approaches to develop optimal CAs. The CA and its notation,

CA(N: t, k, V) (1)

is a mathematical object that ensures all possible combinations of a specific number of input parameters
(factors) are tested [16][17]. It helps to identify and eliminate potential interactions among these parameters.
In the given example, we have a covering array with:

t (humber of rows or experiments): 2
k (number of factors or input parameters): 7
v (number of levels or possible values for each factor): 2

If all possible interactions are tested, it will be 27 = 128 test cases to execute. Instead of testing all combination,
CA with t=2, k=7, and v=2 where each row represents an experiment, and each column represents a factor can
produce a test suite to include every 2-way combination. The array is constructed in such a way that every
combination of the k factors appears at least once in the array.

The HR will find the minimum test case by eliminating the tuple based on weightage until the covering array
table is empty. The covering array or interaction table will be generated to be compared with random generated
test case. For example, extending from example t=2, k=7, and v=2, the strength is t=2, therefore the interaction
table will be generated for pairing the factors. Let assume factor 1 as A, factor 2 as B and factor 3 as C until
factor 7 as G. Therefore, the interaction table for t=2 is AB, AC and BC and so forth as in Table 1.

TABLE I. PAIR OF FACTORS OF t=2

2-way interactions
AB | AC | AD | AE | AF | AG
BC | BD | BE | BF | BG
CD | CE | CF | CG

DE | DF | DG
EF | EG
FG

For simplicity we denote the first value as 0 and the second as 1. Each pair of factors can have the following
combinations as in Table 2 show example for AB and CD.
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TABLE Il. ALL POSSIBLE PAIRWISE COMBINATIONS

A| B C|D
0|0 0|0
0|1 0|1
1]0 110
1|1 111

With these generated tuples, a set of test case are randomly generated, for example 0000000. With this test
case, AB =00, AC = 00, BC = 00 etc are removed and the weight is 7. The process is repeated by generating
the next test case and keep on removing the tuple until the table is empty.

The outcome of the process yields the optimal number of test cases. These test cases play a pivotal role in
revealing interactions and dependencies among the parameters (denoted by 'k’). With this example the
minimum test cases produce is 8 (Table 3). Furthermore, they ensure comprehensive coverage by testing each
combination at least once [18]. As illustrated in Figure 3, HR will be running until the t-tuple table is empty
incorporating the steps in Figure 1 and Figure 2.

TABLE I1l. INTERACTION TABLE

TestCase | A|B|C | D|E|F |G
1 oOojojo0o|O0O]|O]|0O]|O
2 o001 ]|]1]|1]|1
3 O|1(|1/|0]|]0]|1|1
4 1 (01|01 (0]1
5 1 (101 (0(1]0
6 1100 |1 (1(0]0O0
7 0|11 (|1]0]0|1
8 1 (1 (1|1 (1(1]0

Tuple table

The HR runs until the tuple table 1s empty

Generate random test-case from tuple table

|

. Run First Relay ]

Choose best test case by weight |

|

| Remove the test case from the tuple |

Evaluate if the current relay produce
best test case, use Roullet Wheel to
create a new sequence,

Fig. 3. Outline of the proposed Hybrid Relay Algorithm
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C. Dataset

In this proposed case study, the Manufacturing Defect Dataset sourced from Kaggle was utilized. The
simulated dataset is related to manufacturing defects observed during quality control process. The dataset
encompasses 100 products, featuring parameters such as defect type, detection date, location within the
product, severity level, inspection method used, and repair costs., as illustrated in Figure 4.

defect_id product_id defect type defect_date defect location severity inspection_method repair_cost

1 15 Structural | 6/6/2024 Component Minor Visual Inspection 245.47
2 6 Functional | 4/26/2024 Component Minor VisualInspection 26.87
3 84 Structural | 2/15/2024 Internal Minor | Automated Testing | 835.81
4 10 Functional | 3/28/2024 Internal Critical | Automated Testing 444.47
998 17 Structural | 1/16/2024 Component Minor | Automated Testing | 401.12
999 96 Cosmetic | 6/21/2024 Internal Moderate Manual Testing 775.63
1000 1 Cosmetic | 3/23/2024 Component Minor Visual Inspection 963.4

Fig. 4. Samples of manufacturing defect with varying features

RESULT AND DISCUSSION

The dataset examined in this study comprises attributes associated with manufacturing defects, including
defect ID, product ID, defect type, defect date, defect location, severity, inspection method, and repair cost.
For the combinatorial testing application, three primary factors were selected: defect type (Cosmetic,
Structural, Functional), defect location (Component, Surface, Internal), and inspection method (Automated
Testing, Visual Inspection, Manual Testing). These factors were prioritized due to their direct relevance to
defect detection and analysis in manufacturing processes. Figure 5 illustrates the input interface for these
factors and their corresponding values, mapped to levels 0, 1, and 2 for computational purposes.

¥ Combinatorial Testing - 0 X

Parameters:
Note to write: Parameterl: Valuel, Value2, Value3, Value4

Defect Type: Cosmetic, Functional, Structural
Defect Locavon Component, Surface, Intemal
Inspection Method: Automated Testing. Manual Testing, Visual Inspecton|

Produce Test Case

Fig. 5. Interface to input the factors and values

This configuration corresponds to a covering array denoted as CA(N; 2, 3, 3), where the interaction strength
(t) is 2, the number of factors (k) is 3, and the number of levels per factor (v) is 3. In contrast to exhaustive
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testing, which would necessitate 3* = 27 test cases to cover all possible combinations, the hybrid relay
algorithm generated an optimized set of 9 test cases, as depicted in Figure 6.

This reduction ensures full coverage of all pairwise interactions while minimizing the testing effort. Figure 7
further presents the distribution of tests conducted per product in the original dataset, revealing that defect
identification for a single product could involve up to 20 tests, highlighting inefficiencies in conventional
approaches.

¥ Combinatorial Testing

Result Test Case

Test size = 9

, 1, 4] [ld=8] Best Test Case » Cosmetic: Internal: Automated Testing
. 4] [\d=9] Best Test Case = Cosmetic: Component: Manual Testing

Relay: [2, 3, 1, 4] [ld=1] Best Test Case = Structural: Internal: Visual Inspection
Relay: [2, 3, 1, 4] [ld=2] Best Test Case = Structural: Component: Automated Testing
Relay: (2, 3, 1, 4] [Id=3] Best Test Case = Structural: Surface: Manual Testing
Relay: [2, 3, 1, 4] [ld=4] Best Test Case = Functional: Internal: Manual Testing
Relay: [2, 3, 1, 4] [Id=5) Best Test Case = Functional: Component: Visual Inspection
Relay: [2, 3, 1, 4] [Id=6] Best Test Case = Functional: Surface: Automated Testing

2, 3, 1, 4] [Id=7] Best Test Case = Cosmetic: Surface: Visual Inspection

2,31

2,31

Fig. 6. Optimized test cases

Distribution of Tests Conducted per Product
15

Frequency

- A A
O N A O O O N b O

1 2 3 45 6 7 8 9 10111213 141516 17 18 19 20

Number of Tests

Fig. 7. Distribution of tests conducted per product

Table 4 exemplifies the extended time span for defect identification in one product (Product ID 1), where
defects were recorded from February 22, 2024, to November 1, 2024 denote a period exceeding eight months.
The optimized test cases from the combinatorial approach could potentially compress this timeline by
systematically targeting interactions among the selected factors, thereby accelerating pattern recognition.
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TABLE IV. TIME SPAN TO IDENTIFY A DEFECT

Defect id|Product id|Defect type|Defect date|Defect location|Inspection method|Repair cost
109 1 Cosmetic |22/2/2024 |Component Automated Testing |978.5
194 1 Structural |3/3/2024 |Component Visual Inspection {192.21
1000 1 Cosmetic |23/3/2024 |Component Visual Inspection |963.4
699 1 Cosmetic |4/4/2024  |Component Automated Testing |940.9
874 1 Cosmetic |19/4/2024 |Surface Visual Inspection |98.45
577 1 Functional |21/4/2024 |Surface Visual Inspection |404.22
538 1 Structural |11/5/2024 |Component Automated Testing (856.33
390 1 Structural |19/5/2024 |Surface Automated Testing (564.46
872 1 Functional |20/5/2024 |Internal Automated Testing {148.15
772 1 Cosmetic |11/6/2024 |Surface Manual Testing 514.52
104 1 Structural |25/6/2024 |Surface Manual Testing 338.48
979 1 Functional |1/11/2024 |Internal Manual Testing 652.97

The results demonstrate that the combinatorial testing method, through the CA(N; 2, 3, 3) configuration,
achieves a substantial 67% reduction in test cases compared to exhaustive testing, while maintaining
comprehensive pairwise coverage. This efficiency is particularly evident in the ability to pinpoint defect
patterns, such as recurring combinations of defect type and location under specific inspection methods, which
may contribute to prolonged identification periods as shown in Table 4 and Figure 7. By reducing the number
of required tests, the approach not only streamlines the process but also minimizes resource allocation in
quality control.

Beyond this pairwise analysis, other covering arrays are feasible with the dataset to explore deeper or broader
interactions. For instance, increasing the interaction strength to t=3 with the same three factors yields CA(N;
3, 3, 3), which would require up to 27 test cases for full triple coverage but could be optimized via the hybrid
algorithm to approximately 20 to 25 cases, capturing more complex interdependencies like the joint effects of
defect type, location, and inspection method on severity. Alternatively, incorporating an additional factor, such
as severity (discretized into Low, Medium, High levels), results in CA(N; 2, 4, 3), expanding exhaustive
requirements to 81 test cases but optimizable to around 15 to 18, enabling analysis of pairwise interactions
including cost implications. Extending further to five factors (adding binned repair cost) at t=2 could produce
CA(N; 2, 5, 3) with an optimized N of 20 to 30, facilitating a more holistic view of defect dynamics.

The significance of combinatorial testing in this case study lies in its capacity to address limitations of
traditional methods, such as SQC or RCA, by explicitly accounting for variable interactions that drive defects
in manufacturing environments [3][5][6]. In similar cases, where processes involve multiple interdependent
parameters, this technique promotes zero-defect manufacturing by enabling rapid, cost-effective pattern
detection, reducing downtime, and supporting predictive maintenance [1][2][12]. Ultimately, it offers
manufacturers a scalable framework for quality enhancement, adaptable to Industry 4.0 demands for real-time
analytics [13][14].

CONCLUSION

In conclusion, the use of combinatorial testing with hybrid metaheuristics has proven to be an effective
approach for analysing defect patterns in manufacturing settings. By focusing on key factors such as defect
type, defect location, and inspection method, we were able to identify critical defect patterns with a reduced
number of test cases. This method offers significant advantages over traditional testing approaches, providing
a valuable tool for manufacturers to enhance their quality control processes.
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