

Linking Climate Change and Green Consumerism among Young Shoppers

Muhammad Iskandar Hamzah*, Nadia Hanin Nazlan, Muhammad Hafiz Abd Rashid, Aida Azlina Mansor

Faculty of Business and Management, University Technology MARA, 42300 Bandar Puncak Alam, Selangor, Malaysia

*Corresponding author

DOI: https://dx.doi.org/10.47772/IJRISS.2025.909000617

Received: 04 September 2025; Accepted: 09 September 2025; Published: 22 October 2025

ABSTRACT

Climate change heightens young consumers' environmental awareness, yet causal evidence on how climate salience influences their green behaviors in non-Western contexts remains limited. This study applies the Theory of Grounded Cognition to test whether simulated adverse weather events evoke stronger environmental concern, responsibility motivation, and green behavioral intentions. An online between-subjects experiment was conducted with 164 Gen-Z university students in Malaysia, randomly assigned to adverse or normal weather scenarios. Participants completed validated scales measuring environmental concern (EC), environmental responsibility motivation (ERM), green switching intention (GSI), green brand equity (GBE), and green word-of-mouth (GWOM). Manipulation and realism checks confirmed scenario validity. It was found that exposure to adverse weather scenarios significantly increased EC and ERM, as well as GSI and GWOM, compared to the control. No significant effect was found for GBE. The findings provide experimental evidence that climate-salient scenarios intensify affective responses and some pro-environmental behaviors among Gen-Z consumers. However, brand equity evaluations appear less responsive to transient climate salience, suggesting that authentic corporate commitments and transparent practices are required for sustained brand differentiation.

Keywords: climate change, green consumerism, grounded cognition, Gen-Z, experiment

INTRODUCTION

As climate change intensifies, young consumers increasingly face extreme weather events—such as floods and heatwaves—that disrupt their daily lives and heighten environmental awareness. This growing salience of climate-driven risks has fueled green consumerism, particularly among Gen-Z, who are not only environmentally conscious but also wield growing economic power and shape sustainability trends (Lopes et al., 2024). Understanding how such contextual factors affect green behaviors is important, especially in emerging economies like Malaysia, yet remains under-explored.

Past research on green consumer behavior among Gen-Z has largely relied on correlational surveys and regression-based frameworks—such as extended TPB or self-reported questionnaires—limiting causal inference (Ngo et al., 2025; Djafarova & Foots, 2022). Fewer studies use experimental manipulations to simulate climate impact and measure its direct effect on environmental psychological constructs and behaviors. Moreover, most studies are situated in Western contexts, neglecting the Malaysian Gen-Z consumer segment. Experimental evidence exploring how perceived adverse weather affects environmental concern, responsibility motivation, and subsequent green behaviors remains scant.

The Theory of Grounded Cognition (Barsalou, 2008) proposes that cognition is not autonomous but rather based on perceptual, bodily, and situational simulations. Exposure to vivid textual scenarios—such as imagining floods damaging one's home—can evoke embodied mental simulations that shape emotions, concern, and motives. These simulations can drive pro-environmental intentions more powerfully than abstract reasoning. Applying

TGC offers a novel theoretical perspective in green consumerism: it suggests that mentally simulating climate threats (even via text) can activate environmental concern and motivate green switching, brand equity perceptions, and word-of-mouth intent.

Henceforth, this study aims to determine whether exposure to climate change—driven adverse weather conditions increases young consumers' environmental concern, environmental responsibility motivation, and green consumption behaviors (vis-à-vis green switching intention, green brand equity, and green word-of-mouth). This study utilizes an experimental approach—in a Malaysian Gen-Z context—to test whether simulated exposure to climate-driven adverse weather increases environmental concern (EC), environmental responsibility motivation (ERM), and green consumer behaviors that consists of green switching intention (GSI), green brand equity (GBE), and green word-of-mouth (GWOM). By leveraging TGC, it shifts the focus from belief-driven explanations to embodied cognitive simulations as drivers of green behavior.

This integration of cognitive theory, experimental method, and green consumer outcomes (EC, ERM, GSI, GBE, GWOM) in a non-Western setting narrows some theoretical gaps considering the limitations of the extant literature. To a certain extent, existing green consumerism work robustly links values/personal norms to proenvironmental intentions behaviors (Stern et al., 1999; de Groot et al., 2021). Such literature is also heavily focused on correlational designs and SEM models that identify associations among green attitudes, norms, intentions and brand outcomes. However, some limitations persist: (a) most evidence uses self-reported green purchase intentions rather than observed switching; and (b) causal experimental evidence that transiently raised pro-environmental behavior (via narratives) is limited. These gaps justify experimental tests of whether situationally induced climate salience (via hypothetical scenarios) causally raises or alters individuals' affective outcomes.

LITERATURE REVIEW

Theory of grounded cognition

The theory of grounded cognition (TGC) proposes that cognition is 'situated' and relies on modality-specific simulations (perception, action, interoception) that reenact prior experience when people think, decide, or imagine (Barsalou, 2008; 2020). In consumer research, grounded-cognition theory of desire argue that external cues (including text scenarios) can trigger consumption-oriented simulations, which in turn shape motivation and choice (Papies et al., 2017; Papies, 2020). Empirical work shows that instructed mental simulations (process vs. outcome) affect desire and choice. For instance, Muñoz-Vilches et al. (2020) demonstrates a psychological route from a situational cue to simulation, and subsequently to motivational state.

TGC offers a plausible mechanism for why a hypothetical climate scenario (extreme vs. normal weather) might increase affective responses (EC, ERM) and thereby shift behavioral outcomes (GSI, GBE, GWOM). Specifically, the scenario activates sensorimotor/emotional simulations about harm and its consequences, strengthening felt concern and responsibility. It also potentially drives green intentions and advocacy via motivated simulations, considering that simulation effects are strongest when texts are vivid and match prior experience (Zwaan & Pecher, 2012). However, the literature lacks the generalization to climate-concern contexts, necessitating further empirical testing of these stimulated effects. Thus, TGC is suitable as a process model (how a scenario could change affective states and motivate behaviour), but its predictions must be tested experimentally in pro-environmental contexts and with controls for realism.

Green affective outcomes

Environmental concern (EC) captures consumers' emotional involvement and to a certain extent, anxiety about environmental degradation. EC is commonly operationalized via validated scales (e.g., New ecological paradigm, Value orientations and related measures) and reviewed comprehensively (Cruz & Manata, 2020). Meanwhile, environmental responsibility motivation (ERM) is closely aligned with personal moral obligation/personal norms (as in NAM/VBN)—the felt duty or self-expectation to protect the environment (Schwartz, 1977; Stern et al., 1999). VBN and norm-activation accounts treat values, beliefs, and personal norms

ISSIVITO: 215 FOTOO | BOIL TO. 1777 25 BRIDGE PR September 202

as antecedents to pro-environmental behavior. In this regard, ERM sits squarely in that "personal-norm" (motivational) node.

Green behavioral outcomes

Green switching intention (GSI) taps willingness to move from conventional to eco-friendly products (a behavioral intention). Green brand equity (GBE) is the brand value accruing from perceived environmental performance and trust (Chen, 2010). Meanwhile, green word-of-mouth (GWOM) refers to consumers' tendency to communicate positively about eco products/brands to others, reflecting a social and communicative behavior. Meta-analytic and synthesis work shows that trust, perceived value, and attitudes strongly predict green purchase intentions (Zhuang et al., 2021), and recent empirical papers document links from green practices to GWOM and to brand outcomes in service contexts (e.g., hotels) (Hameed et al., 2022).

Climate change and green affective outcomes

Climate change has emerged as a major worldwide threat for today's youth, and exposure to narratives or experiences of adverse climate events frequently intensifies environmental concern (EC). Dunlap and Van Liere's (1978) initial research on the New Environmental Paradigm posited that ecological catastrophes serve as significant drivers for shaping environmental attitudes. People are becoming more aware of natural disaster risks through media reports, personal encounters with severe weather, or climate-related incidents shared via social media. Subsequent empirical studies consistently show that increased awareness of environmental risks heightens concern regarding ecological deterioration (Milfont & Markowitz, 2016; Clayton & Karazsia, 2020). Young consumers, especially, are very sensitive to information on climate change. They often see themselves as a vulnerable generation that will have to deal with the effects for a long time (Steg et al., 2015). These findings indicate that exposure to adverse weather conditions induced by climate change will lead to heightened anxiety in comparison to normal or non-adverse climate settings. Hence, it is hypothesized that:

H1: Young consumers exposed to climate change-driven adverse weather conditions induce greater environmental concern than those not exposed.

Beyond concern, exposure to climate change adversity can also heighten environmental responsibility motivation (ERM), that encapsulates one's sense of moral duty to act pro-environmentally. Norm-activation theory (Schwartz, 1977) and value-belief-norm (VBN) theory (Stern et al., 1999) both emphasize that awareness of environmental consequences is a critical precursor to activating personal norms of responsibility. Recent work has shown that direct or mediated experiences of extreme weather intensify feelings of personal accountability, particularly among younger cohorts who see themselves as both inheritors and stewards of the planet (Ballew et al., 2019; Ojala, 2015). This sense of responsibility is not only cognitive but motivational, leading to a readiness to endorse behavioral change and collective action (Bamberg & Möser, 2007). Thus, when young consumers are confronted with scenarios depicting climate change—driven adverse weather, it is expected that they are more likely to experience heightened ERM compared to those unexposed. Hence, we put forth the following hypothesis:

H2: Young consumers exposed to climate change—driven adverse weather conditions induce greater environmental responsibility motivation than those not exposed.

Climate change and green behavioral outcomes

Environmental affective responses often translate into green consumer behaviors, particularly when individuals are confronted with vivid depictions of climate change consequences. Prior research shows that emotional triggers, such as climate anxiety or concern, act as precursors to behavioral intentions including product choice, consumption reduction, and sustainable brand support (Gifford, 2011; Ogunbode et al., 2022; Nicolai et al., 2022). This aligns with the Theory of Grounded Cognition, which posits that simulated experiences of environmental risks make abstract climate threats psychologically concrete, and increase the likelihood of translating concern into action (Barsalou, 2008). Thus, experimental exposure to adverse climate scenarios may strengthen intentions and behaviors central to green consumption.

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue IX September 2025

A particularly salient behavioral outcome is green switching intention (GSI), which reflects the willingness to shift away from conventional products toward eco-friendly alternatives. Prior work indicates that climate salience increases the perceived moral and practical necessity of changing consumption patterns (Biswas & Roy, 2015). Young consumers, often framed as "market shapers," have shown greater readiness to alter purchasing habits when environmental risks are highlighted (Tan et al., 2019). Since climate change—driven adverse weather makes sustainability trade-offs more personally relevant, it is expected to stimulate stronger switching intentions. Hence, it is hypothesized that:

H3: Young consumers exposed to climate change-driven adverse weather conditions induce greater green switching intention than those not exposed.

Another key behavioral response is green brand equity (GBE), defined as the value consumers attach to brands perceived as environmentally responsible (Chen, 2010). Extreme weather reminders can increase the salience of environmental values in consumer judgment, thereby enhancing preference for sustainable brands over competitors (Capstick et al., 2021; Ho et al., 2024; Walker & Reser, 2017). Evidence suggests that when individuals perceive brands as aligned with climate responsibility, they not only trust them more but also view them as better positioned to deliver long-term value (Loh & Tan, 2020). Consequently, climate change—driven adverse weather scenarios are likely to strengthen perceptions of green brand equity. Hence, it is hypothesized that:

H4: Young consumers exposed to climate change—driven adverse weather conditions induce greater green brand equity than those not exposed.

Finally, green word-of-mouth (GWOM) has emerged as a vital behavioral manifestation of consumer engagement with sustainability. Research consistently shows that environmental salience enhances individuals' willingness to share pro-environmental messages and encourage peers toward sustainable consumption (East, Hammond, & Lomax, 2008; Perry et al., 2021). Among young consumers, peer influence is particularly powerful, as recommendations circulate rapidly in digital communities where social identity is closely tied to values and activism (Johnstone & Tan, 2015). Exposure to adverse weather narratives is expected to activate these communicative behaviors, driving stronger willingness to speak favorably about eco-friendly products. Hence, it is hypothesized that:

H5: Young consumers exposed to climate change—driven adverse weather conditions induce greater green word-of-mouth than those not exposed.

The review of the literature and formulation of hypotheses lead to the following conceptual model (see Figure:

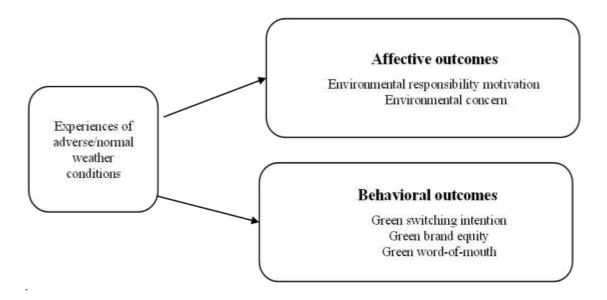


Figure 1. Framework illustrating relationship between variables

METHODOLOGY

Participants

A total of 164 students from a prominent public university in Selangor, Malaysia were recruited to take part in this online-based survey. These students were enrolled in business, hospitality and tourism management courses. In order to participate in the study, the participants have to be 27 years old or younger to fit in with the Gen-Z age group. To avoid survey retake, Internet Protocol (IP) addresses were checked for duplicates. Following these checks, all of these samples were qualified to be the final sample. The final sample constitute of 145 females (88.4%) with a mean age of 23.05 (median = 23, SD = 1.0, range = 21–27) and average monthly grocery spending of RM295.36 (median = 200.0, SD = 268.8, range = 50-2,000). The higher proportion of females is justified due to the higher and unbalanced ratio of female to male students' enrolment in business and hospitality management courses within the university.

Design and procedure

The entire experiment was administered via a web-based platform (Qualtrics). The study employed a between-subjects design in which the weather condition was manipulated using two scenarios (adverse weather condition vs. normal weather condition). Institutional ethical approval was reviewed and obtained before the study's undertaking. At the start of the experiment, participants were told that they were taking part in academic research investigating individuals' perceptions of green consumption attitudes and behaviors. The main stimulus material involves a brief description of the scenario the participants were randomly assigned to (scenario A: adverse weather condition vs. scenario B: normal weather condition). Then they were asked to assess the statements and questions related to the manipulated conditions. The manipulated scenarios are attached in the Appendix (refer Table A1).

Following each scenario, a manipulation check question was asked: "MC: Based on the scenario you just read, how has the weather adversely affect your daily life?", in which they have to answer one of the following options based on the following Likert scale: "(1) no effect at all; (2) minor effect; (3) neutral; (4) moderate effect; (5) major effect". This is followed by a reality check question; "RC: The situation described was realistic", in which they have to state their level of agreement on a 1 to 5 Likert scale.

Measures

The latent variables were adapted from credible scholarly sources indexed in Elsevier's Scopus and Clarivate's Web of Science databases. After reading the scenario that is randomly assigned to them, the respondents rated the latent variable measures on a five-point Likert scale. Only Green switching intention measures were uniquely scaled (from *extremely unlikely* to *extremely likely*), while the other latent variables were measured based on level of agreement (from *strongly disagree* to *strongly agree*). The measures concluded with demographic questions.

FINDINGS

Construct validity

A confirmatory factor analysis (CFA) was conducted to test the validity of the measurement model and the unidimensionality of the constructs. The measurement model including all the constructs had a satisfactory fit ($\chi 2=252.9$; df=160; $\chi 2/df=1.581$; RMSEA= .06; CFI= .95). An examination of the unstandardized solution revealed that the factor loadings, covariances, and variances were significant at the level of p< .05. All standardized factor loadings ranged from .65 to .90, falling within the acceptable limits of .5 or higher (Hair et al., 2014), which indicates convergent validity among items on the given scale. Values of 0.90 and above in terms of composite reliability (CR) met the levels recommended in the literature (Hair et al., 2014).

The discriminant validity test showed that all the square roots of average variance extracted (AVE) estimates were higher than the corresponding inter-construct correlation estimates. In summary, convergent and

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue IX September 2025

discriminant validities were supported by all the tests, as shown in Table 1

Table 1. CR, AVE, and discriminant validity

Latent variables		CR	AVE	1	2	3	4	5
1.	ERM	0.823	0.586	0.765				
2.	EC	0.760	0.575	0.652	0.758			
3.	GSI	0.844	0.782	0.592	0.605	0.884		
4.	GBE	0.861	0.671	0.408	0.477	0.502	0.819	
5.	GWOM	0.905	0.779	0.553	0.573	0.696	0.495	0.883

^{*}Note: ERM=Environmental responsibility motivation; EC=Environmental concern; GSI= Green switching intention; GBE=Green brand equity; GWOM=Green word-of-mouth; CR=Composite reliability; AVE=average variance extracted. All correlations are significant at the p<0.01 level (2-tailed). The figures corresponding to the square root of AVE for each column construct are typed in bold along the diagonal.

Manipulation and reality checks

The scenario depicting the adverse weather condition (M_{HighMC} =3.74, SD=1.16) was rated significantly higher than the scenario with normal weather condition (M_{LowMC} =2.61, SD= .94). However, Levene's test for equality of variances was found to be violated in the independent samples t-test analysis, F(1,166)=5.422, p<. 05. Thus, we conducted the nonparametric test of Mann-Whitney to account for the violation of the homogeneity of variances assumption. A Mann-Whitney test indicated that this difference was statistically significant, $U(N_{\text{HighMC}}$ =82, N_{LowMC} =82)=1,603.0, z=-5.954, p<0.001. These results confirm that the manipulation worked as intended. As for the reality check, participants rated the adverse weather condition scenario significantly higher (M_{HighRC} =4.22, SD= .96), as compared to the normal weather condition scenario (M_{LowRC} =3.78, SD= .90). In this regard, Levene's test (F(1,166)= .246, p= .621) indicated that equal variances assumption is met. These results are summarized in Table 2 below.

Table 2. Manipulation and realism check statistics (n=82 for each group)

Items	Scenario assigned	Mean	SD
Manipulation check			
Based on the scenario you just read, how has the weather	Adverse weather	3.74	1.16
adversely affected your daily life?	Normal weather	2.61	0.94
Realism check			
The situation described was realistic	Adverse weather	4.22	0.96
	Normal weather	3.78	0.90

RESULTS

Two 2 (weather conditions) × 2 (outcomes) analyses of variance were performed on each of the latent variables.

The analysis of participants' attitudes revealed significant main effects for ERM, F(1, 162) = 7.17, p = .030, $\eta 2 = .086$. The participants' level of personal commitment towards environmental protection issues was stronger when the weather conditions were unfavorable (M = 4.42) than when the weather was favorable (M = 4.23). Similar results were observed for EC, with significant main effects observed F(1, 162) = 4.96, p = .009, $\eta 2 = .089$. Their level of environmental concern was high (M = 4.37) when the weather was adverse, as compared to low (M = 4.13) when the weather was normal. Thus, H1 and H2 were supported.

In terms of participants' behavioral outcomes -specifically green consumption behaviors, mixed results were observed. There was a significant interaction between weather conditions and green switching intention (F(1, 162) = .78, p = .378, $\eta^2 = .096$), and green word-of-mouth (F(1, 162) = 4.57, p = .033, $\eta^2 = .088$). Both participants' levels of green switching intention ($M_{\text{HighGNSI}} = 4.455$ vs. $M_{\text{LowGSI}} = 4.232$) and green word-of-mouth ($M_{\text{HighGWOM}} = 4.473$ vs. $M_{\text{LowGWOM}} = 4.284$) were higher when they were exposed to adverse weather conditions as opposed to normal weather conditions. Meanwhile, there was no main effect observed between weather conditions and green brand equity (F(1, 162) = .78, p = .107, $\eta^2 = .100$). Participants exposed to adverse weather conditions reported levels of green brand equity that were not significantly different from those of participants who were not exposed ($M_{\text{HighGBE}} = 4.165$ vs. $M_{\text{LowGBE}} = 4.003$). Hence, only H3 and H5 were supported, while H4 was unsupported. These results are summarized and illustrated in Table 3 and Figure 2 below:

Table 3. Effect of adverse weather conditions exposure on green consumer outcomes

Dependent variables	Adverse weather	Normal weather	F	p	S. E.
n	82	82			
Environmental responsibility motivation	4.417	4.229	7.169	0.030	0.086
Environmental concern	4.366	4.131	4.961	0.009	0.089
Green switching intention	4.455	4.232	0.780	0.021	0.096
Green brand equity	4.165	4.003	0.779	0.107	0.100
Green word-of-mouth	4.473	4.284	4.574	0.033	0.088

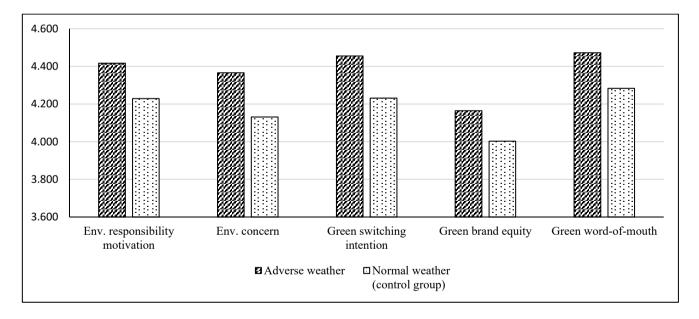


Figure 2. Mean values of green consumer outcomes

DISCUSSION AND CONCLUSION

Summary of findings

This experimental study examined whether simulated exposure to climate change-induced adverse weather would alter young consumers' psychological reactions and environmentally conscious consumption behaviors. Manipulation, reality checks, and measurement validations confirm the narrative's efficacy and the constructs' validity and reliability assessments. The findings indicate that exposure increased EC and ERM, illustrating that scenario-based climate salience amplifies affective responses. However, behavioral responses were mixed: participants showed stronger intentions to switch to eco-friendly products and greater willingness to spread

positive green word-of-mouth, but perceptions of green brand equity did not differ between conditions. In general, the pattern shows that embodied simulation of climate threats is more likely to increase affective motivation and some green behavioral intentions than it is to change evaluative brand attributions. Thus, this study offers experimental evidence from a Malaysian Gen-Z sample that connects climate-salience to proenvironmental outcomes.

Theoretical implications

This study advances theoretical understanding of green consumer behavior by applying the Theory of Grounded Cognition (TGC) to the domain of climate change—driven consumption. TGC argues that cognition is rooted in perceptual and affective simulations, and the findings demonstrate that textual exposure to adverse weather scenarios successfully elevated environmental concern and responsibility motivation, consistent with the theory's claim that embodied simulations can heighten emotional and motivational states (Barsalou, 2008; Barsalou, 2020). This provides empirical support for the view that climate change is not only processed cognitively but is also grounded in lived and imagined experiences that mobilize affective engagement. By showing that affective constructs respond strongly to simulated climate adversity, the study contributes to bridging the gap between embodied cognition research (Papies et al., 2017) and environmental psychology (Clayton & Karazsia, 2020; Milfont & Markowitz, 2016).

The results also extend TGC by demonstrating that some behavioral outcomes—namely switching intention and green word-of-mouth—are responsive to embodied climate simulations, whereas green brand equity was unaffected. This suggests that personal or societal action intents may be more immediately anchored in climate salience than brand-level evaluations, which may require repeated encounters or reputational cues for change to occur (Chen, 2010). Theoretically, this highlights the boundary conditions of TGC in consumer research: simulations of environmental adversity more readily activate action-oriented behaviors than evaluative brand associations. By employing an experimental design with Gen-Z Malaysian consumers, this study extends a largely Western and correlational evidence base. This study also underscores the cultural and generational relevance of TGC in explaining how climate-salient experiences can translate into green consumerism.

Practical implications

The findings offer several implications for businesses seeking to engage Gen-Z consumers in sustainable practices. Evidence that adverse weather scenarios elevated environmental concern, responsibility, and intentions to switch and recommend eco-friendly products suggests that vivid climate narratives can be an effective tool in sustainability communication. Businesses can integrate storytelling, scenario-based campaigns, or simulations that make climate risks personally salient to young audiences, thereby stimulating proenvironmental engagement. However, the absence of an effect on green brand equity indicates that narrative exposure alone is insufficient to build enduring brand value. Firms must pair climate-salient messaging with authentic commitments, transparent reporting, and verifiable green practices to strengthen consumer trust and credibly differentiate themselves in increasingly competitive markets (Qayyum et al., 2023).

From a policy and educational standpoint, the results indicate that Gen-Z consumers are highly responsive to climate-salient interventions, highlighting opportunities for governments, universities, and advocacy groups to design programs that embed experiential learning and narrative communication in sustainability education (Ojala, 2015; Ballew et al., 2019). Such efforts can foster a generation that not only internalizes responsibility but also translates concern into collective behaviors like peer recommendation and social advocacy. At the same time, policymakers must address structural barriers by reinforcing regulatory standards, eco-labels, and certifications that protect against greenwashing and enhance brand credibility (Persakis et al., 2025). Together, these efforts can ensure that heightened concern and responsibility, triggered by climate salience, are converted into enduring sustainable practices across consumer, corporate, and societal levels.

Limitations and future research directions

Although this study provides novel experimental evidence linking climate change—driven adverse weather scenarios to Gen-Z's affective and behavioral outcomes, several limitations should be acknowledged. First, the

use of a text-based scenario, while consistent with grounded cognition theory, may evoke weaker embodied simulations compared to richer stimuli such as videos or immersive media, suggesting that future research should test multi-modal manipulations for stronger ecological validity (Barsalou, 2020). Second, the reliance on self-reported measures captures intentions rather than actual behaviors, which may overstate pro-environmental engagement; subsequent studies could incorporate behavioral tracking or field experiments to address this gap (Gifford, 2011). Third, the sample comprised Malaysian university students, limiting generalizability across age groups and cultural contexts, and comparative research across demographics and regions would clarify boundary conditions. Finally, the non-significant finding for green brand equity indicates that brand-related outcomes may require different mechanisms, warranting further investigation into how trust, authenticity, and market signals interact with climate salience to shape consumer evaluations.

ACKNOWLEDGMENT

We would like to thank the Jabatan Penyelidikan dan Inovasi (Research and Innovation Department), University Technology MARA, Malaysia, for funding this research via the Geran Penyelidikan MyRA; grant file number 600-RMC 5/3/GPM (113/2022).

REFERENCES

- 1. Ballew, M. T., Marlon, J. R., Roser-Renouf, C., Rosenthal, S. A., Gustafson, A., Kotcher, J. E., ... & Leiserowitz, A. (2019). Climate change in the American mind: Data, tools, and trends. Environment: Science and Policy for Sustainable Development, 61(3), 4–18. https://doi.org/10.1080/00139157.2019.1589300
- 2. Bamberg, S., & Möser, G. (2007). Twenty years after Hines, Hungerford, and Tomera: A new meta-analysis of psycho-social determinants of pro-environmental behaviour. Journal of Environmental Psychology, 27(1), 14–25. https://doi.org/10.1016/j.jenvp.2006.12.002
- 3. Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59, 617–645. https://doi.org/10.1146/annurev.psych.59.103006.093639
- 4. Barsalou, L. W. (2020). Challenges and opportunities for grounding cognition. Journal of Cognition, 3(1), 31. https://doi.org/10.5334/joc.116
- 5. Biswas, A., & Roy, M. (2015). Green products: An exploratory study on the consumer Behaviour in emerging economies of the East. Journal of Cleaner Production, 87(1), 463–468. https://doi.org/10.1016/j.jclepro.2014.09.075
- 6. Brower, A. (2021). Evaluating the role of social norms in fostering pro-environmental behaviors. Frontiers in Environmental Science, 9, 620125. https://doi.org/10.3389/fenvs.2021.620125
- 7. Capstick, S., et al. (2021). The effects of weather experiences on climate change attitudes and behaviors. Current Opinion in Environmental Sustainability, 52, 111–117. https://doi.org/10.1016/j.cosust.2021.09.001
- 8. Chen, Y.-S. (2010). The drivers of green brand equity: Green brand image, green satisfaction, and green trust. Journal of Business Ethics, 93(2), 307–319. https://doi.org/10.1007/s10551-009-0223-9
- 9. Clayton, S., & Karazsia, B. T. (2020). Development and validation of a measure of climate change anxiety. Journal of Environmental Psychology, 69, 101434. https://doi.org/10.1016/j.jenvp.2020.101434
- 10. Cruz, S. M., & Manata, B. (2020). Measurement of environmental concern: A review and analysis. Frontiers in Psychology, 11, Article 363. https://doi.org/10.3389/fpsyg.2020.00363
- 11. de Groot, J. I. M., Bondy, K., & Schuitema, G. (2021). Listen to others or yourself? The role of personal norms on the effectiveness of social norm interventions to change pro-environmental behavior. Journal of Environmental Psychology, 78, 101688. https://doi.org/10.1016/j.jenvp.2021.101688
- 12. Djafarova, E., & Foots, S. (2022). Exploring ethical consumption of generation Z: Theory of planned behaviour. Young Consumers, 23(3), 413-431.
- 13. Dunlap, R. E., & Van Liere, K. D. (1978). The "new environmental paradigm". The Journal of Environmental Education, 9(4), 10–19. https://doi.org/10.1080/00958964.1978.10801875

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue IX September 2025

- 14. East, R., Hammond, K., & Lomax, W. (2008). Measuring the impact of positive and negative word of mouth on brand purchase probability. International Journal of Research in Marketing, 25(3), 215–224. https://doi.org/10.1016/j.ijresmar.2008.04.001
- 15. Gifford, R. (2011). The dragons of inaction: Psychological barriers that limit climate change mitigation and adaptation. American Psychologist, 66(4), 290–302. https://doi.org/10.1037/a0023566
- 16. Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2014). Multivariate data analysis. Pearson.
- 17. Hameed, I., Hussain, H., & Khan, K. (2021/2022). The role of green practices toward the green word-of-mouth using the S-O-R model. Journal of Hospitality & Tourism Insights, 5(5), 1046–1061. https://doi.org/10.1108/JHTI-04-2021-0096
- 18. Ho, C. M.-S., Ko, K.-C., Liu, S., & Wu, C.-C. (2024). Stormy sales: The influence of weather expectations on FMCG consumption. Journal of Product & Brand Management, 33(1). https://doi.org/10.1108/JPBM-07-2023-4611
- 19. Johnstone, M. L., & Tan, L. P. (2015). Exploring the gap between consumers' green rhetoric and purchasing behaviour. Journal of Business Ethics, 132(2), 311–328. https://doi.org/10.1007/s10551-014-2316-3
- 20. Loh, L., & Tan, S. (2020). Impact of Sustainability Reporting on Brand Value: An Examination of 100 Leading Brands in Singapore. Sustainability, 12(18), 7392. https://doi.org/10.3390/su12187392
- 21. Lopes, J. M., Gomes, S., Suchek, N., & Nogueira, S. (2024). The hidden reasons behind generation Z's green choices. Discover Sustainability, 5(1), 1-17.
- 22. Milfont, T. L., & Markowitz, E. (2016). Sustainable consumer Behaviour: A multilevel perspective. Current Opinion in Psychology, 10, 112-117. https://doi.org/10.1016/j.copsyc.2015.12.016
- 23. Muñoz-Vilches, N. C., van Trijp, H. C. M., & Piqueras-Fiszman, B. (2020). Pleasure or health? The role of mental simulation in desire and food choices. Foods, 9(8), 1099. https://doi.org/10.3390/foods9081099
- 24. Ngo, Q. H., Nguyen, T. D., & Phan, N. B. (2025). Exploring green purchasing intentions and behaviours among Vietnamese Generation Z: A perspective from the theory of planned behaviour. PLoS One, 20(5), e0323879.
- 25. Nicolai, S., Franikowski, P., & Stoll-Kleemann, S. (2022). Predicting pro-environmental intention and Behaviour based on justice sensitivity, moral disengagement, and moral emotions: Results of two quota-sampling surveys. Frontiers in Psychology, 13, 914366. https://doi.org/10.3389/fpsyg.2022.914366
- 26. Ogunbode, C. A., Doran, R., Hanss, D., Ojala, M., Salmela-Aro, K., van den Broek, K. L., et al. (2022). Climate anxiety, wellbeing and pro-environmental action: correlates of negative emotional responses to climate change in 32 countries. Journal of Environmental Psychology, 84, Article 101887. https://doi.org/10.1016/j.jenvp.2022.10188
- 27. Ojala, M. (2015). Hope in the face of climate change: Associations with environmental engagement and student perceptions of teachers' emotion communication style and future orientation. The Journal of Environmental Education, 46(3), 133–148. https://doi.org/10.1080/00958964.2015.1021662
- 28. Papies, E. K., Best, M., Gelibter, E., & Barsalou, L. W. (2017). The role of simulations in consumer experiences and behavior: Insights from the grounded-cognition theory of desire. Journal of the Association for Consumer Research, 2(4), 402–418. https://doi.org/10.1086/693110
- 29. Perry, G. L., Richardson, S. J., Harré, N., Hodges, D., Lyver, P. O. B., Maseyk, F. J., ... & Brower, A. (2021). Evaluating the role of social norms in fostering pro-environmental behaviors. Frontiers in Environmental Science, 9, 620125. https://doi.org/10.3389/fenvs.2021.620125
- 30. Persakis, A., Nikolopoulos, T., Negkakis, I. C., & Pavlopoulos, A. (2025). Greenwashing in marketing: a systematic literature review and bibliometric analysis. International Review on Public and Nonprofit Marketing, 1-36. https://doi.org/10.1007/s12208-025-00452-x
- 31. Qayyum, A., Jamil, R. A., & Sehar, A. (2023). Impact of green marketing, greenwashing and green confusion on green brand equity. Spanish Journal of Marketing-ESIC, 27(3), 286-305. https://doi.org/10.1108/SJME-03-2022-0032
- 32. Schwartz, S. H. (1977). Normative influences on altruism. In L. Berkowitz (Ed.), Advances in Experimental Social Psychology (Vol. 10, pp. 221–279). Academic Press.

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue IX September 2025

- 33. Steg, L., Perlaviciute, G., van der Werff, E., & Lurvink, J. (2015). The significance of hedonic values for environmentally relevant attitudes, preferences, and actions. Environment and Behavior, 46(2), 163–192. https://doi.org/10.1177/0013916512454730
- 34. Stern, P. C., Dietz, T., Abel, T., Guagnano, G. A., & Kalof, L. (1999). A value-belief-norm theory of support for social movements: The case of environmentalism. Human Ecology Review, 6(2), 81–97.
- 35. Tan, C. N. L., Ojo, A. O., & Thurasamy, R. (2019). Determinants of green product buying decision among young consumers in Malaysia. Young Consumers, 20(2). https://doi.org/10.1108/YC-12-2018-0898
- 36. Walker, I., Reser, J., et al. (2017). Experience of extreme weather affects climate change mitigation and adaptation responses. Environmental Research Communications, 140, 149-164. https://doi.org/10.1007/s10584-016-1837-4
- 37. Zhuang, W., et al. (2021). On the factors influencing green purchase intention: A meta-analysis. Frontiers in Psychology, 12, Article 644020. https://doi.org/10.3389/fpsyg.2021.644020
- 38. Zwaan, R. A., & Pecher, D. (2012). Revisiting mental simulation in language comprehension: Six replication attempts. PLoS ONE, 7(12), e51382. https://doi.org/10.1371/journal.pone.0051382

APPENDIX

Table A1. The scenarios used as stimulus for the experimental study

Scenario A

You live in a coastal town in Terengganu, Malaysia, where the monsoon seasons are getting more intense. In the monsoon season, you have experienced severe floods that have caused damage to your home, resulting in high repair bills. The heavy rain has also made it difficult for you to travel to work/university which has had an impact on your work/academic performance. The dry seasons have been marked by an increase in heatwaves and droughts, which have made it difficult for farmers to grow crops and have led to higher food prices. The extreme weather has also taken a toll on your physical and mental well-being, making it difficult for you to enjoy your daily activities.

Scenario B

You live in Shah Alam, Malaysia, where the weather has been relatively stable. Despite hearing about the adverse weather events happening in other parts of the country, you have not been directly impacted by them. Your home and belongings have not been damaged and you have not faced any issues with food security or higher food prices. The mild weather has allowed you to continue with your daily activities without any disruptions, and you have not experienced any negative effects on your physical or mental well-being.