

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue IX September 2025

A Supercyclic Weighted Shift Has Cyclic Square

Musa Siddig¹, Amani Elseid Abuzeid², Abdalgadir Albushra³, and Shazli Mohammed⁴

¹University of Kordofan, Faculty of Science, Department of Mathematics, Sudan

²Department of Mathematics, College of Aldaier, Jazan University, Saudi Arabia

³Sudan University of Science and Technology College of Education, Department of Mathematics, Sudan

⁴University of Bahri, Colloge of Applied & Industrial Sciences ,Department of Mathematics, Sudan

DOI: https://dx.doi.org/10.47772/IJRISS.2025.909000594

Received: 27 June 2025; Accepted: 08 July 2025; Published: 21 October 2025

ABSTRACT

It is demonstrated that for a weighted abounded bilateral shift T acting on $\ell_p(\mathbb{Z})$ when $1 \le p \le 2$ supercyclicity of T, weak supercyclicity of T, cyclicity of $T \oplus T$ and cyclicity of T^2 are equivalent.

A new sufficient condition for cyclicity of a weighted bilateral shift is proved, which implies, in particular, that any compact weighted bilateral shift is cyclic.

Keywords: Cyclicity, supercyclicity, Hypercyclicity, Quasisimilarity, Weighted bilateral shifts, Banach space, bounded linear operator.

INTRODUCTION

All vector spaces in this article are assumed to be over the field \mathbb{C} of complex numbers, \mathbb{Z} is the set of whole numbers, \mathbb{Z}_+ the set of positive whole numbers , and \mathbb{N} the set of non-negative numbers.

As is customary, symbol $L(\mathbf{B})$ is the space of continuous linear functions on \mathbf{B} and \mathbf{B}^* denotes the space of bounded linear operators on a Banach space \mathbf{B} .

For $w \in \ell_{\infty}(\mathbb{Z})$ and $1 \leq p \leq \infty$, $T_{w,p}$ represents the bounded linear operator on $\ell_p(\mathbb{Z})$ if $1 \leq p < \infty$ or $c_0(\mathbb{Z})$ if $p = \infty$, described using the standard framework $\{e_n\}_{n \in \mathbb{Z}}$ by

$$T_{w,n}e_n = w_n e_{n-1}$$
 for $n \in \mathbb{Z}$.

If furthermore $w_n \neq 0$, $n \in \mathbb{Z}$, the weighted bilateral shift with the weight sequence ω is called for each operator $T_{w,p}$. We have the un weighted bilateral shift in this specific instance $w_n \equiv 1$.

Remember that if there exists $x \in B$ such that $\{T^nx : n \in \mathbb{Z}_+\}$ is dense in B, then a bounded linear operator T on a Banach space B is said to be cyclic. T is referred to as supercyclic if it has a dense B interior $\{\lambda T^nx : \lambda \in \mathbb{C}, n \in \mathbb{Z}_+\}$. T is likewise referred to as hypercyclic if there $x \in B$ such that there is a dense orbit $\{T^nx : x \in \mathbb{Z}_+\}$ in B. Lastly, if the density is necessary in relation to the weak topology, T it is referred to as weakly supercyclic or weakly hypercyclic. For further information on hypercyclicity and supercyclicity, we consult surveys [8, 9, 12]. Weakly supercyclic operators have an appealing quality in that all of their powers are cyclic and again weakly supercyclic. Ansari [2] demonstrated this result for norm supercyclicity, and the same proof holds for weak supercyclicity.

Weighted bilateral shifts cyclicity characteristics have been thoroughly researched. Salas [15, 16] described the hypercyclicity and supercyclicity of weighted bilateral shifts in terms of the weight sequences. The following simpler equivalent form of the Salas criteria is admissible, as was noted in [19, Proposition 5.1].

Theorem S. For $1 \le p \le \infty$, a weighted bilateral shift $T = T_{w,p}$ can only be considered hypercyclic if and when any $m \in \mathbb{Z}_+$

$$\lim_{n \in \infty} \max \left\{ \widetilde{w}(m-n+1,m), \left(\widetilde{w}(m+1,m+n) \right)^{-1} \right\} = 0 \tag{1.1}$$

and T it is only Supercyclic if and only when any $m \in \mathbb{Z}_+$,

$$\lim_{n \in \infty} \widetilde{w}(m - n + 1, m) \, \widetilde{w}(m + 1, m + n)^{-1} = 0, \tag{1.2}$$

where

$$\widetilde{w}(a,b) = \prod_{i=1}^{b} |w_i| \quad \text{for } a,b \in \mathbb{Z} \text{ with } a \le b.$$
 (1.3)

However, it turns out that the cyclicity of a weighted bilateral shift is a far more nuanced matter, see, for example, see [10, 11, 14, 18]. It is important to note that cyclicity of a weighted bilateral shift depends on p, in contrast to hyper- or supercyclicity. The un weighted bilateral shift, for example, is non-cyclic on $\ell_1(\mathbb{Z})$ and cyclic on $\ell_2(\mathbb{Z})$. A weighted bilateral shift might have several sufficient and necessary criteria for cyclicity; for example, Herrero's studies[10, 11] provide evidence of this.

One of the most important of these requirements is that a weighted bilateral shift T on $\ell_p(\mathbb{Z})$ for $1 \le p < \infty$ is non-cyclic if its adjoint has a non-empty point spectrum. The weighted bilateral shift $T_{w,p}$ with the weight sequence $w_n = a$ for $n \le 0$ and $w_n = b$ for n > 0 with 0 < |b| < |a| is implied to be non-cyclic for any $p \in [1,\infty]$. Beauzamy's [5] initial instance of a non-cyclic weighted bilateral shift has exactly this form.

Remember that the Supercyclicity Criterion [12] states that a bounded linear operator T on a Banach space B is said to satisfy the if there exist a strictly growing sequence $\{n_k\}_{k\in\mathbb{Z}_+}$ of positive integers, dense subsets E and F of B and an a map $S: F \to F$ such that $TS_y = \mathcal{Y}$, for every $\mathcal{Y} \in F$, and $\|T^{n_k}x\| \|S^{n_k}y\| \to 0$ as $k \to \infty$ for any $x \in E$ and $y \in F$. In [12], the next two results are demonstrated.

Theorem SC. A supercyclic operator is one that satisfies the Supercyclicity Criterion.

Theorem MS. If and only if a weighted bilateral shift on $\ell_p(\mathbb{Z})$ for $1 \le p < \infty$ or on $c_0(\mathbb{Z})$ meets supercyclicity Criterion, it can be considered Supercyclic.

The final theorem is not that mysterious. All that is required is to consider E = F the space of sequences with finite support, S being the opposite of the limitation of T to F and utilize the theorem S to identify a suitable order $\{n_k\}$. Also take note that [3, 6, 17, 19] examined the weak hypercyclicity of weighted bilateral shifts. It is demonstrated in [19] that for $p \le 2$ any weighted bilateral shift on $\ell_p(\mathbb{Z})$, it is either weakly supercyclic or supercyclic. We expand on this duality.

Theorem (1.1). The following statements are equivalent, assuming $1 \le p \le 2$ and T be a weighted bilateral shift on $\ell_p(\mathbb{Z})$:

- (C1) T fulfills the Supercyclicity requirement;
- (C2) T is supercyclic;
- (C3) T is weakly supercyclic;
- (C4) $T \oplus T$ is cyclic;
- (C5) there is $n \ge 2$ for which T^n is cyclic;
- (C6) for any $n \in N$, T^n is cyclic.

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue IX September 2025

We emphasize that there a weakly supercyclic non-supercyclic weighted bilateral shift T on $\ell_p(\mathbb{Z})$, each p > 2 as demonstrated in [19]. We can observe that (C6) (does not imply (C2) when p > 2) since powers of a weakly supercyclic operator are cyclic. This observation and equivalency of (C5), (C6) and (C2) for $p \le 2$,

Corollary (1.2). If and only if T^2 is cyclic, a weighted bilateral shift T occurring on $\ell_p(\mathbb{Z})$ with $1 \le p \le 2$ is supercyclic. However, there is a non-supercyclic weighted bilateral shift on $\ell_p(\mathbb{Z})$ for each p > 2, with powers for all of them. It is also important to remember that weak supercyclicity of weighted bilateral shifts T in [19] the necessary condition invariably results in weak supercyclicity, thus, cyclicity of $T \oplus T$. Conversely, non-supercyclic operators T created in [17,3] have the non-cyclic property. In [7] a sufficient condition for a weighted bilateral shift to be unicellular (and therefore cyclic) is given. This result together with Theorem S imply that there are cyclic non-supercyclic weighted bilateral shifts on $\ell_p(\mathbb{Z})$ for $1 \le p < \infty$ and on $c_0(\mathbb{Z})$. As a result, the requirement $n \ge 2$ in (C5) is crucial. Which relationships between the criteria apply (C1-C6) for any bounded linear operator on a separable Banach space may be easily from the Theorem's (4.1.4) proof below.

Additionally, we will demonstrate that the inference $(C5) \Rightarrow (C4)$ holds true for any weighted bilateral shift $T = T_{wT,p}$ with $1 \le p \le \infty$. However, general operators are not satisfied with the final implication. The Volterra operator $Vf(t) = \int_0^x f(t) dt$ acting on $L_2[0,1]$, for example, [13] both satisfies (C6) and does not fulfill (C4).

In conclusion, we will demonstrate an additional necessary condition for the cyclicity of a weighted bilateral shift. It is not consistent with any known sufficient condition, even the most current one that Abakumov, Atzmon and Grivaux [1] have published.

Theorem A²G. Assume that $w = \{w_n\}_{n \in \mathbb{Z}}$ is a finite series of complex numbers that not zero, $\alpha_0 = 1$, $\alpha_n = (\widetilde{w}(1,n))^{-1}$ for n > 0 and $\alpha_n = \widetilde{w}(1+n,0)$ for n < 0, the definition of the numbers $\widetilde{w}(a,b)$ is found in (1.3). Additionally, suppose that $k \in \mathbb{N}$ there a sub multiplicative sequence $\{\rho_n\}_{n \in \mathbb{Z}_+}$ of positive numbers such that $ln(\rho_n) = o(\sqrt{n})$, $\alpha - n = O(n^k)$ and

 $\alpha_n = O(\rho_n)$ as well $n \to +\infty$. In the event that the sequence $\{\alpha_n^{-1}\}_{n \in \mathbb{Z}}$ is not a part of $\ell_p(\mathbb{Z})$, where

 $\frac{1}{p} + \frac{1}{q} = 1$, the weighted bilateral shift $T = T_{w,p}$ is cyclic.

allow us to derive the following consequence right away.

This extremely complex outcome fails to provide a description of cyclicity for bilateral shifts that are weighted. The weight sequence criteria, for example, excide compact weighted bilateral shift. The following theorem is applicable to a greater range of weight sequences, although it becomes a weaker assertion when used with weight that mee Theorem's A^2G requirements.

Theorem (1.3). Let $w = \{w_n\}_{n \in \mathbb{Z}}$ be a finite series of complex numbers that are not zero, such that for any $a \in \mathbb{N}$,

$$\inf \{ \widetilde{w}(1,m)^{-1} \widetilde{w}(-j(m-a),0)^{\frac{1}{j}} : j \in \mathbb{N}, m > a \} = 0.$$
 (1.4)

The weighted bilateral shift $T_{w,p}$ is hence cyclic for $1 \le p \le \infty$.

By substituting m = a + 1 into (1.4), we get the following corollary right away.

Corollary (1.4). Let $w = \{w_n\}_{n \in \mathbb{Z}}$ be a bounded series of complex numbers that are non-zero, such that

$$\lim_{n \in +\infty} \widetilde{w} (1 - n, 0)^{1/n} = 0 \tag{1.5}$$

The weighted bilateral shift $T_{w,p}$ is hence cyclic for $1 \le p \le \infty$.

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue IX September 2025

Since $||T_{w,p}^n|| \ge ||T_{w,p}^n e_0|| = \widetilde{w}(1-n,0)$ each quasinilpotent weighted bilateral shift for each $n \in \mathbb{Z}_+$ implies that the spectral radius formula satisfies (5). It should be noted that a compact weighted bilateral shift is inherently quasinilpotent. Therefore, the following corollary is accurate.

Corollary (1.5). A weighted bilateral shift that is quasinilpotent is cyclic. Specifically, any compact weighted bilateral shift has a cyclic structure.

If we do $j \in \mathbb{N}$ in (4), the following corollary follows right away.

Corollary (1.6). Let $w = \{w_n\}_{n \in \mathbb{Z}}$ be a finite series complex numbers that are not zero, for which there exists $j \in \mathbb{N}$ such that

$$\lim_{m \to +\infty} \frac{\widetilde{w}(a-jm,0)}{(\widetilde{w}(1,m))^{j}} = 0 \text{ for every } a \in \mathbb{N}.$$
 (6)

After then, the weighted bilateral shift $T_{w,p}$ is period.

Example (1.7). Assume that a, b > 0, $0 < \alpha \le 1$ and $w = \{w_n\}_{n \in \mathbb{Z}}$ is a series of positive numbers such that $1-w_n \sim b(-n)^{-\alpha}$ as $n \to -\infty$. It is from corollary (4.1.10) that the weighted bilateral shift $T_{\omega,p}$ is cyclic for $1 \le p \le \infty$. Conversely, Theorem A^2G is only relevant if $\alpha > \frac{1}{2}$. Also take note that by Theorem S, (4.1.1). T is non-supercyclic if b < a and supercyclic if b > a.

Proof of Theorem (1.1). We begin with these three simple, well-known, yet elegant observations.

Lemma (2.1). Allow B_1 and B_2 be Banach spaces, and $T_1 \in L(B_1)$, $T_2 \in L(B_2)$ such that satisfies the existence of a bounded linear operator $J: \mathbf{B}_1 \to \mathbf{B}_2$ with dense range $T_2J = JT_1$. Consequently, cyclicity of T_1 implies cyclicity of T_2 .

Proof. Remember that span $\{T_2^nJx: n \in \mathbb{Z}_+\} = J(\text{span } \{T_1^nx: n \in \mathbb{Z}_+\})$ for every $x \in B_1$. Thus, for every cyclic vector x for T_1 , there is a cyclic vector for T_2 .

Remark. Lemma (2.1) holds true even when cyclicity is substituted with hypercyclicity, supercyclicity, weak hypercyclicity or weak supercyclicity, as demonstrated by the same argument.

Lemma (2.2). Assuming that **B** is a Banach space, and $T \in L(\mathbf{B})$, the operator $T \oplus T^*$, acting on $\mathbf{B} \times \mathbf{B}^*$ it is non-cyclic.

Proof. Let $(x, f) \in \mathbf{B} \times \mathbf{B}^*$ be distinct from zero. Consequently, the non-zero continuous linear functional F on $\mathbf{B} \times \mathbf{B}^*$ is defined by $F(\mathcal{Y}, g) = f(\mathcal{Y}) - g(x)$. We've got,

$$F(T^n x, T^{*n} f) = f(T^n x) - T^{*n} f(x) = f(T^n x) - f(T^n x) = 0$$
 for any $n \in \mathbb{Z}_+$.

Therefore, the kernel of a non-zero continuous linear functional contains orbit of any non-zero vector under $T \oplus T^*$. Consequently, $T \oplus T^*$ is not cyclic.

Corollary (2.3). Suppose that **B** is a Banach space and $T \in L(\mathbf{B})$ that there is a bounded linear operator J: $B \to B^*$ with dense range satisfies $T^*J = JT$. In that case, the operator $T \oplus T$ acting on $B \oplus B$ is not cyclical.

Proof. Given that $T^*J = JT$, we have $(T \oplus T^*)(I \oplus J) = (I \oplus J)(T \oplus T)$. Let's say that $T \oplus T$ is cyclic.

Lemma (2.1) suggests that $T \oplus T^*$ is cyclic since $I \oplus J : \mathbf{B} \times \mathbf{B} \to \mathbf{B} \times \mathbf{B}^*$ is bounded and has dense range, which is not feasible based on Lemma (2.2).

Lemma (4.1.16). On a Banach space B, let $j \in \mathbb{N}$ and T be bounded linear operator with dense range that T^j is cyclic. Additionally, let $z = e^{2\pi i/j}$. Next, the operator functioning

$$S = T \oplus zT \oplus z^2T \oplus \ldots \oplus z^{j-1}T,$$

on \boldsymbol{B}^{j} is cyclic.

Proof. For T^j , Let x be a cyclic vector. The space of polynomials on one variable with complex coefficients is $\mathcal{P} = \mathbb{C}[t]$, then $L = \{r(T^j)x : r \in \mathcal{P}\}$ dense in \mathbf{B} . The spaces $T(L), \ldots, T^{j-1}(L)$ are crowded in \mathbf{B} since T has a dense range. Verifying that $u = (x, x, \ldots, x) \in \mathbf{B}^j$ is a cyclic vector is sufficient for S. Let M be the orbit's closed linear span under $S, 0 \le k \le j-1$ and $r \in \mathcal{P}$. Then

$$S^k r(S^j) u = (T^k r(T^j) x, z^k T^k r(T^j) x, \dots, z^{k(j-1)} T^k r(T^j) x) \in M.$$

Thus, M includes the vectors of the shape $(a, z^k a, ..., T^j z^{k(j-1)a})$ for $a \in T^k(L)$ and $0 \le k \le j-1$.

Since M is closed and $T^k(L)$ dense in B, we may conclude that

$$M \supseteq N_k = \{(a, z^k a, \dots, z^{k(j-1)a}) : a \in \mathbf{B}\} \text{ for } 0 \le k \le j-1.$$

Finally, the matrix $\{z^{kl}\}_{k,l=0}^{j-1}$ is invertible since its determinant is a Vander Monde type. The latter matrix is invertible, which indicates that the union of N_k for $0 \le k \le j-1$ spans \mathbf{B}^j . As a result $M = \mathbf{B}^j$, u is a cyclic vector for S.

For weighted bilateral shifts, the final lemma can be phrased more elegantly. Remember, if $|w_n| = |u_n|$ for any $n \in \mathbb{Z}$, the weighted bilateral shifts $T_{w,p}$ and $T_{u,p}$ then are isometrically similar for each $p \in [1, \infty]$. Indeed, take the sequence $\{d_n\}_{n\in\mathbb{Z}_+}$ defined as $d_0 = 1$, $d_n = \widetilde{w}(1,n)/\widetilde{u}(1,n)$.

For $n \ge 1$ and $d_n = \tilde{u}(n+1,0)/\tilde{w}(n+1,0)$ for n < 0. Then $|d_n| = 1$ for each $n \in \mathbb{Z}_+$ and thus the diagonal operator D, it acts on the basic vectors using the formula $De_n = d_n e_n$ for $n \in \mathbb{Z}_+$, an invertible isometry. That is easy to check $T_{w,p} = D^{-1}T_{u,p}D$. That is, $T_{w,p}$ and $T_{u,p}$ are isometrically comparable. Any $T_{w,p}$ is particularly similar to $zT_{w,p}$ if $z \in \mathbb{C}$ and |z| = 1. This observation together with the previous lemma, leads to the following consequence.

Corollary (2.5). Let us consider $T = T_{w,p}$ a weighted bilateral shift that T^j is cyclic. Then $T \oplus T$ is cyclical.

Proof. According to lemma (2.4), the operator $T \oplus zT \oplus ... \oplus z^{j-1}T$ is cyclic, where $z = e^{2\pi i/j}$. Based on the preceding observation, it follows that T is similar to z^kT for $0 \le k \le j-1$. As a result, the direct sum of j copies of T is cyclic, implying that $T \oplus T$ is cyclic.

The following lemma establishes a sufficient condition for a direct sum of two weighted bilateral shifts to be non-cyclic.

Lemma (2.6). Consider w a bounded succession of non-zero complex numbers, $p_1, p_2 \in [1, \infty]$ and

$$q = q(p_1, p_2) = \begin{cases} \frac{p_1 p_2}{p_1 p_2 - p_1 - p_2} & \text{if } p_1 + p_2 < p_1 p_2, \\ \infty & \text{otherwise.} \end{cases}$$
 (2.1)

Assume there exists $m \in \mathbb{Z}_+$ such that $a = \{a_n\}_{n \in \mathbb{Z}_+} \in \ell_q$, where

$$a_n = \frac{\widetilde{w}(m+1, m+n)}{\widetilde{w}(m-n+1, m)} \quad \text{for } n \in \mathbb{Z}_+.$$
 (2.2)

Then $T_{w,p_1} \oplus T_{w,p_2}$ is non-cyclical.

Proof. For brevity $\mathbf{B}_p = \ell_p(\mathbb{Z})$ if $1 \le p < \infty$ and $\mathbf{B}_{\infty} = c_0(\mathbb{Z})$. Consider the bilateral sequence $\{d_n\}_{n \in \mathbb{Z}}$ described by

$$d_0 = 1$$
, $d_n = \prod_{j=1}^n \frac{w_j}{w_{2m+1-j}}$ if $n > 0$ and $d_n = \prod_{j=1}^{|n|} \frac{w_{2m+j}}{w_{1-j}}$ if $n < 0$.

It is easy to confirm that $d_{n+m} = d_{m-n} = (\widetilde{w}(m-n+1,m))^{-1} \widetilde{w}(1,m)a_n$ for each n > m.

Since then $a \in \ell_q$, we have $d \in \ell_q(\mathbb{Z})$. Let $p_1' \in [1, \infty]$ be defined by the formula $\frac{1}{p_1} + \frac{1}{p_1'} = 1$. Based on the definition of q, we have $\frac{1}{p_1'} \le \frac{1}{q} + \frac{1}{p_2}$.

The Hölder inequality allows us to define a bounded linear operator $J: \mathbf{B}p_2 \to \mathbf{B}p_1'$ on the canonical basis $Je_n = d_n e_{2m-n}$. It is simple to prove, by computing the values of the operators on the basic vectors (e_k, e_n) , that $(T_{\omega, p_1} \oplus S)(I \oplus J) = (I \oplus J)(T_{w, p_1} \oplus T_{w, p_2})$, where S is the bounded linear operator $\mathbf{B}_{p_1'}$ defined as $Se_n = w_{n+1}e_{n+1}$ for $n \in \mathbb{Z}$.

Assume $T_{w,p_1} \oplus T_{w,p_2}$ it is cyclical. Since $I \oplus J$ has dense range, Lemma (2.1) implies that $T_{w,p_1} \oplus S$ is cyclic, this is impossible, according to Lemma (2.2), if $1 < p_1 \le \infty$, then and if $1 \le p_1 < \infty$, then $T_{w,p_1} =$ S^* . In any case, $T_{w,p_1} \oplus S$ is the direct sum of one operator and its dual.

The following corollary is the special case $p_1 = p_2$ of the preceding lemma.

Corollary (2.7). Consider w a bounded sequence of non-zero complex numbers, p and $q = \infty$ if $p \le 2$, q =p/(p-2), if p>2. Assume that there exists $m\in\mathbb{Z}_+$ such that $a=\{a_n\}_{n\in\mathbb{Z}_+}\in\ell_q$, as stated in (8). Then $T_{w,p} \oplus T_{\omega,p}$ is not cyclic.

To show the next proposition, we use Lemma (4.1.18) in the instance

$$\frac{1}{p_1} + \frac{1}{p_2} = 1.$$

Proposition (2.8). Consider $w = \{w_n\}_{n \in \mathbb{Z}}$ a bounded series of non zero complex numbers. Then $T_{w,p}$ is supercyclic if and only if $T_{w,p} \oplus T_{w,p'}$ it is cyclic, where $\frac{1}{p} + \frac{1}{p'} = 1$.

Proof. According to theorem S, supercyclicity of $T_{w,p}$ does not depend on p. Specifically, $T_{w,p}$ is supercyclic if and only if $T_{w,n'}$ is supercyclic. So, without losing generality, we can assume that $p \leq p'$. If $T_{w,p}$ is not supercyclic, $T_{w,p}$ it satisfies the supercyclicity Criterion, according to the theorem MS. Since an operator T satisfies the supercyclicity Criterion if and only if $T \oplus T$ it does, we have that $T_{w,p} \oplus T_{w,p}$ fulfills the supercyclicity Criterion and $T_{w,p} \oplus T_{w,p}$ is hence cyclic. Since $\ell_p(\mathbb{Z}) \times \ell_p(\mathbb{Z})$ is tightly constantly in $\ell_p(\mathbb{Z}) \times \ell_{p'}(\mathbb{Z})$ if $p' < \infty$, and into $\ell_p(\mathbb{Z}) \times c_0(\mathbb{Z})$ if $p' = \infty$, we can see that cyclicity $T_{w,p} \oplus T_{w,p}$ entails cyclicity $T_{w,p} \oplus T_{w,p'}$. Thus, $T_{w,p} \oplus T_{w,p'}$ it is cyclic.

Assume that $T_{w,p}$ is not supercyclic. The presence of $m \in \mathbb{Z}_+$ such that (1.2) is not satisfied is implied by the theorem S. Then $a = \{a_n\}_{n \in \mathbb{Z}_+} \in \ell_{\infty}$ where a is defined as in (2.2). It is easy to observe (1.2) that

$$q = q(p, p') = \infty$$
. By Lemma (4.1.18), $T_{w,p} \oplus T_{w,p'}$ is not cyclic.

Proposition (2.9). Let us consider T a bounded linear operator on a separable Banach space B. Then the conditions (C1–C6) of Theorem (1.1), are connected in the following manner:

$$(C4) \leftarrow (C1) \Rightarrow (C2) \Rightarrow (C3) \Rightarrow (C6) \Rightarrow (C5).$$

Proof. By Theorem SC (4.1.2), (C1) implies (C2). The implication (C1) \Rightarrow (C4) follows from the same theorem and the fact that T satisfies the supercyclicity Criterion if and only if $T \oplus T$ does. Since the powers of a weakly supercyclic operator are weakly supercyclic, we see that (C3) implies (C6). The implications

 $(C2) \Rightarrow (C3)$ and $(C6) \Rightarrow (C5)$ are trivial.

Proof of Theorem (4.1.4). According to Corollary (2.5) (C5) implies (C4). By Theorem MS(4.1.3), (C2) implies (C1). Taking into account Proposition (2.9), we see that it suffices to show that (C4) implies (C2).

If $T \oplus T$ is cyclic on $\ell_p(\mathbb{Z}) \oplus \ell_p(\mathbb{Z})$ then, since $p \leq 2$, it is cyclic on $\ell_p(\mathbb{Z}) \oplus \ell_q(\mathbb{Z})$. By Proposition (4.1.20), T is supercyclic, which (C4) implies (C2).

Proof of Theorem (1.3). Refer to [8, p. 348–349] for general finding on universal families. Let us consider $\mathcal{F} = \{f_{\alpha} : \alpha \in A\}$ a family of continuous maps from a complete metric space X to a separable metric space. If and only if the set $\{(x, f_{\alpha}(x)) : x \in X, \alpha \in A\}$ is dense in $X \times Y$, then the set $\{x \in X : \{f_{\alpha}(x) : \alpha \in A\}$ is dense in Y} of universal elements for \mathcal{F} is dense in X.

The following theorem can be obtained by directly applying this result to the family

 $\{r(T): r \in \mathcal{P}\}\$, where T is a bounded linear operator on a Banach space.

Theorem DC. Define **B** a bounded linear operator and a separable Banach space, respectively. If and only if the set $\{(x, r(T)x): x \in B, r \in \mathcal{P}\}$ is dense in $B \times B$, then the set of cyclic vectors for T is dense in B.

When a bounded linear operator T acts on a subset of a Banach space B and is dense in B, we say that the subset A if $\bigcup_{r \in \mathcal{P}} r(T)(A)$ is cyclic. The following refinement is allowed by Theorem DC.

Corollary (3.1). Let $T: B \to B$ be a bounded linear operator, B a separable Banach space, and A, B two cyclic subsets of T. Additionally, assume that the dual operator's T^* point spectrum $\sigma_p(T^*)$ has an empty interior. Then the set of cyclic vectors for T is thus dense in B if and only if $x \in A$, $y \in B$ and $\varepsilon > 0$, there exist $u \in B$ and $r \in P$ such that for any $||x - u|| < \varepsilon$ and $||y - r(T)u|| < \varepsilon$.

Proof. The part that states 'only if' follows directly from Theorem DC. The 'if' portion still needs to be proven. Evidently

$$B \subseteq M_{\delta} = \overline{\bigcup_{r \in \mathcal{P}, x \in A} r(T)(x + \delta U)}$$
 for any $\delta > 0$, where $U = \{x \in \mathbf{B} : ||x|| < 1\}$.

As a result, for any $\delta > 0$ and $q \in \mathcal{P}$, we have $q(T)(M_{\delta}) \subseteq M_{\delta}$ and for that reson $q(T)(B) \subseteq M_{\delta}$. Given that every M_{δ} is closed and \boldsymbol{B} is cyclic, we have $M_{\delta} = \boldsymbol{B}$ for every $\delta > 0$. Let \mathcal{P}^{\dagger} be the collection of polynomials $q \in \mathcal{P}$ with all of zeros in $\mathcal{C} \setminus \sigma_p(T^*)$. Then q(T) provides a wide range for any $q \in \mathcal{P}^{\dagger}$ Specifically, we observe that the set

$$q(T)\left(\bigcup_{r\in\mathcal{P},x\in A}r(T)(x+\delta U)\right)=\bigcup_{r\in\mathcal{P},x\in A}r(T)\left(q(T)x+\delta q(T)(U)\right)$$

is thick **B** for all purposes $\delta > 0$ and $q \in \mathcal{P}^{\dagger}$. Lastly, given that $q(T)(U) \subseteq ||q(T)||U$ our data

 $\bigcup_{r\in\mathcal{P},x\in q(T)(A)} r(T)(x+\varepsilon U)$ is dense **B** for every $\varepsilon>0$ and $q\in\mathcal{P}^{\dagger}$.

Using the concept of \mathcal{P}^{\dagger} and cyclicity of A for T, we obtain $\bigcup_{q\in\mathcal{P}^{\dagger}}q(T)(A)$ Since $\sigma p(T^{*})$ has empty interior.

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue IX September 2025

There is density in \mathbf{B} the set of cyclic vectors for T by Theorem DC.

We'll use the corollary mentioned above for weighted bilateral shifts. The sentence that follows is an example of a corollary (3.1).

Corollary (3.2). Let $\{f_i\}_{i\in\mathbb{Z}}$ be a sequence of elements of **B** such that $\{f_i:j\in\mathbb{Z}\}$ is dense in **B** and

The final two visualizations suggest that the collection $\{(x, r(T)x) : x \in B, r \in P\}$ is dense in $B \times B$.

 $Tf_j = f_j + 1$ for each $n \in \mathbb{Z}$, and let T be a bounded linear operator on a Banach space. If and only if there exists $r \in \mathcal{P}$ and $u \in \mathbf{B}$ such that $||f_{-k} - u|| \le \varepsilon$ and $||f_{-n} - r(T)u|| \le \varepsilon$ and for any $n, k \in \mathbb{N}$, n > k and any $\varepsilon > 0$, then the set of cyclic vectors for T is dense.

Proof. The condition 'only if' is a superfluous outcome of Theorem DC. The 'if' portion still needs to be proven. Let $A = \{f_m : m < 0\}$. Given that $Tf_j = f_{j+1}$ each $n \in \mathbb{Z}$ of the things we have

 $\bigcup_{r \in \mathcal{P}} r(T)(A) = \operatorname{span} \{f_i : j \in \mathbb{Z}\} \text{ is dense in } \boldsymbol{B}.$

Thus, A a cyclic set is T. Allow $x, y \in A$. Then $x = e_{-k}$ and $y = e_{-n}$ in some cases $k, n \in \mathbb{N}$. If $n \le k$, then a constant $c \in \mathbb{C}$ such that r(T)x = y, where $r(Z) = cZ^{k-n}$ exists. Specifically, $||x - u|| = 0 < \varepsilon$ and $||y - r(T)u|| = 0 < \varepsilon$ for u = x regarding any $\varepsilon > 0$. If n > k and $\varepsilon > 0$ when the presumptions are met, there is $r \in \mathcal{P}$ and $u \in \mathbf{B}$ so that $||x - u|| < \varepsilon$ and $||y - r(T)u|| < \varepsilon$. There is still corollary (3.1) to apply.

Proposition (3.3). Let $\{f_j\}_j \in \mathbb{Z}$ be a sequence of elements of \mathbf{B} such that $\operatorname{span}\{f_j : j \in \mathbb{Z}\}$ is dense in \mathbf{B} , and let T be a bounded linear operator on a Banach space \mathbf{B} and $Tf_j = f_{j+1}$ for each $j \in \mathbb{Z}$.

Moreover, suppose that

$$\inf \{ \|f_{-m}\| \|f_{(m-a)j}\|^{1/j} : j \in \mathbb{N} \ m \geqslant a \} = 0 \text{ for any } a \in \mathbb{N}.$$
 (9)

Then *T* contains a dense collection of cyclic vectors.

Proof. Suppose $\varepsilon > 0$ and $n, k \in \mathbb{N}$ are such that n > k. We examine $x_m \in \mathbf{B}$ and discuss a polynomial $q_{j,m}$ defined by for any $j \in \mathbb{N}$ and $m \ge n > k$,

$$x_m = f_{-k} - \frac{\varepsilon}{\|f_{-m}\|} f_{-m} \text{ and } q_{j,m}(\mathcal{Z}) = -\frac{\|f_{-m}\|\mathcal{Z}^{m-n}}{\varepsilon} \sum_{i=0}^{j-1} \left(\frac{\|f_{-m}\| \mathcal{Z}^{m-k}}{\varepsilon} \right)^i.$$

It is simple to verify that $q_{j,m}(T)x_m = f_{-n} - (\|f_{-m}\|/\varepsilon)^j f_{(m-k)j-n}$ by using the fact that $Tf_l = f_{l+1}$ for each $l \in \mathbb{Z}$ and the summation formula for a finite geometric progression. Therefore

$$||q_{j,m}(T)x_m - f_{-n}|| = ||(||f_{-m}||/\varepsilon)^j f_{(m-k)j-n}||.$$

Assume a = n + k for the moment that $m \ge a$. Next

$$|||f_{(m-k)j-n}|| = |||f_{(m-a)j+n(j-1)k}|| = ||T^{n(j-1)}f_{(m-a)j}|| \le ||T^n||^{j-1}||f_{(m-a)j}||.$$

The last two shows provide us with

$$||q_{j,m}(T)x_m - f_{-n}|| \le (||f_{-m}||/\varepsilon)^j ||T^n||^{j-1} ||f_{(m-a)j}||.$$

Therefore, it can be determined that $j \in \mathbb{N}$ and $m \ge a$ such that the inequality above's right hand side does not exceed ε . In this instance $||q_{j,m}(T)x_m - f_{-n}|| \le \varepsilon$. Given that Corollary (3.2) implies that T possesses a dense set of cyclic vectors, it follows that $||x_m - f_{-k}|| = \varepsilon$ from the definition of x_m .

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue IX September 2025

Proof of Theorem (1.3). We have previously stated that $|\omega_n| = |u_n|$, for any $n \in \mathbb{Z}$, the weighted bilateral shifts $T_{\omega,p}$ and $T_{u,p}$ are isometrically comparable for each $p[1,\infty]$. Therefore, we can presume, without losing generality, that $\omega_n > 0$ for each $n \in \mathbb{Z}$.

Allow $f_n = c_n e_{-n}$ for $n \in \mathbb{Z}$, where $c_n = 1$ if n = 0, $c_n = \widetilde{\omega}(1 - n, 0)$ if n > 0 and $c_n = (\widetilde{\omega}(1, -n))^{-1}$ if n < 0. Seeing that $Tf_n = f_{n+1}$ for each $n \in \mathbb{Z}$. Clearly span{ $f_n : n \in \mathbb{Z}$ } = span { $e_n : n \in \mathbb{Z}$ } is dense is simple. Since is now $||f_n|| = c_n$, (9) is equal to (4), it is still necessary to apply Proposition (3.3).

Final thoughts

Another dichotomy for weighted bilateral shifts is presented in [20], which is also worth mentioning. In particular, if there T is a weighted bilateral shift on $\ell_p(\mathbb{Z})$ with $1 , then it is either T, <math>T^n x / \|T^n x\|$ weakly convergent to zero or Supercyclic as $n \to \infty$ for each non-zero $x \in \ell_n(\mathbb{Z})$. Similarly, weighted bilateral shifts on $c_0(\mathbb{Z})$ succeed and weighted bilateral shifts on $\ell_1(\mathbb{Z})$ fail. We want to emphasize that the following issue is yet unresolved.

REFERENCES

- 1. E.Abakumov7A.AtzmonandS.Grivaux7C9clicit9of?ic9clicoperatorsandcompletenessoftranslates [preprint]
- 2. S.Ansari7 H9perc9clicandc9clicvectors] J.Funct.Anal. 128 (1995)7374-383
- 3. BayartandE.Matheron7H9ponormaloperators]ueightedshiftsandueakformsofsuperc9clicit9]
- 4. Proc.Roy.Eninb.Math.Soc. 49 (2006)71-15 Hereditaril9h9perc9clicoperators] J.Funct.Anal. 167 (1999)794-112
- 5. B.Beauzamy7 Aueighted?ilateralshiftuithnoc9clicvector] J.OperatorTheory 4 (1980)7287-288
- 6. K.ChanandR.Sanders7Aueakl9h9perc9clicoperatorthatisnotnormh9perc9clic]J.OperatorTheory 52 (2004)739-59
- 7. Y.Domar Translationinvariantsu?spacesofueighted k p and L p spaces Math.Scand. 49 (1981) 7 133-
- 8. K.Grosse-Erdmann7 universalfamiliesandh9perc9clicoperators] Bull.Amer.Math.Soc. 36 (1999)7 345-381
- Recentdevelopmentsinh9perc9clicit9]RACSAMRev.R.Acad.Cienc.Exactas 9. K.Grosse-Erdmann7 Fis.Nat.Ser.AMat. 97 (2003)7273-286
- 10. D.Herrero7 Eigenvectorsandc9clicvectorsfor?ilateralueightedshi fts] Rev.un.Mat.Argentina 26 (1972/73)724-41
- 11. D.Herrero7Eigenvectorsandc9clicvectorsof?ilateralueightedshiftsJJ:Simpl9invariantsu?spaces]Integral EquationsOperatorTheory 6 (1983)7515-524 Superc9clicsu?spaces:spectraltheor9andueightedshifts]
- 12. Adv. Math. 163 (2001)774-134 Non-ueakl9superc9clicoperators] J.OperatorTheory[to appear]
- 13. N.Nikolskii7 Selectedpro?lemsofueightedapprosimationandspectralanal9sis] Amer.Math.Soc.7 Providence7R.I.71976
- 14. H.Salas7 H9perc9clicueightedshifts] Trans. Amer. Math. Soc. 347 (1995)7993-1004
- 15. H.Salas7 Superc9clicit9andueightedshifts] StudiaMath. 135 (1999)755-74
- 16. R.Sanders7 Anisometric?ilateralshiftthatisueakl9superc9clic IntegralEquationsOperatorTheory (2005)7547-552
- 17. A.Shields7 weightedshiftoperatorsandanal9ticfunctiontheor9] Math.Surveys 137Amer.Math.Soc.7 Providence7R.I.71974
- 18. S.Shkarin 7Non-sequentialueaksuperc9clicit9andh9perc9clicit9 J.Funct.Anal. 242 (2007)737-77
- 19. S.Shkarin7Antisuperc9clicoperatorsandor?itsofthevolterraoperator]J.Lond.Math.Soc. 73 (2006)7 506-528