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ABSTRACT   

It is demonstrated that for a weighted abounded bilateral shift  𝑇  acting on ℓ𝑝( ℤ ) when  1 ≤  𝑝 ≤ 2 

supercyclicity of  𝑇, weak supercyclicity of  𝑇, cyclicity of  𝑇 ⊕ 𝑇 and cyclicity of  𝑇2  are equivalent. 

A new sufficient condition for cyclicity of  a weighted bilateral shift is proved, which implies, in particular, 

that any compact weighted bilateral shift is cyclic. 

Keywords: Cyclicity, supercyclicity, Hypercyclicity, Quasisimilarity, Weighted bilateral shifts, Banach space, 

bounded linear operator. 

INTRODUCTION 

All vector spaces in this article are assumed to be over the field ℂ of complex numbers, ℤ is the set of whole 

numbers, ℤ+ the set of positive whole numbers , and ℕ the set of non-negative numbers. 

As is customary, symbol 𝐿(𝜝) is the space of continuous linear functions on 𝜝 and 𝜝∗ denotes the space of 

bounded linear operators on a Banach space 𝜝. 

For 𝑤 ∈ ℓ∞( ℤ )  and 1 ≤  𝑝 ≤ ∞,  𝑇𝑤,𝑝  represents the bounded linear operator on ℓ𝑝( ℤ) if 1 ≤  𝑝 < ∞  or 

𝑐0( ℤ ) if  𝑝 = ∞, described using the standard framework  {𝑒𝑛}𝑛∈ ℤ  by 

𝑇𝑤,𝑝𝑒𝑛 = 𝑤𝑛𝑒𝑛−1    for    𝑛 ∈ ℤ . 

If furthermore  𝑤𝑛 ≠ 0 , 𝑛 ∈ ℤ , the weighted bilateral shift with the weight sequence 𝜔 is called for each 

operator  𝑇𝑤,𝑝  . We have the un weighted bilateral shift in this specific instance  𝑤𝑛 ≡ 1. 

Remember that if there exists  𝑥 ∈ 𝜝 such that  {𝑇𝑛𝑥 ∶  𝑛 ∈ ℤ+} is dense in 𝐵, then a bounded linear operator 

 𝑇 on a Banach space 𝜝 is said to be cyclic. 𝑇 is referred to as supercyclic if it has a dense 𝜝 interior {𝜆𝑇𝑛𝑥 ∶
 𝜆 ∈ ℂ, 𝑛 ∈ ℤ+}. 𝑇 is likewise referred to as hypercyclic if there 𝑥 ∈ 𝜝 such that there is a dense orbit {𝑇𝑛𝑥 ∶
𝑥 ∈ ℤ+} in 𝐵. Lastly, if the density is necessary in relation to the weak topology, 𝑇 it is referred to as weakly 

supercyclic or weakly hypercyclic. For further information on hypercyclicity and supercyclicity, we consult 

surveys [8, 9, 12]. Weakly supercyclic operators have an appealing quality in that all of their powers are cyclic 

and again weakly supercyclic . Ansari [2] demonstrated this result for norm supercyclicity, and the same proof 

holds for weak supercyclicity. 

Weighted bilateral shifts  cyclicity characteristics have been thoroughly researched. Salas [15, 16] described 

the hypercyclicity and supercyclicity of weighted bilateral shifts in terms of the weight sequences.The 

following simpler equivalent form of the Salas criteria is admissible, as was noted in [19, Proposition 5.1] . 
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Theorem S. For  1 ≤  𝑝 ≤ ∞ ,  a weighted bilateral shift  𝑇 = 𝑇𝑤,𝑝 can only be considered hypercyclic if and 

when any m ∈ ℤ+ 

 lim
𝑛∈∞

max {𝑤̃(𝑚 − 𝑛 + 1, 𝑚), ( 𝑤̃(𝑚 + 1, 𝑚 + 𝑛))
−1

} = 0                                                      (1.1) 

and 𝑇  it is only Supercyclic if and only when any m ∈ ℤ+, 

lim
𝑛∈∞

𝑤̃(𝑚 − 𝑛 + 1, 𝑚) 𝑤̃(𝑚 + 1, 𝑚 +  𝑛)−1 = 0,                          (1.2) 

where 

𝑤̃(𝑎, 𝑏) = ∏ |𝑤𝑗|     𝑏
𝑗=1 for  𝑎, 𝑏 ∈ ℤ   with   𝑎 ≤ 𝑏.                      (1.3) 

However, it turns out that the cyclicity of a weighted bilateral shift is a far more nuanced matter, see, for 

example, see [10, 11, 14, 18]. It is important to note that cyclicity of a weighted bilateral shift depends on 𝑝, in 

contrast to hyper- or supercyclicity. The un weighted bilateral shift, for example, is non-cyclic on ℓ1(ℤ) and 

cyclic on ℓ2(ℤ) . A weighted bilateral shift might have several sufficient and necessary criteria for cyclicity ; 

for example, Herrero’s studies[10, 11] provide evidence of this. 

One of the most important of these requirements is that a weighted bilateral shift  𝑇 on ℓ𝑝(ℤ) for  1 ≤ 𝑝 < ∞  

is non-cyclic if its adjoint has a non-empty point spectrum. The weighted bilateral shift  𝑇𝑤,𝑝 with the weight 

sequence  𝑤𝑛 = 𝑎   for 𝑛 ≤ 0  and 𝑤𝑛 = 𝑏  for  𝑛 > 0  with 0 < |𝑏| < |𝑎|  is implied to be non-cyclic for 

any  𝑝 ∈ [1, ∞]. Beauzamy’s [5] initial instance  of a non-cyclic weighted bilateral shift has exactly this form. 

Remember that the Supercyclicity Criterion [12] states that  a bounded linear operator  𝑇 on a Banach space 𝜝 

is said to satisfy the if there exist a strictly growing sequence {𝑛𝑘}𝑘∈ ℤ+  of positive integers, dense subsets 𝐸 

and 𝐹 of  𝜝 and an a map 𝑆 ∶ 𝐹 → 𝐹 such that  𝑇𝑆𝒴 = 𝒴, for every 𝒴 ∈ 𝐹 , and ‖𝑇𝑛𝑘𝑥‖ ‖𝑆𝑛𝑘𝒴‖ → 0 as 𝑘 →

∞ for any 𝑥 ∈ 𝐸 and 𝑦 ∈ 𝐹 . In [12], the next two results are demonstrated. 

Theorem SC.  A supercyclic operator is one that satisfies the Supercyclicity  Criterion. 

Theorem MS. If and only if a weighted bilateral shift on ℓp(ℤ)  for  1 ≤ p < ∞  or on c0(ℤ)  meets 

supercyclicity Criterion, it can be considered Supercyclic. 

The final theorem is not that mysterious. All that is required is to consider 𝐸 = 𝐹 the space of sequences with 

finite support,  𝑆 being the opposite of the limitation of  𝑇 to 𝐹 and utilize the theorem 𝑆 to identify a suitable 

order {𝑛𝑘}. Also take note that [3, 6, 17, 19] examined the weak hypercyclicity of weighted bilateral shifts. It is 

demonstrated in [19] that for 𝑝 ≤ 2 any weighted bilateral shift on ℓ𝑝(ℤ) , it is either weakly supercyclic or 

supercyclic. We expand on this duality. 

Theorem (𝟏. 𝟏). The following statements are equivalent, assuming  1 ≤ 𝑝 ≤ 2 and  T be a weighted bilateral 

shift on  ℓp(ℤ) : 

(C1) 𝑇 fulfills the Supercyclicity requirement; 

(C2) 𝑇 is supercyclic; 

(C3) 𝑇 is weakly supercyclic; 

(C4) 𝑇 ⊕ 𝑇 is cyclic; 

(C5) there is  𝑛 ≥ 2 for which 𝑇𝑛 is cyclic; 

(C6) for any  𝑛 ∈ 𝑁, 𝑇𝑛  is cyclic. 
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We emphasize that there a weakly supercyclic non-supercyclic weighted bilateral shift 𝑇 on ℓ𝑝(ℤ ) , each 𝑝 >

2 as demonstrated in [19] . We can observe that (𝐶6) (does not imply (𝐶2) when  𝑝 > 2 ) since powers of a 

weakly supercyclic operator are cyclic. This observation and equivalency of (𝐶5), (𝐶6) and (𝐶2) for  𝑝 ≤ 2, 

allow us to derive the following consequence right away. 

Corollary (𝟏. 𝟐).  If and only if  𝑇2 is cyclic, a weighted bilateral shift 𝑇 occurring on ℓp(ℤ) with 1 ≤ p ≤ 2 is 

supercyclic. However, there is a non-supercyclic weighted bilateral shift on ℓp(𝕫) for each p > 2, with powers 

for all of them. It is also important to remember that weak supercyclicity of weighted bilateral shifts 𝑇 in 

[19] the necessary condition invariably results in weak supercyclicity, thus, cyclicity of  𝑇 ⊕ 𝑇. Conversely, 

non-supercyclic operators 𝑇 created in [17, 3] have the non-cyclic property. In [7] a sufficient condition for a 

weighted bilateral shift to be unicellular (and therefore cyclic) is given. This result together with Theorem S 

imply that there are cyclic non-supercyclic weighted bilateral shifts on ℓ𝑝(ℤ) for 1 ≤ 𝑝 < ∞  and on 𝑐0(ℤ). As 

a result, the requirement 𝑛 ≥ 2 in (𝐶5) is crucial. Which relationships between the criteria apply (𝐶1– 𝐶6) for 

any bounded linear operator on a separable Banach space may be easily from the Theorem’s (4.1.4) proof 

below. 

Additionally, we will demonstrate that the inference (𝐶5) ⟹ (𝐶4) holds true for any weighted bilateral shift 

 𝑇 = 𝑇𝑤𝑇,𝑝  with 1 ≤ 𝑝 ≤ ∞ . However, general operators are not satisfied with the final implication. The 

Volterra operator  𝑉𝑓(𝑡) = ∫ 𝑓(𝑡)
𝑥

0
𝑑𝑡  acting on  𝐿2[0, 1] , for example , [13] both satisfies (𝐶6) and does not 

fulfill (𝐶4). 

In conclusion, we will demonstrate an additional necessary condition for the cyclicity of a weighted bilateral 

shift. It is not consistent with any known sufficient condition, even the most current one that Abakumov, 

Atzmon and Grivaux [1] have published. 

Theorem 𝐀𝟐𝐆. Assume that  𝑤 =  {𝑤𝑛}𝑛∈ℤ  is a finite series of complex numbers that not zero, 𝛼0 = 1, 𝛼𝑛 =
(𝑤̃(1, 𝑛))−1 for  𝑛 >  0 and 𝛼𝑛 = 𝑤̃(1 + 𝑛, 0)  for  𝑛 < 0, the definition of the numbers 𝑤̃(𝑎, 𝑏) is found in 

(1.3). Additionally, suppose that 𝑘 ∈ ℕ  there a sub multiplicative sequence {𝜌𝑛}𝑛∈ℤ+
 of positive numbers such 

that  𝑙𝑛(𝜌𝑛) = 𝑜(√𝑛), 𝛼 − 𝑛 = 𝑂(𝑛𝑘) and 

 𝛼𝑛 = 𝑂(𝜌𝑛)  as well 𝑛 → +∞. In the event that the sequence {𝛼𝑛
−1}𝑛∈ℤ is not a part of  ℓp( ℤ ), where  

  
1

𝑝
 +  

1

𝑞
 = 1 , the weighted bilateral shift  𝑇 = 𝑇𝑤,𝑝  is cyclic . 

This extremely complex outcome fails to provide a description of cyclicity for bilateral shifts that are 

weighted. The weight sequence criteria, for example, excide compact weighted bilateral shift. The following 

theorem is applicable to a greater range of weight sequences, although it becomes a weaker assertion when 

used with weight that mee Theorem’s 𝐴2𝐺  requirements. 

Theorem (𝟏. 𝟑). Let 𝑤 = {𝑤𝑛}𝑛∈ℤ  be a finite series of complex numbers that are not zero,  such that for any 

𝑎 ∈ ℕ , 

inf  { 𝑤̃(1, 𝑚)−1 𝑤̃(−𝑗(𝑚 –  𝑎), 0)
1
𝑗 ∶  𝑗 ∈ ℕ, 𝑚 > 𝑎}  =  0.                              (1.4) 

The weighted bilateral shift 𝑇𝑤,𝑝 is hence cyclic for  1 ≤ 𝑝 ≤ ∞. 

By substituting  𝑚 = 𝑎 + 1 into (1.4), we get the following corollary right away. 

Corollary (1.4). Let  𝑤 =  {𝑤𝑛}𝑛∈ℤ be a bounded series of complex numbers that are non-zero, such that 

lim
𝑛∈+∞

𝑤̃(1 −  𝑛 ,0)1 𝑛⁄ = 0                                                          (1.5) 

The weighted bilateral shift 𝑇𝑤,𝑝 is hence cyclic for 1 ≤  𝑝 ≤ ∞. 
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Since ‖𝑇𝑤.𝑝
𝑛 ‖ ≥ ‖𝑇𝑤.𝑝

𝑛 𝑒0‖ = 𝑤̃(1 − 𝑛, 0) each quasinilpotent weighted bilateral shift for each  𝑛 ∈ 𝑍+ implies 

that the spectral radius formula satisfies (5).  It should be noted that a compact weighted bilateral shift is 

inherently quasinilpotent. Therefore, the following corollary is accurate. 

Corollary (𝟏. 𝟓).   A weighted bilateral shift that is quasinilpotent is cyclic. Specifically, any compact 

weighted bilateral shift has a cyclic structure. 

If we do 𝑗 ∈ ℕ in (4), the following corollary follows right away. 

Corollary (𝟏. 𝟔). Let  𝑤 = {𝑤𝑛}𝑛∈ℤ   be a finite series complex numbers that are not zero, for which there 

exists  𝑗 ∈ ℕ such that  

lim
𝑚⟶+∞

𝑤̃(𝑎−𝑗𝑚,0)

(𝑤̃(1,𝑚))
𝑗 = 0  for every  𝑎 ∈ ℕ.                                  (6) 

After then, the weighted bilateral shift 𝑇𝑤,𝑝 is period. 

Example (𝟏. 𝟕).  Assume that 𝑎, 𝑏 > 0, 0 < 𝛼 ≤ 1 and  𝑤 = {𝑤𝑛}𝑛∈𝕫  is a series of positive numbers such 

that  1 − 𝑤𝑛 ∼ 𝑏(−𝑛)−𝛼  as 𝑛 → −∞ . It is from corollary (4.1.10) that the weighted bilateral shift  𝑇𝜔,𝑝  is 

cyclic for  1 ≤ 𝑝 ≤ ∞. Conversely, Theorem 𝐴2𝐺 is only relevant if  𝛼 >
1

2
 . Also take note that by Theorem 

 𝑆, (4.1.1).  𝑇 is non-supercyclic if 𝑏 < 𝑎  and supercyclic if  𝑏 > 𝑎   . 

Proof of Theorem (𝟏. 𝟏). We begin with these three simple, well- known, yet elegant observations. 

Lemma (𝟐. 𝟏).  Allow  𝜝1  and  𝜝2  be Banach spaces, and 𝑇1 ∈ 𝐿(𝜝1), 𝑇2 ∈ 𝐿(𝜝2) such that satisfies the 

existence of a bounded linear operator 𝐽: 𝜝1 → 𝜝2 with dense range 𝑇2𝐽 =  𝐽𝑇1. Consequently, cyclicity of  𝑇1 

implies cyclicity of  𝑇2. 

Proof. Remember that span{𝑇2
𝑛𝐽𝑥: 𝑛 ∈ ℤ+} =  𝐽(span {𝑇1

𝑛 𝑥 ∶ 𝑛 ∈ ℤ+}) for every  𝑥 ∈ 𝜝1 . Thus, for every 

cyclic vector 𝑥 for  𝑇1 , there is a cyclic vector for  𝑇2. 

𝐑𝐞𝐦𝐚𝐫𝐤 . Lemma (2.1) holds true even when cyclicity is substituted with hypercyclicity, supercyclicity, 

weak hypercyclicity or weak supercyclicity, as demonstrated by the same argument.  

Lemma (𝟐. 𝟐). Assuming that 𝜝 is a Banach space, and 𝑇 ∈ 𝐿(𝜝), the operator  𝑇 ⊕ 𝑇∗,  acting on  𝜝 × 𝜝∗ it 

is non-cyclic. 

Proof.  Let (𝑥, 𝑓) ∈ 𝜝 × 𝜝∗ be distinct from zero. Consequently, the non-zero continuous linear functional 𝐹 

on 𝜝 × 𝜝∗ is defined by  𝐹(𝒴, 𝑔) = 𝑓(𝒴) − 𝑔(𝑥). We’ve got, 

𝐹(𝑇𝑛𝑥, 𝑇∗𝑛𝑓) = 𝑓(𝑇𝑛𝑥) − 𝑇∗𝑛𝑓(𝑥) = 𝑓(𝑇𝑛𝑥) − 𝑓(𝑇𝑛𝑥) = 0  for any  𝑛 ∈ ℤ+. 

Therefore , the kernel of a non-zero continuous linear functional contains orbit of any non-zero vector under 

𝑇 ⊕ 𝑇∗.  Consequently , 𝑇 ⊕ 𝑇∗ is not cyclic. 

Corollary (𝟐. 𝟑). Suppose that 𝜝 is a Banach space and 𝑇 ∈ 𝐿(𝜝) that there is a bounded linear operator 𝐽 ∶
𝜝 → 𝜝∗   with dense range satisfies  𝑇∗𝐽 = 𝐽𝑇.  In that case, the operator  𝑇 ⊕ 𝑇  acting on 𝜝 ⊕  𝜝  is not 

cyclical. 

Proof.  Given that  𝑇∗𝐽 = 𝐽𝑇,  we have (𝑇 ⊕ 𝑇∗)(𝐼 ⊕ 𝐽) = (𝐼 ⊕ 𝐽)(𝑇 ⊕ 𝑇). Let’s say that  𝑇 ⊕ 𝑇 is cyclic. 

Lemma (2.1) suggests that 𝑇 ⊕ 𝑇∗ is cyclic since 𝐼 ⊕ 𝐽: 𝜝 × 𝜝 → 𝜝 × 𝜝∗  is bounded and has dense range, , 

which is not feasible based on Lemma (2.2). 
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Lemma (𝟒. 𝟏. 𝟏𝟔). On a Banach space 𝜝,  let  𝑗 ∈ ℕ and 𝑇 be bounded linear operator with dense range that 

𝑇𝑗 is cyclic. Additionally, let  𝓏 = 𝑒2𝜋𝑖 𝑗⁄ . Next, the operator functioning  

𝑆 = 𝑇 ⊕ 𝓏𝑇 ⊕ 𝓏2𝑇 ⊕ . . .⊕ 𝓏 𝑗−1𝑇, 

on  𝜝𝑗 is cyclic. 

Proof. For  𝑇𝑗,  Let  𝑥 be a cyclic vector. The space of polynomials on one variable with complex coefficients 

is  𝒫 = ℂ[𝑡], then 𝐿 = {𝑟(𝑇𝑗)𝑥 ∶ 𝑟 ∈ 𝒫} dense in 𝜝. The spaces 𝑇(𝐿), . . . , 𝑇𝑗−1(𝐿) are crowded in 𝜝 since 𝑇 

has a dense range. Verifying that 𝑢 = (𝑥, 𝑥, . . . , 𝑥) ∈ 𝜝𝑗  is a cyclic vector is sufficient for 𝑆. Let  𝑀 be the 

orbit’s closed linear span under  𝑆, 0 ≤ 𝑘 ≤ 𝑗 − 1 and 𝑟 ∈ 𝒫. Then 

𝑆𝑘𝑟(𝑆𝑗)𝑢 =  (𝑇𝑘𝑟(𝑇𝑗)𝑥, 𝓏𝑘𝑇𝑘𝑟(𝑇𝑗)𝑥, . . . , 𝓏𝑘(𝑗−1)𝑇𝑘𝑟(𝑇𝑗)𝑥) ∈ 𝑀. 

Thus, 𝑀 includes the vectors of the shape (𝑎, 𝓏𝑘𝑎, . . . , 𝑇𝑗𝓏𝑘(𝑗−1)𝑎)  for  𝑎 ∈  𝑇𝑘(𝐿) and 0 ≤ 𝑘 ≤ 𝑗 − 1. 

Since 𝑀 is closed and  𝑇𝑘(𝐿) dense in B, we may conclude that  

 𝑀 ⊇ 𝑁𝑘 = {(𝑎, 𝓏𝑘𝑎, . . . , 𝓏𝑘(𝑗−1)𝑎): 𝑎 ∈ 𝜝}  for  0 ≤ 𝑘 ≤ 𝑗 − 1. 

Finally, the matrix  {𝓏𝑘𝑙}𝑘,𝑙=0
𝑗−1

  is invertible since its determinant is a Vander Monde type. The latter matrix is 

invertible, which indicates that the union of  𝑁𝑘 for  0 ≤ 𝑘 ≤ 𝑗 – 1 spans  𝜝𝑗. As a result 𝑀 = 𝜝𝑗 , 𝑢 is a cyclic 

vector for 𝑆. 

For weighted bilateral shifts, the final lemma can be phrased more elegantly. Remember, if |𝑤𝑛| = |𝑢𝑛| for 

any 𝑛 ∈ ℤ , the weighted bilateral shifts 𝑇𝑤,𝑝 and 𝑇𝑢,𝑝 then are isometrically similar for each 𝑝 ∈ [1, ∞]. Indeed, 

take the sequence {𝑑𝑛}𝑛∈ℤ+   defined as 𝑑0 = 1,  𝑑𝑛 = 𝑤̃(1, 𝑛)/𝑢̃(1, 𝑛). 

For  𝑛 ⩾ 1  and 𝑑𝑛 = 𝑢̃(𝑛 + 1, 0)/ 𝑤̃(𝑛 + 1, 0)  for 𝑛 < 0.  Then |𝑑𝑛| = 1  for each 𝑛 ∈ ℤ+  and thus the 

diagonal operator 𝐷, it acts on the basic vectors using the formula 𝐷𝑒𝑛 = 𝑑𝑛𝑒𝑛  for  𝑛 ∈ ℤ+,  an invertible 

isometry. That is easy to check  𝑇𝑤,𝑝 = 𝐷−1𝑇𝑢,𝑝𝐷. That is, 𝑇𝑤,𝑝 and 𝑇𝑢,𝑝  are isometrically comparable. Any  

𝑇𝑤,𝑝 is particularly similar to 𝓏𝑇𝑤,𝑝 if  𝓏 ∈ ℂ  and |𝓏| = 1. This observation together with the previous lemma, 

leads to the following consequence. 

Corollary (𝟐. 𝟓).  Let us consider  𝑇 = 𝑇𝑤,𝑝  a weighted bilateral shift that 𝑇𝑗 is cyclic. Then 𝑇 ⊕ 𝑇 is cyclical. 

Proof. According to lemma (2.4), the operator 𝑇 ⊕ 𝓏𝑇 ⊕ . . .⊕ 𝓏 𝑗−1𝑇  is cyclic, where 𝓏 = 𝑒2𝜋𝑖 𝑗⁄ .  Based on 

the preceding observation, it follows that 𝑇 is similar to 𝓏𝑘𝑇  for  0 ≤ 𝑘 ≤ 𝑗 − 1. As a result, the direct sum of  

𝑗 copies of  𝑇 is cyclic, implying that 𝑇 ⊕ 𝑇 is cyclic. 

The following lemma establishes a sufficient condition for a direct sum of two weighted bilateral shifts to be 

non-cyclic. 

Lemma (𝟐. 𝟔). Consider 𝑤 a bounded succession of non-zero complex numbers, 𝑝1, 𝑝2 ∈ [1, ∞] and 

          𝑞 = 𝑞(𝑝1, 𝑝2) = {

𝑝1𝑝2

𝑝1𝑝2 − 𝑝1 − 𝑝2
 if 𝑝1 + 𝑝2 < 𝑝1𝑝2 ,

∞                                otherwise.

                (2.1) 

Assume there exists  𝑚 ∈ ℤ+ such that  𝑎 = {𝑎𝑛}𝑛∈ℤ+
∈ ℓ𝑞, where 

            𝑎𝑛 =
𝑤̃(𝑚 + 1, 𝑚 + 𝑛)

𝑤̃(𝑚 − 𝑛 + 1, 𝑚)
    for 𝑛 ∈ ℤ+.                                              (2.2) 
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Then  𝑇𝑤,𝑝1
⊕ 𝑇𝑤,𝑝2 is non-cyclical. 

Proof. For brevity  𝜝𝑝 = ℓ𝑝(ℤ) if 1 ≤ 𝑝 < ∞ and  𝜝∞ =  𝑐0(ℤ).  Consider the bilateral sequence {𝑑𝑛}𝑛∈ℤ  

described by 

𝑑0 = 1, 𝑑𝑛 = ∏
𝑤𝑗

𝑤2𝑚+1−𝑗
  𝑛

𝑗=1 if  𝑛 > 0  and 𝑑𝑛 = ∏
𝑤2𝑚+𝑗

𝑤1−𝑗
  

|𝑛|
𝑗=1   if 𝑛 < 0. 

It is easy to confirm that 𝑑𝑛+𝑚 = 𝑑𝑚−𝑛 = (𝑤̃(𝑚 − 𝑛 + 1, 𝑚))−1 𝑤̃(1, 𝑚)𝑎𝑛 for each 𝑛 > 𝑚.  

Since then 𝑎 ∈ ℓ𝑞 , we have 𝑑 ∈ ℓ𝑞(ℤ). Let 𝑝1
′ ∈ [1, ∞] be defined by the formula  

1

𝑝1
+

1

𝑝1
′ = 1. Based on the 

definition of  𝑞 , we have  
1

𝑝1
′ ≤  

1

𝑞
+

1

𝑝2
 .   

The Hölder inequality allows us to define a bounded linear operator  𝐽 ∶ 𝜝𝑝2 → 𝜝𝑝1
′  on the canonical basis  

𝐽𝑒𝑛 = 𝑑𝑛𝑒2𝑚−𝑛 . It is simple to prove, by computing the values of the operators on the basic vectors (𝑒𝑘, 𝑒𝑛), 
that (𝑇𝜔,𝑝1 ⊕ 𝑆)(𝐼 ⊕ 𝐽) = (𝐼 ⊕ 𝐽)(𝑇𝑤,𝑝1 ⊕  𝑇𝑤,𝑝2 ), where 𝑆 is the bounded linear operator 𝜝𝑝1

′  defined as 

 𝑆𝑒𝑛 = 𝑤𝑛+1𝑒𝑛+1 for  𝑛 ∈ ℤ . 

Assume  𝑇𝑤,𝑝1 ⊕ 𝑇𝑤,𝑝2  it is cyclical. Since 𝐼 ⊕ 𝐽 has dense range, Lemma (2.1) implies that 𝑇𝑤,𝑝1 ⊕ 𝑆 is 

cyclic, this is impossible, according to Lemma (2.2), if  1 < 𝑝1 ≤ ∞, then  and if  1 ≤ 𝑝1 < ∞, then 𝑇𝑤,𝑝1 =

𝑆∗. In any case, 𝑇𝑤,𝑝1 ⊕ 𝑆 is the direct sum of one operator and its dual. 

The following corollary is the special case  𝑝1 = 𝑝2 of the preceding lemma. 

Corollary (𝟐. 𝟕). Consider w a bounded sequence of non-zero complex numbers, 𝑝 and  𝑞 = ∞  if  𝑝 ≤ 2, 𝑞 =
𝑝/(𝑝 − 2),  if 𝑝 > 2.  Assume that there exists  𝑚 ∈ ℤ+ such that 𝑎 = {𝑎𝑛}𝑛∈ℤ+

∈ ℓ𝑞 , as stated in (8). 

Then  𝑇𝑤,𝑝 ⊕ 𝑇𝜔,𝑝  is not cyclic. 

To show the next proposition, we use Lemma (4.1.18) in the instance  

1

𝑝1
+

1

𝑝2
= 1. 

Proposition (𝟐. 𝟖). Consider   𝑤 = {𝑤𝑛}𝑛∈ℤ   a bounded series of non zero complex numbers. Then  𝑇𝑤,𝑝 is 

supercyclic if and only if  𝑇𝑤,𝑝 ⊕ 𝑇𝑤,𝑝′   it is cyclic, where  
1

𝑝
+

1

𝑝′ = 1. 

Proof.  According to theorem 𝑆 , supercyclicity of  𝑇𝑤,𝑝  does not depend on 𝑝. Specifically, 𝑇𝑤,𝑝  is supercyclic 

if and only if  𝑇𝑤,𝑝′ ′ is supercyclic. So, without losing generality, we can assume that 𝑝 ≤  𝑝′. If  𝑇𝑤,𝑝 is not 

supercyclic, 𝑇𝑤,𝑝  it satisfies the supercyclicity Criterion, according to the theorem  𝑀𝑆. Since an operator 𝑇 

satisfies the supercyclicity Criterion if and only if  𝑇 ⊕ 𝑇  it does, we have that  𝑇𝑤,𝑝 ⊕ 𝑇𝑤,𝑝  fulfills the 

supercyclicity Criterion and 𝑇𝑤,𝑝 ⊕  𝑇𝑤,𝑝  is hence cyclic. Since  ℓ𝑝(ℤ)  × ℓ𝑝(ℤ)   is tightly constantly in 

ℓ𝑝(ℤ) × ℓ𝑝′ (ℤ)  if 𝑝′ < ∞, and into ℓ𝑝(ℤ) × 𝑐0(ℤ)  if   𝑝′ = ∞, we can see that cyclicity 𝑇𝑤,𝑝 ⊕ 𝑇𝑤,𝑝  entails 

cyclicity  𝑇𝑤,𝑝  ⊕  𝑇𝑤,𝑝′   . Thus, 𝑇𝑤,𝑝 ⊕ 𝑇𝑤,𝑝′  it is cyclic. 

Assume that  𝑇𝑤,𝑝  is not supercyclic. The presence of  𝑚 ∈ ℤ+ such that (1.2) is not satisfied is implied by the 

theorem 𝑆. Then  𝑎 = {𝑎𝑛}𝑛∈ℤ+
∈ ℓ∞ where 𝑎 is defined as in (2.2). It is easy to observe (1.2) that 

 𝑞 = 𝑞(𝑝, 𝑝′) = ∞.  By Lemma (4.1.18),  𝑇𝑤,𝑝 ⊕  𝑇𝑤,𝑝′   is not cyclic. 

Proposition (2.9). Let us consider  𝑇 a bounded linear operator on a separable Banach space 𝜝. Then the 

conditions (C1– C6) of Theorem (1.1), are connected in the following manner: 
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(𝐶4) ⟸ (𝐶1) ⟹  (𝐶2) ⟹ (𝐶3) ⟹ (𝐶6) ⟹ (𝐶5). 

Proof. By Theorem 𝑆𝐶 (4.1.2), (𝐶1)  implies (𝐶2).  The implication (𝐶1) ⟹ (𝐶4) follows from the same 

theorem and the fact that 𝑇  satisfies the supercyclicity Criterion if and only if  𝑇 ⊕ 𝑇 does. Since the powers 

of a weakly supercyclic operator are weakly supercyclic, we see that (𝐶3) implies (𝐶6). The implications  

(𝐶2)  ⟹ (𝐶3) and (𝐶6)  ⟹ (𝐶5) are trivial. 

Proof of Theorem (𝟒. 𝟏. 𝟒). According to Corollary (2.5) (𝐶5) implies (𝐶4). By Theorem 𝑀𝑆(4.1.3), (𝐶2) 

implies (𝐶1). Taking into account Proposition (𝟐. 𝟗), we see that it suffices to show that (𝐶4) implies (𝐶2). 

If 𝑇 ⊕ 𝑇  is cyclic on ℓ𝑝(ℤ) ⊕ ℓ𝑝(ℤ)  then, since 𝑝 ≤ 2,  it is cyclic on   ℓ𝑝(ℤ) ⊕ ℓ𝑞(ℤ).  By Proposition 

(4.1.20), 𝑇 is supercyclic, which (𝐶4) implies (𝐶2). 

 Proof of Theorem (1.3). Refer to [8, p. 348–349] for general finding on universal families.. Let us consider 

  ℱ = {𝑓𝛼 ∶  𝛼 ∈  𝐴} a family of continuous maps from a complete metric space 𝑋 to a separable metric space. 

If and only if the set {(𝑥, 𝑓𝛼 (𝑥)): 𝑥 ∈ 𝑋, 𝑎 ∈ 𝐴}  is dense in   𝑋 × 𝑌  , then the set {𝑥 ∈ 𝑋 ∶ {𝑓𝛼 (𝑥) ∶ 𝑎 ∈

𝐴} is dense in 𝑌} of universal elements for  ℱ is dense in 𝑋 .  

The following theorem can be obtained by directly applying this result to the family  

{𝑟(𝑇) ∶ 𝑟 ∈ 𝒫}, where 𝑇 is a bounded linear operator on a Banach space. 

Theorem DC . Define 𝜝 a bounded linear operator and a separable Banach space, respectively. If and only if 

the set  {(𝑥, 𝑟(𝑇)𝑥): 𝑥 ∈ 𝜝, 𝑟 ∈  𝒫} is dense in 𝜝 × 𝜝, then the set of cyclic vectors for  𝑇 is dense in 𝜝.  

When a bounded linear operator  𝑇 acts on a subset of a Banach space 𝜝 and is dense in 𝜝, we say that the 

subset 𝑨 if ⋃ 𝑟(𝑇)(𝐴)𝑟∈𝒫  is cyclic. The following refinement is allowed by Theorem 𝐷𝐶. 

Corollary (3.1). Let 𝑇 ∶ 𝜝 → 𝜝 be a bounded linear operator,  𝜝 a separable Banach space, and 𝐴, 𝐵 two cyclic 

subsets of  𝑇. Additionally, assume that the dual operator’s  𝑇∗ point spectrum 𝜎𝑝(𝑇∗) has an empty interior. 

Then the set of cyclic vectors for  𝑇 is thus dense in 𝜝 if and only if  𝑥 ∈ 𝐴, 𝒴 ∈ 𝐵 and 𝜀 > 0, there exist  𝑢 ∈
𝜝 and  𝑟 ∈ 𝒫  such that for any  ‖𝑥 − 𝑢‖ < 𝜀   and ‖𝑦 −  𝑟(𝑇)𝑢‖ < 𝜀. 

Proof. The part that states ’only if’ follows directly from Theorem DC. The ’if’ portion still needs to be 

proven. Evidently 

𝐵 ⊆ 𝑀𝛿 = ⋃ 𝑟(𝑇)(𝑥 + 𝛿𝑈)

𝑟∈𝒫,𝑥∈𝐴

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
  for any  𝛿 > 0,   where   𝑈 = {𝑥 ∈ 𝑩 ∶ ‖𝑥‖ < 1}. 

As a result, for any  𝛿 > 0 and 𝑞 ∈ 𝒫, we have 𝑞(𝑇)(𝑀𝛿) ⊆ 𝑀𝛿  and for that reson 𝑞(𝑇)(𝐵) ⊆ 𝑀𝛿 . Given that 

every 𝑀𝛿  is closed and 𝑩  is cyclic ,  we have 𝑀𝛿 =  𝑩   for every  𝛿 > 0 . Let  𝒫†  be the collection of 

polynomials 𝑞 ∈ 𝒫  with all of zeros in 𝒞 \ 𝜎𝑝(𝑇∗).  Then 𝑞(𝑇)  provides a wide range for any 𝑞 ∈

𝒫† Specifically, we observe that the set 

𝑞(𝑇) ( ⋃ 𝑟(𝑇)(𝑥 + 𝛿𝑈)

𝑟∈𝒫,𝑥∈𝐴

) = ⋃ 𝑟(𝑇)

𝑟∈𝒫,𝑥∈𝐴

(𝑞(𝑇)𝑥 + 𝛿𝑞(𝑇)(𝑈)) 

is thick 𝑩 for all purposes  𝛿 > 0 and 𝑞 ∈ 𝒫†. Lastly, given that 𝑞(𝑇)(𝑈) ⊆ ‖𝑞(𝑇)‖𝑈 our data 

⋃ 𝑟(𝑇)(𝑥 + 𝜀𝑈)𝑟∈𝒫,𝑥∈𝑞(𝑇)(𝐴)  is dense 𝑩 for every 𝜀 > 0 and 𝑞 ∈ 𝒫†. 

Using the concept of  𝒫†and cyclicity of  𝐴 for  𝑇 , we obtain   ⋃ 𝑞(𝑇)(𝐴)𝑞∈𝒫†   Since  𝜎𝑝(𝑇∗) has empty 

interior. 
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The final two visualizations suggest that the collection {(𝑥, 𝑟(𝑇)𝑥) ∶  𝑥 ∈ 𝑩, 𝑟 ∈ 𝒫} is dense in 𝑩 × 𝑩. 

There is density in 𝑩  the set of cyclic vectors for 𝑇 by Theorem DC.  

We’ll use the corollary mentioned above for weighted bilateral shifts. The sentence that follows is an  example 

of a corollary (3.1). 

Corollary (3.2). Let {𝑓𝑗}𝑗∈ℤ  be a sequence of elements of  𝑩 such that  {𝑓𝑗 ∶ 𝑗 ∈ ℤ } is dense in 𝑩 and 

 𝑇𝑓𝑗 = 𝑓𝑗 + 1 for each 𝑛 ∈ ℤ , and let  𝑇 be a bounded linear operator on a Banach space. If and only if there 

exists 𝑟 ∈ 𝒫 and 𝑢 ∈ 𝑩 such that ‖𝑓−𝑘 − 𝑢‖ ≤ 𝜀 and ‖𝑓−𝑛 − 𝑟(𝑇)𝑢‖ ≤ 𝜀 and for any  𝑛, 𝑘 ∈ ℕ, 𝑛 > 𝑘  and 

any 𝜀 > 0, then the set of cyclic vectors for 𝑇 is dense . 

𝐏𝐫𝐨𝐨𝐟. The condition ’only if’ is a superfluous outcome of Theorem DC. The ’if’ portion still needs to be 

proven. Let 𝐴 = {𝑓𝑚 ∶ 𝑚 < 0}. Given that 𝑇𝑓𝑗 = 𝑓𝑗+1  each 𝑛 ∈ ℤ  of the things we have 

 ⋃ 𝑟(𝑇)(𝐴) = span {𝑓𝑗 ∶ 𝑗 ∈ ℤ }𝑟∈𝒫  is dense in 𝑩. 

Thus,  𝐴 a cyclic set is 𝑇. Allow  𝑥, 𝒴 ∈ 𝐴. Then 𝑥 = 𝑒−𝑘 and 𝒴 = 𝑒−𝑛 in some cases  𝑘, 𝑛 ∈ ℕ. If  𝑛 ≤ 𝑘, then 

a constant 𝑐 ∈ ℂ  such that  𝑟(𝑇)𝑥 = 𝒴,  where 𝑟(𝒵) = 𝑐𝒵𝑘−𝑛  exists. Specifically,  ‖𝑥 − 𝑢‖ = 0 < 𝜀  and 
‖𝒴 − 𝑟(𝑇)𝑢‖ = 0 < 𝜀  for 𝑢 = 𝑥 regarding any 𝜀 > 0. If 𝑛 > 𝑘 and 𝜀 > 0  when the presumptions are met, 

there is 𝑟 ∈ 𝒫 and 𝑢 ∈ 𝑩 so that ‖𝑥 − 𝑢‖ < 𝜀 and ‖𝒴 − 𝑟(𝑇)𝑢 ‖ < 𝜀.  There is still corollary (3.1) to apply. 

Proposition (3.3). Let  {𝑓𝑗}
𝑗

∈ ℤ  be a sequence of elements of 𝑩 such that span{𝑓𝑗 ∶ 𝑗 ∈ ℤ } is dense in 𝑩 , 

and let  𝑇 be a bounded linear operator on a Banach space 𝑩 and 𝑇𝑓𝑗 = 𝑓𝑗+1 for each  𝑗 ∈ ℤ . 

Moreover, suppose that 

                                   inf {‖𝑓−𝑚‖‖𝑓(𝑚−𝑎)𝑗‖
1 𝑗⁄

∶  𝑗 ∈ ℕ  𝑚 ⩾ 𝑎} = 0 for any 𝑎 ∈ ℕ.                                           (9) 

Then 𝑇 contains a dense collection of cyclic vectors. 

Proof. Suppose  𝜀 > 0 and  𝑛, 𝑘 ∈ ℕ are such that  𝑛 > 𝑘. We examine  𝑥𝑚 ∈ 𝑩 and discuss a polynomial 𝑞𝑗,𝑚  

defined by for any 𝑗 ∈ ℕ and  𝑚 ⩾ 𝑛 > 𝑘 , 

𝑥𝑚 = 𝑓−𝑘 −
𝜀

‖𝑓−𝑚‖
𝑓−𝑚  and  𝑞𝑗,𝑚 (𝒵)  =  −

‖𝑓−𝑚‖𝒵𝑚−𝑛

𝜀
∑ (

‖𝑓−𝑚‖ 𝒵𝑚−𝑘

𝜀
)

𝑙𝑗−1

𝑖=0

. 

It is simple to verify that  𝑞𝑗,𝑚 (𝑇)𝑥𝑚 = 𝑓−𝑛 − (‖𝑓−𝑚‖/𝜀)𝑗𝑓(𝑚−𝑘)𝑗−𝑛  by using the fact that  𝑇𝑓𝑙 = 𝑓𝑙+1 for 

each  𝑙 ∈ ℤ  and the summation formula for a finite geometric progression. Therefore 

‖𝑞𝑗,𝑚 (𝑇)𝑥𝑚 − 𝑓−𝑛‖ = ‖ (‖𝑓−𝑚‖/𝜀)𝑗𝑓(𝑚−𝑘)𝑗−𝑛‖. 

Assume 𝑎 = 𝑛 + 𝑘 for the moment that  𝑚 ⩾ 𝑎. Next 

‖ 𝑓(𝑚−𝑘)𝑗−𝑛‖ = ‖ 𝑓(𝑚−𝑎)𝑗+𝑛(𝑗−1)𝑘‖ = ‖𝑇𝑛(𝑗−1)𝑓(𝑚−𝑎)𝑗‖ ≤ ‖𝑇𝑛‖𝑗−1‖ 𝑓(𝑚−𝑎)𝑗‖. 

The last two shows provide us with 

‖𝑞𝑗,𝑚 (𝑇)𝑥𝑚 − 𝑓−𝑛‖ ≤ (‖𝑓−𝑚‖/𝜀)𝑗‖𝑇𝑛‖𝑗−1‖ 𝑓(𝑚−𝑎)𝑗‖. 

Therefore, it can be determined that 𝑗 ∈ ℕ  and 𝑚 ⩾ 𝑎  such that the inequality above’s  right hand side does 

not exceed 𝜀. In this instance ‖𝑞𝑗,𝑚 (𝑇)𝑥𝑚 − 𝑓−𝑛‖ ≤ 𝜀. Given that Corollary (3.2) implies that  𝑇  possesses a 

dense set of cyclic vectors, it follows that ‖𝑥𝑚 − 𝑓−𝑘‖ = 𝜀 from the definition of  𝑥𝑚. 
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Proof of Theorem (𝟏. 𝟑). We have previously stated that |𝜔𝑛| = |𝑢𝑛|, for any 𝑛 ∈ ℤ , the weighted bilateral 

shifts 𝑇𝜔,𝑝  and  𝑇𝑢,𝑝  are isometrically comparable for each  𝑝[1, ∞]. Therefore, we can presume, without 

losing generality, that  𝜔𝑛 > 0 for each  𝑛 ∈ ℤ. 

Allow  𝑓𝑛 = 𝑐𝑛𝑒−𝑛  for  𝑛 ∈ ℤ,  where  𝑐𝑛 = 1 if  𝑛 = 0, 𝑐𝑛 = 𝜔̃(1 − 𝑛, 0) if 𝑛 > 0 and 𝑐𝑛 = (𝜔̃(1, −𝑛))−1  if 

 𝑛 < 0. Seeing that  𝑇𝑓𝑛 = 𝑓𝑛+1 for each 𝑛 ∈ ℤ. Clearly span{  𝑓𝑛 ∶  𝑛 ∈ ℤ} = span {  𝑒𝑛 ∶ 𝑛 ∈ ℤ} is dense is 

simple. Since is now ‖  𝑓𝑛‖ =   𝑐𝑛 ,  (9) is equal to (4), it is still necessary to apply Proposition (3.3). 

Final thoughts 

Another dichotomy for weighted bilateral shifts is presented in [20], which is also worth mentioning. In 

particular, if there  𝑇 is a weighted bilateral shift on ℓ𝑝(ℤ) with 1 <  𝑝 < ∞ ,then it is either  𝑇 ,  𝑇𝑛𝑥/‖𝑇𝑛𝑥‖ 

weakly convergent to zero or Supercyclic as  𝑛 → ∞   for each non-zero 𝑥 ∈ ℓ𝑝(ℤ).  Similarly, weighted 

bilateral shifts on  𝑐0(ℤ) succeed and weighted bilateral shifts on  ℓ1(ℤ)  fail. We want to emphasize that the 

following issue is yet unresolved. 
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