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ABSTRACT  

Unemployment in Malaysia, driven by factors such as inflation, wages, economic growth, and education, 

remains a significant socioeconomic issue. Accurate estimation of the unemployment rate can assist in 

formulating effective policies to address this challenge. This study aims to evaluate the performance of four 

recent Conjugate Gradient (CG) method which are Classical, Hybrid, Three-term, and Spectral for solving 

unconstrained optimization problems. Ten standard test functions with random initial points were solved using 

MATLAB under exact line search to compare the methods based on the number of iterations (NOI) and central 

processing unit (CPU) time. The Hybrid Spectral LAMR (HSLAMR) method showed the best overall 

performance. To assess practical applicability, a dataset of unemployment rates in Melaka (2006–2017) was 

modeled as a linear optimization problem. The Least Square HSLAMR method was compared with standard 

Least Squares and Excel Trend Line methods. Results showed that the Least Square HSLAMR model achieved 

the lowest relative error (0.04767672938) for estimating the 2017 unemployment rate, making it the most 

accurate approach among those tested. 

Keywords—Conjugate Gradient method; Classical; Hybrid; Three-term; Spectral  

INTRODUCTION 

Optimization continues to be a critical tool in data-driven modeling and forecasting, especially in addressing 

large-scale, real-world problems. The Conjugate Gradient (CG) method remains one of the most effective 

iterative approaches for solving large, unconstrained optimization problems due to its low memory 

consumption and fast convergence properties. Recent studies have focused on improving CG methods to 

enhance robustness and efficiency in both theoretical and applied settings. These improvements are 

particularly relevant as modern applications demand faster algorithms capable of handling high-dimensional 

data in areas such as economic modeling, machine learning, and social forecasting. The CG methods are 

preferable among other optimization methods because of low storage requirements. Numerous modified 

algorithms of this method have been created by researchers, as well as new suggestions for its work to obtain 

the best results. The CG method can be classified into a few categories which are classical, hybrid, three-term 

and spectral CG methods. Improved CG methods also were proposed for solving unconstrained minimization 

problems by modifying the CG parameter to satisfy the sufficient descent condition and ensure global 

convergence.  

In this era of technology, unemployment has become a serious issue and a global phenomenon around the 

world. Unemployment is defined as a person at working age seeking a full-time job but being unable to find 

one. Unemployment threatened the economies of most developed and developing nations [1]. Lower 

socioeconomic status, which causes a rise in the unemployment rate, also contributes to financial crime [2]. 
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Thus, estimating the unemployment rate for coming years is crucial for the government to act on the situation 

that is faced. This time the estimating data will be done for estimating the unemployment rate in Melaka which 

is one of a state in Malaysia. 

Conjugate Gradient (Cg) Method 

Optimizations can be divided into two types which are constrained and unconstrained. The standard 

unconstrained problem can be expressed as, 

min
𝑥∈𝑅𝑛

𝑓(𝑥) 

where 𝑓: 𝑅𝑛 → 𝑅 is continuously differentiable and 𝑅𝑛 refers to n-dimensional Euclidean space. An iterative 

scheme is used to minimize this function, 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘  , 𝑘 = 0,1,2,… (1) 

  

where 𝑥𝑘 denotes the current iteration point and 𝛼𝑘 > 0 represents the positive step size obtained from the line 

search. The line search can be obtained by either exact or inexact line search. The exact line search in this 

research and it is calculated by, 

𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) = min
𝛼≥0

𝑓(𝑥𝑘 + 𝛼𝑑𝑘) (2) 

 

While the search direction 𝑑𝑘 of the CG method is defined as, 

𝑑𝑘 = {
−𝑔𝑘                      𝑖𝑓 𝑘 = 0
−𝑔𝑘 + 𝛽𝑘𝑑𝑘−1   𝑖𝑓 𝑘 ≥ 1

 
(3) 

 

where 𝑔𝑘  denotes the gradient of 𝑓 at point 𝑥𝑘 and 𝛽𝑘 refer to the CG coefficient. 

The complete CG algorithms are as below: 

Step 1: Initialization process and generate 𝑥0 starting with 𝑘 = 0. 

Step 2: Compute the CG coefficient, 𝛽𝑘 . 

Step 3: Compute the search direction, 𝑑𝑘  and stop if 𝑔𝑘 = 0. 

Step 4: Compute the step size, 𝛼𝑘. 

Step 5: Update the new point using 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 

Step 6: Apply the convergence test and stopping criteria. Stop when 𝑓(𝑥𝑘+1) < 𝑓(𝑥𝑘)  and ‖𝑔𝑘‖ < 𝜀 , 

otherwise return to Step 1 with 𝑘 = 𝑘 + 1 

Classical CG Method 

The classical conjugate gradient technique is a process of iteration that is most commonly used to solve 

systems of linear equations with symmetric and positive definite matrices. This method, like the steepest 

descent method, can avoid computing and storing some matrices associated with the Hessian of objective 
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functions [3]. The recent modification of Classical CG method, Linda, Aini, Mustafa and Rivaie (LAMR) is 

defined as, 

𝛽𝑘
𝐿𝐴𝑀𝑅 =

𝑔𝑘
𝑇(

‖𝑑𝑘−1‖
‖𝑑𝑘−1 − 𝑔𝑘‖𝑔𝑘 − 𝑔𝑘−1)

‖𝑑𝑘−1‖
‖𝑑𝑘−1 − 𝑔𝑘‖

‖𝑑𝑘−1‖2

 (4) 

For further information, recent research from 2025 continue to illustrate the efficiency of the classical CG 

method.  For example, Chua et al. (2025) used the classical CG method to accelerate the solution of discretised 

heat transport equations in complicated thermal systems [4].  Similarly, Rahman and Lee (2025) investigated 

the behaviour of the classical CG method when used to ill-conditioned matrices in structural analysis problems, 

focussing on convergence behaviour and preconditioning procedures [5].  In another study, Thomas and 

Ibrahim (2025) effectively used classical CG to solve large-scale electromagnetic field simulations in finite 

element models, demonstrating significant computational cost savings over direct solvers [6]. 

Hybrid CG Method 

The Hybrid CG method introduces modifications to the CG method to improve its performance, stability, or 

convergence speed. The hybrid method is a new approach that combines two or more classical and modified 

CG methods into a single algorithm to capitalize on the advantages of the 'parent' methods. Touati-Ahmed and 

Storey introduced the first hybrid CG approach, which combines two classical CG methods, FR and PRP [7]. 

The recent modification of the Hybrid CG method, HSLAMR is the combination of HS and LAMR method 

which was proposed by Zullpakkal et al. The CG coefficient is defined as, 

𝛽𝑘
𝐻𝑆𝐿𝐴𝑀𝑅 = {

𝛽𝑘
𝐻𝑆        𝑖𝑓 0 ≤ 𝛽𝑘

𝐿𝐴𝑀𝑅 ≤ 𝛽𝑘
𝐻𝑆

𝛽𝑘
𝐿𝐴𝑀𝑅                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5) 

In recent years, hybrid conjugate gradient (CG) methods have gained popularity due to their ability to 

overcome the limits of classical CG in dealing with nonconvex, ill-posed, or large-scale issues.  Yuan et al. 

(2025) proposed an improved Dai-Liao-style hybrid CG method for unconstrained nonconvex optimisation. 

The method includes a blended β-parameter strategy and extends to solve constrained nonlinear monotone 

equations through a projection technique, ensuring global convergence and efficiency in complex scenarios [8].  

Gerth and Soodhalter (2025) also developed a hybrid CG-Tikhonov method, which incorporates Tikhonov 

regularisation into the CG framework.  This method employs a filtration of CG-generated Lanczos vectors to 

stabilise the solution of ill-posed linear systems, notably those encountered in inverse problems with noisy data 

[9]. Furthermore, Bernaschi et al. (2025) created a communication-efficient s-step hybrid CG method for high-

performance computing on GPU-accelerated clusters.  By merging s-step approaches with the classic CG 

method, the method decreases inter-node communication overhead while retaining convergence accuracy, 

making it appropriate for large, sparse systems in parallel contexts [10]. 

Three-term CG Method 

In recent years, three-term conjugate gradient algorithms have received much attention for large-scale 

unconstrained problems because they feature appealing practical factors such as simple computation, low 

memory demand, more effective descent property, and strong global convergence property [11]. A type of 

three-term conjugate gradient method was recently highly investigated to improve the efficiency of the 

classical conjugate gradient method [12]. The most recent modification of Three-term CG method is named 

TTRMIL+ with the search direction as follows, 

𝑑𝑘

= {
−𝑔𝑘 ,                                                                 𝑘 = 0

−𝑔𝑘 + 𝛽𝑘
𝑅𝑀𝐼𝐿+𝑑𝑘−1 + 𝜃𝑘(𝑔𝑘 − 𝑔𝑘−1),    𝑘 ≥ 1

 
(6) 
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where 𝜃𝑘 = −
𝑔𝑘

𝑇𝑑𝑘−1

𝑑𝑘−1
𝑇 𝑑𝑘−1

 and  

 𝛽𝑘
𝑅𝑀𝐼𝐿+ = {

𝑔𝑘
𝑇(𝑔𝑘 − 𝑔𝑘−1)

‖𝑑𝑘−1‖2
, 𝑖𝑓 0 ≤ 𝑔𝑘

𝑇𝑔𝑘−1 ≤ ‖𝑔𝑘‖2

0,                                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

In 2025, numerous studies contributed to the advancement of three-term conjugate gradient (CG) methods for 

improving stability and convergence in difficult optimisation problems.  Lin and Du presented a three-term 

Polak-Ribière-Polyak CG method for vector optimisation that achieves global convergence under Wolfe 

circumstances while avoiding restarts and convexity assumptions [13].  Peterseim et al. created a three-term 

Riemannian CG method for solving Kohn-Sham equations in quantum chemistry, which includes an energy-

adaptive metric to improve performance [14].   

Spectral CG Method 

The spectral conjugate gradient technique (SCGM) is a generalization of the conjugate gradient method (CGM) 

and one of the most effective numerical approaches for large-scale unconstrained optimization [15]. Based on 

the study of [16], two new nonlinear spectral conjugate gradient methods for solving unconstrained 

optimization problems are proposed. The first one is based on the Hestenes and Stiefel (HS) method and the 

spectral conjugate gradient method while the second one is based on a mixed spectral HS-CD conjugate 

gradient method. The CG parameter is denoted by 𝛽𝑘  while the spectral coefficient is denoted by 𝜃𝑘 . The 

search direction of spectral CG method is as follow,  

𝑑𝑘 = {
−𝑔𝑘                          𝑖𝑓 𝑘 = 0
−𝜃𝑘𝑔𝑘 + 𝛽𝑘𝑑𝑘−1   𝑖𝑓 𝑘 ≥ 1

 (7) 

 

The most recent modification of Spectral CG method is the spectral Rivaie, Mustafa, Ismail and Leong 

(sRMIL) CG method which is defined as, 

𝛽𝑘
𝑠𝑅𝑀𝐼𝐿 =

𝑔𝑘
𝑇(𝑔𝑘 − 𝑔𝑘−1)

‖𝑑𝑘−1‖2
  , 𝜃𝑘 = 1 −

𝑔𝑘
𝑇𝑑𝑘−1

𝑔𝑘−1
𝑇 𝑑𝑘−1

 (8) 

Least Square Method 

The Least Square Method is chosen to analyze the data as it is famously known in the data fitting. The Least 

Square Method find the best fitting line by minimizing the sum squares of the differences between predicted 

value and observed value. The formula to minimize the sum of the residual error squares for the data is given 

by,  

𝑚𝑖𝑛 ∑𝐸𝑖
2 = ∑((𝑎0 + 𝑎1𝑥) − 𝑦𝑖)

2

𝑛

𝑖=1

𝑛

𝑖=1

 (9) 

By differentiating (9) with respect to 𝑎0 and 𝑎1 simultaneously, the general formula to find the parameters of 

𝑎0 and 𝑎1 for a linear model is shown below, 

[
 
 
 
 
 𝑛 ∑𝑥𝑖

𝑛

𝑖=1

∑𝑥𝑖

𝑛

𝑖=1

∑𝑥𝑖
2

𝑛

𝑖=1 ]
 
 
 
 
 

[
𝑎0

𝑎1
] =

[
 
 
 
 
 ∑𝑦𝑖

𝑛

𝑖=1

∑𝑥𝑖𝑦𝑖

𝑛

𝑖=1 ]
 
 
 
 
 

 (10) 
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The values of 𝑎0 and 𝑎1 can be obtained by solving the matrix system above and then substituted to the linear 

Least Square model as below, 

𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 (11) 

  

From the formula given in (9) and (11), the Least Square method can be transformed into linear optimizations 

problems as shown in (12), 

min
𝑥∈𝑅𝑛

𝑓(𝑥) = ∑((𝑎0 + 𝑎1𝑥) − 𝑦𝑖)
2

𝑛

𝑖=1

 
         

(12) 

 

Generally, the formula used to calculate the relative error is given by, 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑟𝑟𝑜𝑟

=
|𝑒𝑥𝑎𝑐𝑡 𝑣𝑎𝑙𝑢𝑒 − 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 𝑣𝑎𝑙𝑢𝑒|

𝑒𝑥𝑎𝑐𝑡 𝑣𝑎𝑙𝑢𝑒
 

(13) 

RESULTS AND DISCUSSIONS 

The numerical performance of each type of CG methods is compared by using test functions. Test functions 

are important to make sure that the algorithms are able to solve various optimization problem efficiently. The 

test functions in Table 1 were chosen to represent a variety of optimization challenges. Some functions, like 

Booth and Trecanni, are simple and help test basic performance. Others, like the Extended Rosenbrock and 

Generalized Quartic, are more complex and test how well the algorithm handles difficult shapes and high 

dimensions. By including functions with different characteristics and variable sizes, this selection helps to 

evaluate the accuracy, speed, and robustness of each algorithm fairly. This ensures that the best algorithm is 

suitable for real-world problems, such as estimating the unemployment rate in Melaka.Table 1 shows a list of 

ten unconstrained optimization test functions that was chosen. The selected test functions are tested with 4 

random initial points and the range from 2 to 1000 variables. 

Table 1. List of test functions 

No Test Functions Variable Initial Points 

1 Booth  2 (2,2), (5,5), (10,10), (20,20) 

2 Trecanni  2 (2,2), (5,5), (10,10), (20,20) 

3 Extended Tridiagonal 1  2 (2,2), (5,5), (10,10), (15,15) 

4 (2,…,2), (5,…,5), (10,…,10), (25,…,25) 

10 (2,…,2), (5,…,5), (10,…,10), (25,…,25) 

4 Generalized Quartic 2 (2,2), (5,5), (12,12), (25,25) 

4 (2,…,2), (8,…,8), (15,…,15), (30,…,30) 

10 (2,…,2), (5,…,5), (10,…,10), (20,…,20) 

5 FLETCHCR 2 (2,2), (4,4), (12,12), (25,25) 

4 (2,…,2), (8,…,8), (12,…,12), (30,…,30) 

10 (2,…,2), (5,…,5), (10,…,10), (25,…,25) 

http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS) 

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue IX September 2025 

www.rsisinternational.org Page 6396 

 

 

 

6 Sum Squares 2 (2,2), (4,4), (15,15), (25,25) 

4 (2,…,2), (7,…,7), (8,…,8), (12,…,12) 

10 (2,…,2), (5,…,5), (8,…,8), (15,…,15) 

7 Extended White and Holst 2 (2,2), (3,3), (4,4), (5,5) 

4 (-1,…,-1), (2,…,2), (3,…,3), (4,…,4) 

10  (2,…,2), (3,…,3), (4,…,4), (5,…,5) 

500 (-2,…,-2), (2,…,2), (3,…,3), (4,…,4) 

1000 (2,…,2), (3,…,3), (5,…,5), (8,…,8) 

8 Extended Rosenbrock 2 (3,3), (4,4), (10,10), (20,20) 

4 (2,…,2), (4,…,4), (5,…,5), (7,…,7) 

10 (2,…,2), (4,…,4), (10,…,10), (20,…,20) 

500 (2,…,2), (4,…,4), (10,…,10), (25,…,25) 

1000 (2,…,2), (4,…,4), (5,…,5), (10,…,10) 

9 Diagonal 4 2 (2,2), (5,5), (8,8), (15,15) 

4 (2,…,2), (7,…,7), (15,…,15), (20,…,20) 

10 (2,…,2), (7,…,7), (15,…,15), (25,…,25) 

500 (21,…,21), (22,…,22), (34,…,34), (39,…,39) 

1000 (5,…,5), (10,…,10), (17,…,17), (20,…,20) 

10 Shallow 2 (2,2), (3,3), (5,5), (6,6) 

4 (2,…,2), (3,…,3), (5,…,5), (6,…,6) 

10 (2,…,2), (3,…,3), (5,…,5), (7,…,7) 

500 (3,…,3), (8,…,8), (9,…,9), (15,…,15) 

1000 (2,…,2), (3,…,3), (4,…,4), (13,…,13) 

Note: (…) refer to the same number use for each iteration. 

The chosen test functions represent diverse optimization challenges that allow for a fair and comprehensive 

evaluation of the Conjugate Gradient methods. For example, the Booth and Trecanni functions are low-

dimensional polynomials used to test basic convergence properties, while the Extended Tridiagonal and Sum 

Squares functions evaluate performance in structured quadratic problems. The Generalized Quartic function 

introduces high-degree polynomial landscapes that test algorithm efficiency in more complex settings, and the 

FLETCHCR function examines robustness in handling narrow valleys and difficult landscapes. The Extended 

White and Holst function, together with the Extended Rosenbrock function, provide a challenging test of high-

dimensional, curved optimization surfaces, which are well-known to be difficult for iterative solvers. Similarly, 

the Diagonal 4 function assesses algorithm behavior on diagonally dominant problems, while the Shallow 

function introduces nonconvexity with multiple local minima, further testing the robustness of each method. 

By including these functions, the study ensures that the comparison of CG methods captures a broad spectrum 

of optimization difficulties, making the findings applicable to real-world problems. 

All the test functions that stated are then solved by using MATLAB and the numerical results are documented. 

All computations in this study were performed using MATLAB R2023a on a macOS. The hardware used 

included an Apple M1 CPU with 16 GB of RAM.  The recent modifications of four types of CG methods are 

compared in terms of their number of iterations (NOI) and central processing unit (CPU) time under exact line 

search. The performance profile of number of iterations (NOI) and central processing unit (CPU) time are 

generated by using SigmaPlot software. 
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Fig. 1 Performance profile based on NOI 

 

Fig. 2 Performance profile based on CPU time 

The performance profile works by displaying the performance ratio of each CG method versus the method 

with the best performance, making it easier to be compared. The top left curve indicates the method which 

converges faster to the optimal point with the best NOI or CPU time while the top right curve shows the 

amount of test functions solved by each method. Hence, the methods at the top right are the method that can 

solve highest amount of test functions [17]. 

Figure 1 and 2 shows the performance profile of each CG method under exact line search. From the 

performance profile of the NOI and CPU time, it is clearly indicating that HSLAMR method outperformed the 

other CG methods in term of efficiency, as HSLAMR method appears as the top left curve in both performance 

profile. Other than that, the top right curve of each graph indicates that HSLAMR are able to solve all the test 

functions as it managed to achieve P_s (τ)=1 at certain points. Therefore, the HSLAMR method is consider as 

the best method through the numerical results. 

Application to Unemployment Rate in Melaka Table 2 shows the data of unemployment rate in Melaka from 

year 2006 to 2017. The unemployment rate in Melaka is estimated by using Least Square Method and the CG 

method. The numbers of data denoted as x variable while the unemployment rate denoted as y variable. The 

data from year 2006 to year 2016 are chosen to fit the model. Data from year 2017 is used for the relative error 

calculation. 

Table 2. Unemployment rate in Melaka from 2006 to 2017 

Numbers of data Year Unemployment Rate 

1 2006 0.273 

2 2007 0.284 

3 2008 0.287 

4 2009 0.284 
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5 2010 0.335 

6 2011 0.341 

7 2012 0.355 

8 2013 0.372 

9 2014 0.391 

10 2015 0.398 

11 2016 0.397 

12 2017 0.405 

 

Based on the formula in (11), it will get that, 

[
11 66
66 506

] [
𝑎0

𝑎1
] = [

3.717
23.886

] 

Therefore, the approximate function for linear Least Square Method can be expressed as,  

Least Square Linear Model: 

𝑓(𝑥) = 0.2515090909 + 0.0144𝑥 (14) 

Optimization problem in (12) is formed by using the first to eleventh data using MATLAB coding as shown as 

below. 

syms a b c d p  

d = [0.273 0.284 0.287 0.284 0.335 0.341 0.355 0.372 0.391 0.398 0.397]; 

p = [1 2 3 4 5 6 7 8 9 10 11]; 

q=sum(((a+b*p)-d).^2) 

all=expand(q) 

diff(all,a) 

diff(all,b) 

 

Fig. 3.MATLAB coding to form linear function 

The function obtained for linear optimization problem is as below, 

𝑓(𝑎0, 𝑎1) = 11𝑎0
2 + 132𝑎0𝑎1 − 7.434𝑎0 + 506𝑎1

2 − 47.772𝑎1 + 1.280019 

 

(15) 

Function (15) is used as the test function to obtain 𝑎0 and 𝑎1. HSLAMR method is applied to solve this 

optimization function under exact line search. The solution point can be obtained by using a random initial 

point. The results for HSLAMR method are as below 

HSLAMR Linear Model: 

𝑓(𝑥) = 0.251509136221392 + 0.014399994929750𝑥 
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The linear model also can be determined using Excel Trend Line Method. A linear graph of estimation of 

unemployment rate in Melaka was generated by using Microsoft Excel.  

 

Fig. 4 Linear trend line for the unemployment rate estimation 

The approximate function for linear Excel Trend Line Method can be expressed as below. 

Excel Trend Line Linear Model: 

𝑓(𝑥) = 0.251509090909091 + 0.014400000000000𝑥 

Based on the approximate function, the data for year 2017 when 𝑥 = 12 is estimated. The estimation point of 

each model is recorded and relative error is calculated by using formula in (13). 

Table 3. Estimation points and relative error for each model 

Method Estimation Point Relative Error 

Least Square Method 0.4243090909 0.04767676765 

Least Square HSLAMR Method 0.4243090754 0.04767672938 

Excel Trend Line Method 0.4243090909 0.04767676765 

 

Based on Table 3, the best method is Least Square HSLAMR with the smallest relative error when compared 

to other methods. Hence, Linear Least Square HSLAMR method is the most suitable model to be applied in 

estimation of unemployment rate in Melaka. The relative errors for all methods are actually close to each other. 

It can be concluded that all of the methods are appropriate to estimate the data of unemployment rate in 

Melaka. 

CONCLUSION 

To validate the practical applicability of the CG method, the unemployment rate data for the state of Melaka 

from 2006 to 2017 was used to construct a linear prediction model. The problem was formulated as an 

optimization task using the Least Square Method, where the objective was to minimize the sum of squared 

errors between predicted and actual unemployment rates. Three estimation techniques were implemented: the 

standard Least Square Method, Excel Trend Line Method, and Least Square Method solved using the 

HSLAMR method. While all three methods produced closely aligned estimation models, the HSLAMR-based 

model slightly outperformed the others, yielding the lowest relative error when predicting the unemployment 

rate for the year 2017. This suggests that incorporating modified CG strategies such as HSLAMR not only 

enhances numerical performance in benchmark optimization problems but also translates effectively to real-

world socio-economic forecasting tasks. 

Furthermore, the similarity in results across all three methods indicates the reliability and stability of linear 

models in short-term unemployment estimation. However, HSLAMR’s improved precision, even by a small 
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margin, makes it more suitable when accuracy is crucial, such as in policy planning and economic forecasting. 

Future work will explore nonlinear models or machine learning approaches to better capture the complex 

factors that influence unemployment. 

Nevertheless, the study has certain limitations. The findings are based on a single short-term dataset, and thus 

the generalizability of the HSLAMR method to longer, more volatile, or geographically diverse datasets 

remains to be established. Future research should address this limitation by applying the method to larger and 

more complex datasets from other regions or countries. Furthermore, the incorporation of inexact line search 

techniques may further improve computational efficiency, and comparisons with nonlinear or machine learning 

models could provide richer insights by capturing the complex dynamics of unemployment beyond what linear 

models can achieve. 
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