

Peter OYELERE1*, Sola ATOYEBI2, Bukunmi Adebayo3

^{1,3}Obafemi Awolowo University Ile-Ife, Nigeria

²Redeemers University Ede, Nigeria

*Corresponding Author

DOI: https://dx.doi.org/10.47772/IJRISS.2025.909000522

Received: 06 September 2025; Accepted: 14 September 2025; Published: 16 October 2025

ABSTRACT

The study assessed community participation in infrastructure delivery in peri-urban areas of Ogbomoso, Nigeria. The peri-urban areas in Ogbomoso were stratified into old and new peri-urban areas. Due to the nature of the study, the identified 103 Community Based Organizations [CBOs] were purposely selected for the study. Thus, a total of 103 questionnaire were administered comprising of 48 and 55 respondents in old and new periurban areas respectively with focus on the head of CBOs. Data collected were analysed using descriptive statistic such as frequency and cross tabulation. Findings revealed that socioeconomic and housing attributes of respondents varied in the two categories of peri-urban areas in the study area. Also, findings on the condition of available infrastructure indicated that only water supply and electricity were moderately satisfactory and this is evident in the new peri-urban areas. Additionally, there is a moderate level of CBOs involvement in infrastructure delivery, particularly in the repair, provision, and mobilization for maintenance of infrastructure. The study concluded that while water supply and electricity are somewhat satisfactory, significant improvements are needed in roads, waste collection, and drainage to meet community's expectations. The study recommended that government should complement the effort of CBOs in the provision of infrastructure especially in the old peri-urban areas of the study area and other similar settings.

Keywords: Community Participation, Peri-Urban Areas, Infrastructure Delivery, Ogbomoso

INTRODUCTION

Cities in the developing countries with Nigeria inclusive, struggle with inadequate infrastructure to accommodate the surge in urban dwellers (Daramola, 2012; World Bank, 2015). This is a resultant effect of a steady decline in government infrastructure spending, combined with a steady increase in the cost of building additional infrastructure (National Bureau of Statistics [NBS], 2009; Akinosun et al., 2025). Infrastructure plays a crucial role in determining environmental sustainability because it enhances economic growth, the livelihoods of people, and environmental well-being (Oraegbune, 2022; Daramola & Mobolaji, 2025). Globally, infrastructure holds significant importance and also serves as pillar for economic growth and development of urban environment (Adebayo et al., 2018). According to Liu et al. (2022) infrastructure refers to the fundamental facilities and systems in urban and rural areas, such as transportation, electricity, telecommunications, water supplies, sanitation, and other facilities used for managing and controlling environmental systems.

Infrastructure is the collection of systems and facilities that serve as the basis for the economic growth of a country which includes the services and facilities required for economic development, industrialization, improved lifestyles, and flourishing businesses (Craven, 2019; Olowoporoku et al., 2019). Professionals in the built environment use the term to denote critical facilities, services, and organizational structures for communal use, predominantly by city and town residents. Infrastructure can be broadly categorized into hard and soft components (Goudarzi et al., 2023). Hard infrastructure comprises physical systems essential for a

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue IX September 2025

country's operation, including transportation, telecommunications, energy, water supply, and sanitation (Daramola & Olawuni, 2017). In contrast, soft infrastructure refers to institutions sustaining a country's health, economic, and social standards, such as education, financial, government, emergency, and healthcare systems. Whether hard or soft, the impact of infrastructure extends beyond immediate economic benefits, but also on its delivery.

Infrastructure delivery involves planning, financing, constructing, and maintaining physical structures and systems that are essential for the functioning of urban environment (Awuzie & McDermott, 2019; Daramola et al., 2025). Without adequate infrastructure delivery, urban residents struggle to attract investments and labour which hinder overall growth and development of urban environment. This pave way for the need of effective infrastructure delivery in community; which is also supports the achievement of Sustainable Development Goals (SDGs), particularly SDG 9 (industrial, innovation and infrastructure). Infrastructure delivery involves various stakeholders, including governments, private sector entities and international organizations, working together to ensure the provision of essential services to meet the needs of populations (Oyedele, 2020). Effective and efficient delivery of infrastructure therefore hinges not only on the involvement of various stakeholders but also on robust community participation.

Community participation is a process where individuals within a community actively engage in decision-making, problem-solving, and development initiatives that affect their collective well-being (O'Malley, 2013; Nizkorodov 2021; Tantoh et al., 2020). In Nigeria, just like in every other developing country, a major booster of infrastructure delivery is community participation. Community participation plays a pivotal role in shaping the development and sustainability of different regions, one of the regions is peri-urban areas. According to Sun et al. (2023), peri-urban areas are areas that emerge during rapid urban expansion featuring multiple rural-to-urban transformations that create a mosaic-like landscape of urban and rural land-uses, livelihoods, and lifestyles. Peri-urban areas have been delineated and characterized in terms of land use patterns, socio-economic conditions, and development policies.

A large number of studies have assessed community participation in relation to infrastructure delivery in various urban segments of developing and developed countries (Mobolaji & Adekiya, 2021). For instance, studies have explored the involvement of local residents in decision-making and evaluating development projects (Babawale, 2021) factors influencing citizen involvement in community development through self-help projects (Adedayo & Afolayan, 2012; Markovich, 2015) and community participation in housing management and infrastructure provisions (Bremer & Bhuiyan, 2014; Markovich, 2015). These studies provided different dimensions and approaches to infrastructure delivery and the involvement of government and private investors in every phase of delivery. However, it has been observed that very few studies have demonstrated the extent to which local communities are involved in infrastructure delivery. Therefore, this study assesses community participation in infrastructure delivery especially in peri-urban areas of Ogbomoso, Nigeria.

Ogbomoso, being an urban area and a prominent settlement located in Oyo State, Southwestern Nigeria, is a dynamic settlement experiencing significant transformations due to urbanization. As cities like Ibadan, Ilorin, and Lagos expand, Ogbomoso finds itself increasingly fitting the characteristics of a peri-urban area; a transitional zone between urban centres and rural hinterlands. This position gives Ogbomoso both challenges and opportunities in terms of development, land use, socio-economic dynamics, and governance. Ogbomoso faces a prevalent infrastructure deficit (Mobolaji, 2023). Nevertheless, the population surge in Ogbomoso and the unpalatable records of ineffective delivery of infrastructure in the town, underscores the importance of assessing community participation in infrastructure delivery. The study is therefore needed to understand the perception of community member in relation to community participation in infrastructure delivery in periurban areas of Ogbomoso, Nigeria.

MATERIALS AND METHODS

Ogbomoso, covering Ogbomoso North and South Local Government Areas is a major town and second largest urban centre in Oyo State after Ibadan, the state capital. It lies approximately around 8° 8" N of the Equator and 4° 15" E of the Greenwich Meridian. As a gateway to the northern part of the country, it lies within the

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue IX September 2025

derived savannah region. The city has tropical wet and dry seasons, and the climate is characterized with a fairly high uniform temperature, high relative humidity and moderate to heavy seasonal rainfall. As one of the fast-growing cities in the Southwest of Nigeria, the spatial extent and human population of the town increased tremendously over time. The town, which started as a coalescence of huts/hamlets in the 17th century, increased in size over the centuries to a small town in the 18th century, a relatively big town in the 19th century, and assumed a city status in the 20th century, though with a weak economic base due to its predominantly agrarian economy.

There is presence of infrastructure in Ogbomoso. Availability of infrastructure include water supply and sanitation, road network, communication system, healthcare facilities, schools and drainage system. The assessment of existing infrastructure in Ogbomoso South and Ogbomoso North LGAs reveals both strengths and areas for improvement in the town (Jelili & Adedibu, 2006). Apart from the increasing population and infrastructure provision, change in status to urban area brought about the emergence of peri-urban area in Ogbomoso. These peri-urban areas serve as the transition zone between the urban area and its hinterland; they exist to accommodate the population surge in the city centre.

To assess community participation in infrastructure delivery in Ogbomoso, multistage sampling techniques were used to elicit information through primary source (questionnaire administration) and secondary source of data. According to the information obtained from Oyo State Bureau of Statistics (2024) coupled with reconnaissance survey; there are eighteen peri-urban areas in Ogbomoso with a total of 103 Community Based Organizations [CBOs] which are basically residents' association and also comprises of 48 Community Based Organizations [CBOs] in the old peri-urban communities and 55 Community Based Organizations [CBOs] in the new peri-urban communities were identified to suit the research. These peri-urban areas include Aduin, Abaa, Aje-Ikose, Arinkinkin, Kuye, Yaku, Aroje, Ayedaade, Fapote, Oke Osuru, Esanu-Aje, Ileewe, Igbosayi, Kinira, Ikose, Iluju, Ladokun, and Owolaake. According to Jelili and Adedibu (2006) the peri-urban areas are categorized into communities of old peri-urban areas and new per-urban areas which cut across all the identified CBOs.

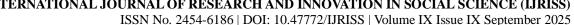
Using purposive sampling technique, the head of each 103 CBOs were selected leading to a selection of 103 respondents which comprises of 48 respondents in the old peri-urban communities and 55 respondents in the new peri-urban communities on which questionnaire was administered. Data collected include profile and housing attributes of community head in peri-urban areas of Ogbomoso, condition of available infrastructure, satisfaction derived from infrastructure delivery, and level of awareness and involvement of community members in infrastructure delivery. Likewise, the data collected were analysed using descriptive statistical method such as frequency tables, percentage, and cross tabulation to determine the variation and in level of community participation in the study area. Except otherwise stated, tables in this study emanated from field study in 2025.

FINDINGS AND DISCUSSION

Presented in this section are findings and discussion on the socioeconomic characteristics and housing attributes of the leaders of CBOs in peri-urban areas of Ogbomoso, the condition and level of satisfaction derived from available infrastructure, and level of awareness and involvement of community members in periurban areas of Ogbomoso.

Socioeconomic Characteristics and Housing Attributes of the Respondents

Findings were made on the socioeconomic characteristics and housing attributes of the respondents to determine their participation in infrastructure delivery in the study area. The socioeconomic characteristics and housing attributes considered are gender, age, marital status, educational attainment, length of stay, occupation, monthly income, type of house and house tenure of respondents. The need to examine socioeconomic characteristics and housing attributes of respondents is to understand the participation of community member in the delivery of infrastructure in their locality. This is in consonance with the work of Olowoporoku et al. (2019), Mobolaji et al. (2024) and Daramola et al. (2024) which established that the influence of


socioeconomic characteristics and housing attributes of residents has impact in determining their activeness and participation in infrastructure delivery.

Findings on socioeconomic characteristics as presented in Table 1 revealed that both male and female gender were well represented among the sampled respondents in old and new peri-urban area of the study area with male constitutes a total of 67.0% while 33.0% were female; this revealed that male were more environmentally concern and actively involved in community decision-making processes and infrastructure delivery than their female counterparts. Findings also established that most (62.5%) members of communities in old peri-urban area are within the age of 36–50 years followed by age 51 years and above (31.2%) and age 25 – 35 years taking the least (6.3%), while in the new peri-urban area age 25-35 years, 36-50 years and 51 years and above accounted for 18.2%, 45.4% and 36.4% respectively. This revealed that age plays a vital role in the delivery of infrastructure in an urban environment with an implication that individual within the mid-youth age (36-50 years) who are already at the peak of their careers have a vested interest in the development of their community which in turn contributes to their active participation in infrastructure delivery. Further findings revealed that married individuals reside in peri urban areas compared to singles which brings about a stronger tie to the community and a greater interest in stable and sustainable infrastructure delivery to improve their living conditions (Matarrita-Cascante & Brennan, 2012; Daramola et al., 2022).

Findings on educational level of respondents indicated that majority (78.6%) hold tertiary qualification while 14.6% and 6.8% had secondary school and primary school qualification respectively. The implication can be viewed that most of the community members have greater awareness and understanding of the benefits of community involvement in infrastructure delivery which can lead to more informed and effective participation. Further findings on occupation shows that majority (34.9%) of the respondents are artisan, followed by civil servants (28.2%), while retirees accounted for 9.7% and farmers and other professions accounted for the same percentage of 13.6% respectively. Findings on income distribution indicated that majority (35.9%) of the respondents earned between \hfloor{\text{N}51,000} - \hfloor{\text{N}99,000}, followed by \hfloor{\text{N}100,000} - \hfloor{\text{N}199,000} (33.0%), \hfloor{\text{N}200,000} and above (16.5%), while respondents who earn \hfloor{\text{N}50,000} and lesser accounted for 14.6%. The implications of this finding is that the occupation of the community members and their income would enable them to contribute their quota monetarily to the delivery of certain infrastructure in the area couples with presence of civil servants who have administrative and organizational skills and artisans who can bring practical skills and hands-on expertise to infrastructure delivery

Table 1: Socioeconomic Characteristics of the Respondents

Attributes	Old Peri-urban Area	New Peri-urban Area	Total	
	Frequency (%)	Frequency (%)	Frequency (%)	
Gender	•			
Male	32 (66.7%)	37 (67.3%)	69 (67.0%)	
Female	16 (33.3%)	18 (32.7%)	34 (33.0%)	
Total	48 (100%)	55 (100%)	103 (100%)	
Age (years)				
25 to 35	03 (6.3%)	10 (18.2%)	13 (12.6%)	
36 to 50	30 (62.5%)	25 (45.4%)	55 (53.4%)	
51 above	15 (31.2%)	20 (36.4%)	35 (40.0%)	
Total	48 (100%)	55 (100%)	103 (100%)	
Marital Status				
Single	06 (12.5%)	08 (14.5%)	14 (13.6%)	
Married	42 (87.5%)	47 (85.5%)	89 (86.4%)	
Total	48 (100%)	55 (100%)	103 (100%)	
Educational Le	evel	1	1	

Total	48 (100%)	55 (100%)	103 (100%)
Others	05 (10.4%)	09 (16.4%)	14 (13.6%)
Retirees	05 (10.4%)	05 (9.1%)	10 (9.7%)
Farmers	07 (14.6%)	07 (12.7%)	14 (13.6%)
Artisans	17 (35.4%)	19 (34.5%)	36 (34.9%)
Civil servants	14 (29.2%)	15 (27.3%)	29 (28.2%)
Occupation		·	
Total	48 (100%)	55 (100%)	103 (100%)
200,000 above	05 (10.4%)	12 (21.8%)	17 (16.5%)
100,000 to 199,000	14 (29.2%)	20 (36.4%)	34 (33.0%)
51,000 to 99,000	20 (41.7%)	17 (30.9%)	37 (35.9%)
Less than 50,000	09 (18.7%)	06 (10.9%)	15 (14.6%)
Income (₦)		·	•
Total	48 (100%)	55 (100%)	103 (100%)
Tertiary	35 (72.9%)	46 (83.4%)	81 (78.6%)
Secondary	10 (20.8%)	05 (9.1%)	15 (14.6%)
Primary	03 (6.3%)	04 (7.3%)	07 (6.8%)

As presented in Table 2, findings were made on the housing attributes of the respondents. Examining the type of houses occupied by respondents provides valuable context for understanding infrastructure delivery. Different house type was identified and findings indicated that detached flat is the common house type accounting for 65.0% in this study, followed by block of flats (21.4%), Brazilian type (7.8%), while 5.8% of the respondents stay in a duplex. Findings on each of the categories of the peri urban areas revealed that 9.1% of the respondents in the new peri-urban area stay in a Brazilian type, 65.5% in detached flat, 18.2% stay in block of flats and 7.3% in duplex, while in the old peri-urban areas, 6.3% stay in Brazilian type, 64.6% in detached flat, 25.0% in block of flats and 4.1% the respondents' house type is duplex.

Further findings on building ownerships across the two communities indicated that owner occupied is the common house tenure in this study with majority (84.5%) of the respondents' house tenure to be owner occupied, 5.8% to be rented, while 9.7% are family ownership. This shows that owner-occupied and familyowned homes are common due to the cultural and economic factors of the study area; although, homeowners typically have a higher stake in the community and are more likely to participate in infrastructure delivery to protect and enhance their property investment. In addition, findings on respondents length of stay in the area indicated that 20.4% of the respondents have been staying in the area with 5 years and less, 63.1% has been staying in the area for 6 - 10 years, while 9.8% has been staying in the area between 11 - 15 years, and 6.8% have been staying in the area for 15 years and above. This implies that community members with a moderate length of stay have a good understanding of the community's needs and challenges thereby strengthening their participation towards infrastructure delivery. This justifies the work of Daramola et al. (2022), Mobolaji et al. (2022) and Daramola et al. (2023) that the longer a person stays in an environment, the more knowledge about infrastructure in the environment.

Table 2: Housing attributes of the Community

Attributes	Old Peri-urban Area	New Peri-urban Area	Total			
	Frequency (%)	Frequency (%)	Frequency (%)			
Type of Buildings Occupied						
Brazilian type	03 (6.3%)	05 (9.1%)	08 (7.8%)			
Detached Flat	31 (64.6%)	36 (65.5%)	67 (65.0%)			

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue IX September 2025

Blocks of flats	12 (25.0%)	10 (18.2%)	22 (21.4%)
Duplex	02 (4.1%)	04 (7.3%)	06 (5.8%)
Total	48 (100%)	55 (100%)	103 (100%)
Years of Living in th	ne Area		
Less than 5 years	07 (14.6%)	14 (25.5%)	21 (20.4%)
6 years – 10 years	36 (75.0%)	29 (52.7%)	65 (63.1%)
11 years -14 years	03 (6.3%)	07 (12.7%)	10 (9.8%)
15 years and above	02 (4.0%)	05 (9.1%)	07 (6.7%)
Total	48 (100%)	55 (100%)	103 (100%)
Building Ownership			
Owner occupied	40 (83.3%)	47 (85.5%)	87 (84.5%)
Rented	03 (6.3%)	03 (5.5%)	06 (5.8%)
Family ownership	05 (10.4%)	05 (9.0%)	10 (9.7%)
Total	48 (100%)	55 (100%)	103 (100%)

Condition of available infrastructure in the study area

Findings were made on the condition of the available infrastructure in the study area. Various infrastructures identified in this study includes water supply, electricity supply, road, streetlight, drainage and waste collection among others. The need to examine the condition of the available infrastructures is to shaping their functionality to enhance living conditions of urban residents (UN-Habitat, 2010; Daramola et al., 2023). Assessing the condition provides vital insights to understanding the state of infrastructure facilities in both old peri-urban and new peri-urban area of Ogbomoso. Findings made on the condition of the infrastructure across the study area reveal notable disparities between the old peri-urban and new peri-urban of the study area it is presented in Table 3.

Findings indicated that old peri-urban areas generally show more favourable infrastructure condition than the new peri-urban area as seen in the higher relative condition index (RSI) of 3.32 for old peri-urban area compared to 3.25 for new peri-urban area. Among the infrastructure assessed, water supply was ranked first in both old and new peri-urban area accounting for the highest mean scores (3.73 in old peri-urban area and 3.59 in new peri-urban area). Other well-rated infrastructure include electricity supply with mean scores of 3.48 in old peri-urban area and 3.45 in new peri-urban area; and street lightening also with mean scores of 3.33 in old peri-urban area and 3.26 in new peri-urban area, even though the scores are moderate.

Further findings revealed that there is a shortcoming in the condition of some infrastructure in the old periurban area as road, drainage and waste collection received the lowest satisfaction scores (3.27, 3.25 and 2.85 respectively) which indicated poor or inadequate access to this infrastructure. The new peri-urban areas also pose a deficiency in terms of drainage, roads and waste collection with mean deviation of 3.11, 3.04 and 2.79 respectively. These findings however indicated that the community is likely to prioritize waste collection improvements due to its poor condition by actively participating and leveraging their vested interest to address this issue which will in turn enhances the living conditions of residents.

Table 3: Condition of available infrastructure in the study area

Environmental	Old Peri-urban Area			New Peri-urban Area			
Characteristics	Mean	DM	Rank	Mean	DM	Rank	
Water Supply	3.73	0.41	1	3.59	0.34	1	
Electricity Supply	3.48	0.16	2	3.45	0.20	2	
Road	3.27	-0.05	4	3.04	-0.21	5	
Street Light	3.33	0.01	3	3.26	0.01	3	

RSI	3.32	1		3.25	<u> </u>	
Waste collection	2.85	-0.47	6	2.79	-0.46	6
Drainage	3.25	-0.07	5	3.11	-0.14	4

Level of satisfaction derived from infrastructure delivery

Findings were made on the level of satisfaction derived from infrastructure delivery in both old and new periurban area of the study area. The need to examine the level of satisfaction derived from infrastructure delivery is to understand the value derived by respondents in the study area and it is presented in Table 4. Findings revealed that the level of satisfaction derived from infrastructure delivery by respondents in the old peri-urban area is moderate with the respondent's satisfaction index of 2.95. Looking at the deviation about mean (DM) it was found that the level of satisfaction derived is high on water supply (0.07), electricity supply (0.17) and streetlight (0.15), while there is low level of satisfaction derived from road (-0.03), drainage (-0.05), and waste collection (-0.32). This indicated that water and electricity being an essential infrastructure for basic living standards, influencing health, education, and economic activities are reliably provided, as well as adequate street lighting tied to safety and security. Though, road conditions, drainage systems and waste collection with low satisfaction index can limit mobility, restrict access to essential services, hamper economic activities by making it difficult to transport goods and services, increase the risk of flooding, widespread of long-term health hazards; this is in correlation with work of Daramola et al. (2018), Daramola et al. (2022) and Mobolaji, Daramola and Olowoporoku, (2022).

Further findings revealed that respondents in new peri-urban areas derived high level of satisfaction on water supply (0.39) and electricity supply (0.26). Similarly, low level of satisfaction is derived from streetlight (-0.07), road (-0.09), drainage (-0.26), and waste collection (-0.27). The findings indicated that the community is likely to be expose to unwanted threat to the sustainability of infrastructure which might include contamination of water supplies and social inequalities. This correlate with the study of Daramola and Olowoporoku (2017) on urban infrastructure in Nigeria where they argued that neglecting the provision of infrastructure like roads and drainage can lead to increased vulnerability to environmental hazards and health risks, especially in periurban areas.

Table 4: Level of satisfaction derived from available infrastructure

Infrastructure	Old Per	Old Peri-urban Area			New Peri-urban Area			
	Mean	DM	Rank	Mean	DM	Rank		
Water Supply	3.02	0.07	1	3.40	0.39	1		
Electricity Supply	3.12	0.17	2	3.27	0.26	2		
Road	2.92	-0.03	4	2.92	-0.09	4		
Street Light	3.10	0.15	3	2.94	-0.07	3		
Drainage	2.90	-0.05	5	2.75	-0.26	5		
Waste collection	2.63	-0.32	6	2.74	-0.27	6		
RSI	2.95	•	•	3.01	•	•		

Level of Involvement of community organization in Infrastructure Delivery

Findings were made on the level of involvement of community members in infrastructure delivery in selected peri urban areas in Ogbomoso. The mean index (RII) was 3.38 in the old peri-urban area and 3.39 in the new peri-urban area. This indicated a moderate level of involvement of community members in infrastructure delivery in the study area. The finding is in tandem with Pretty (2003) submission that when communities actively participate in infrastructure upkeep, they help bridge the gap between service providers and users, ensuring that infrastructure meets local needs effectively. Also according to Mansuri and Rao (2013) involvement in maintenance activities can significantly reduce infrastructure deterioration rates, making public investments more cost-effective.

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue IX September 2025

Looking at the deviation about the mean (DM) in the old peri-urban area, it was found that the level of involvement is high on ensuring proper use of infrastructure (0.50), funding (0.45), raising awareness for maintenance (0.37), repair of faulty or damaged infrastructure (0.33), provision or construction of infrastructure (0.31) and mobilizing for maintenance (0.07). Similarly, community members are not involved in determination of type of infrastructure to be done (-0.71) and determination of location of the infrastructure (-1.32). Consequently in the new peri-urban area, level of involvement is high on funding (0.47), followed by ensuring proper use of infrastructure (0.49), raising awareness for maintenance (0.34), repair of faulty or damaged infrastructure (0.33), provision or construction of infrastructure (0.31) and mobilizing for maintenance (0.08), while level of involvement is low on determination of type of infrastructure to be done (-0.68) and determination of location of the infrastructure (-1.32).

Table 5: Level of involvement of respondents in infrastructure delivery

Level of involvements on infrastructure	Old Per	Old Peri-urban Area			New Peri-urban Area		
delivery	Mean	DM	Rank	Mean	DM	Rank	
Determination of type of infrastructure to be done	2.68	-0.71	7	2.71	-0.68	7	
Determination of location of the infrastructure	2.07	-1.32	8	2.08	-1.32	8	
Funding	3.83	0.45	2	3.86	0.47	1	
Provision or construction of infrastructure	3.69	0.31	5	3.70	0.31	5	
Ensuring proper use of infrastructure	3.89	0.5	1	3.86	0.49	2	
Raising awareness for maintenance	3.75	0.37	3	3.73	0.34	3	
Mobilizing for maintenance	3.45	0.07	6	3.47	0.08	6	
Repair of faulty or damaged infrastructure	3.71	0.33	4	3.72	0.33	4	
RII	3.38	1	1	3.39	•	•	

CONCLUSION AND RECOMMENDATION

The study assessed community participation in infrastructure delivery in peri-urban areas of Ogbomoso, Nigeria. Findings revealed variation in the socioeconomic characteristics of the head of CBOs in both old and new peri urban areas of the study area. Findings further revealed that the condition of infrastructure shows a mixed scenario: while water supply, electricity, and streetlight are in good condition, road is fair, and drainages and waste collection are poor, in which level of satisfaction levels also correspond to these conditions, with community members being content with water supply, drainage, and waste collection, but dissatisfied with electricity, roads, and street lighting. Findings revealed that the community members contribute to the planning and decision-making processes and are involved in volunteering and collaboration efforts to advocate for infrastructure development. Findings however indicate that while certain infrastructure elements such as water supply, electricity, and streetlight are a bit satisfactory, there are critical areas like, roads, waste collections and drainages that require substantial improvement to meet community expectations and needs in the study area.

For active community participation in infrastructure delivery, the study recommended that authorities should engage community members more deeply in the planning stages to ensure infrastructure projects meet community needs and expectations. Community Based Organizations [CBOs] should foster regular meetings and transparent decision-making processes, establish robust communication channels between community organization and authorities to facilitate timely updates and feedback on infrastructure projects, implement continuous monitoring and evaluation mechanisms to assess the performance of infrastructure projects and ensure they align with community needs. Also, it is recommended that government should allocate resources strategically to improve critical infrastructure elements such as water supply, roads, and electricity.

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue IX September 2025

Funding

This study does not receive any external funding.

Conflict of Interest

The authors declare no conflict of interest.

ACKNOWLEDGEMENT

The authors appreciate the residents of Peri-urban areas of Ogbomoso for their cooperation and participation in the study.

REFERENCES

- 1. Adebayo, O., Ojedokun O., Ayeni O., & Olowu, T. (2018). Enhancing community participation in the planning, implementation and management of social infrastructure in Nigeria. International Journal of Social Science Research, 3(2), 16–25.
- 2. Adedayo, A., & Afolayan, G. P. (2012). Implications of Community Infrastructure Provision in the Development of Medium-Sized Towns in Kwara State Nigeria. Ethiopian Journal of Environmental Studies and Management, 5(4), 620-627.
- 3. Akinosun, F., Olojede, O., & Oyelere, P. (2025). Accessibility to Public Basic Education Facilities in Akinyele Local Government Area of Oyo State, Nigeria. International Journal of Research and Innovation in Social Science (IJRISS). 9(6) 3950-3957. https://dx.doi.org/10.47772/IJRISS.2025.906000297
- 4. Awuzie, B. O., & McDermott, P. (2019). Infrastructure delivery systems: Governance and implementation issues. Springer.
- Babawale (2021). Involvement of local residents in decision-making and evaluating development projects. M.Tech Thesis in The Department of Urban and Regional Planning, Federal University of Technology, Akure, Nigeria.
- 6. Bremer, J., & Bhuiyan, S. H. (2014). Community-led infrastructure development in informal areas in urban Egypt: A case study. Habitat International, 44, 258–267. https://doi.org/10.1016/j.habitatint.2014.07.004
- 7. Daramola, O. (2012). Clapping with One Hand: The Case of Urban Environmental Sanitation Practices in Nigeria. Journal of Applied Technology in Environmental Sanitation, 2(4) 223-228.
- 8. Daramola O. P. & Olawuni P. O. (2017). Assessing the Water Supply and Sanitation Sector for Post-2015 Development Agenda: A Focus on Lagos Metropolis, Nigeria. Environment Development and Sustainability, DOI:10.1007/s10668-017-0077-8
- 9. Daramola, O., & Olowoporoku, O. (2017). Plurality of urban governance in Nigeria and its implications on delivery of environmental services. Advances in environmental research, 6(1), 25-33.
- 10. Daramola, O., Olowoporoku, A., Akanmu, O., & Adejumo, A. (2018). Assessment of sanitation behavior among students in Southwest Nigeria. Journal of Health and Hygiene, 15(4) 201 215.
- 11. Daramola, O., Mobolaji, D., Lawal, A., & Idowu, K. (2022). Environmental Health Practices in Traditional Area: The Tale of Ile-Ife, Nigeria. East African Journal of Environmentand Natural Resources. 5 (2) 124 –132. https://doi.org/10.37284/eajenr.5.2.989.
- 12. Daramola, O., Mobolaji, D., & Kayode, I. (2022). Assessment of Developers' Awareness of Physical Planning Regulations in Ile-Ife, Nigeria. Journal of Engineering and Environmental Sciences, Osun State University, Osogbo, Nigeria. 4(1) https://doi.org/10.36108/ujees/2202.40.0141.
- 13. Daramola, O. P., Olowoporoku, O. A., & Mobolaji, D. O. (2023). Biting the Bullet: The case of Households' Resilience to Water and Sanitation Deficit in Nigeria. Environmental Problems Journal. 8(1) 37–46. https://doi.org/10.23939/ep2023.01.037
- 14. Daramola O., Mobalaji D., Tajudeen O., Popoola O., Igharo J, & Oyelere P. (2023). Environmental Quality in Urban Area of Developing Countries: The Example of Bodija and Owode Public Housing Estates, Ibadan, Nigeria. FUOYE Planning Journal, 1 (2) 65-76. Available on www.researchgate.net/publication/376953677

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue IX September 2025

- 15. Daramola, O., Mobolaji, D., & Oyelade, T. (2024). Residents' Perception of Physical Regulations in Three Secondary Cities in Nigeria (A Study of Osogbo, Ile Ife, Iwo). African Journal of Housing and Sustainable Development, 5(1) 86–96.
- 16. Goudarzi J., Saman K., and Dunks R. (2023) Defining Open Scholarly Infrastructure: A Review of Relevant Literature. Copyright, Fair Use. Scholarly Communication. 253. https://digitalcommons.unl.edu/scholcom/253
- 17. Jelili, M. O., & Adedibu, A. A. (2006). Land use classification and informal sector question in Ogbomoso, Nigeria. Journal of Human Ecology, 20(4), 283-287.
- 18. Liu, W., Shan, M., Zhang, S., Zhao, X. & Zhai, Z (2022). Resilience in Infrastructure Systems: A Comprehensive Review. Buildings, 12, 759. https://doi.org/10.3390/buildings12060759
- 19. Mansuri, G. & Rao, V. 2014, Community-based and Driven Development: A Critical Review. The World Bank Research Observer, 19(1) 1-39
- 20. Markovich, J. (2015). They seem to divide us: Social mix and inclusion in two traditional Urbanist communities. Housing Studies, 30(1), 139-168. doi:10.1080/02673037.2 014.935707.
- 21. Matarrita-Cascante, D., & Brennan, M. A. (2012). Conceptualizing community development in the twenty-first century. Community development, 43(3), 293-305.
- 22. Mobolaji, D., & Adekiya, I. (2021). Household Infrastructure Delivery: An Assessment of Residents' Perception in Ilesa, Nigeria. Donnish Journal of Research in Environmental Studies, 4(1) 001-009.
- 23. Mobolaji D., Daramola, O., & Olowoporoku, O. (2022). Residents' Narratives of Environmental Quality Metropolitan Lagos, Nigeria. Environmental **Problems** Journal. https://doi.org/10.23939/ep2022.04.188
- 24. Mobolaji, D. O. (2023). Households' Resilience to Infrastructure Deficit in Ogbomoso, Nigeria. M.Sc Thesis Submitted to the Department of Urban and Regional Planning, Obafemi Awolowo University, Ile-Ife, Nigeria.
- 25. Mobolaji, D. O., Durotoye, A. & Daramola, O. P. (2024). Students' Perception of Environmental Quality in Public Secondary Schools of Ibadan Metropolis, Nigeria. Environmental ProblemsJournal, 9(4) 204-212 https://doi.org/10.23939/ep2024.04.204
- 26. Mobolaji, D. O., Adebayo, A., Emmanuel, A. & Daramola, O. P. (2025). Infrastructure Delivery in Public Housing Estates of Lagos, Nigeria. The Journalish: Social and Government, 6(2) 129 - 140. https://doi.org/10.55314/tsg.v6i1.870
- 27. Mobolaji, D. & Daramola, O. (2025). Coping with Infrastructure Deficit: A narration from Households' Heads in the Developmental Zones of Ogbomoso, Nigeria. Malaysian Journal of Tropical Geography, 50(1)46-64.
- 28. Nizkorodov, E. (2021). Evaluating risk allocation and project impacts of sustainability-oriented water public-private partnerships in Southern California: A comparative case analysis. World Development, 140, 105232.
- 29. Olowoporoku, O., Daramola, O., Olaniyi, K., & Mobolaji, D. (2019). Urban Legibility Condition in Nigeria: A Narration of Residents' Experience in Ibadan Metropolitan Area. Journal of Economicsand Environmental Studies, Opole University, Poland, 19(4) 315 338.https://doi.org/10.25167/ees.2019.52.2
- 30. O'Malley, P. (2013). Community participation in development: Insights from the field. Routledge.
- 31. Oraegbune, O. M. (2022). Towards Sustainable Road Infrastructure Delivery in Nigeria. Arid Zone Journal of Engineering, Technology and Environment, 18(2)
- 32. Oyedele, A. O (2020). Infrastructure Delivery and Crime Prevention in Nigerian Cities
- 33. Sun, X., Liu, X., & Zhou, Y (2023). Delineating Peri-Urban Areas Using Multi-Source Geo-Data: A Neural Network Approach and SHAP Explanation. Remote Sens. 2023. https://doi.org/10.3390/ rs15164106
- 34. Tantoh, H. B., Simatele, M. D., & Ebhuoma, E. E. (2020). Shifting the paradigm in community-based water resource management in North-West Cameroon: A search for an alternative management approach. Community Development, 51(2), 172-191
- 35. World Bank (2015). Infrastructure and the World Bank: A Progress Report. World Bank. World Population Review (2014). Africa Population. www.worldpopulationreview.com/continents/Africapopulation