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ABSTRACT 

The classification of cooking oil usage in real-world scenarios presents significant challenges due to several 

varying visual conditions such as angular perspectives, blurriness, and occlusions. Traditional computer vision 

approaches often struggle with these challenges, leading to reduced reliability in automated systems. This 

study explores the effectiveness of different deep learning architectures in addressing these challenges for 

robust cooking oil usage classification. Several selected architectures of convolutional neural networks 

(CNNs) modals and our proposed modal has been evaluated to determine their performance in handling 

distorted, blurred, and partially obscured oil images. Through extensive experimentation, proposed model 

demonstrates superior performance over existing methods, achieving over 99% accuracy. These findings 

highlight the potential of deep vision analysis in improving classification accuracy for real-world applications, 

providing insights into model selection for challenging visual feature extraction. 

Keywords— Angular, Blurry, Classification, CNN, Computer vision, Cooking oil usage, Deep learning, Food 

safety, Occlusion 

INTRODUCTION 

The accurate classification of cooking oil usage in practical, real-world settings represents a significant and 

complex challenge, having critical implications for food safety, quality assurance, and automated monitoring 

systems. Cooking oils undergo various chemical and physical changes when used repeatedly or in different 

conditions, which can reflect on the oil's visual appearance [1]. However, practical environments often 

introduce complicating factors such as angular perspectives, motion blur, and partial occlusions, which hinder 
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reliable detection [1]. Traditional computer vision methods that depend on handcrafted features struggle under 

these distortions or incomplete data [2].  

Recent advances in deep learning, particularly convolutional neural networks (CNNs), have shown strong 

capability in extracting rich, hierarchical features from complex images, even under adverse conditions [1][2]. 

This approach, often referred to as deep vision, leverages CNNs to automatically learn feature representations 

from raw visual data, enabling high performance in tasks such as object detection, classification, segmentation, 

and tracking [3]. Its adaptability makes it highly suitable for food-related applications, including cooking oil 

classification. 

Nevertheless, deep vision systems face persistent challenges in practice. Blurriness, angular variations, and 

occlusion can obscure critical features, complicating recognition and classification [4]. Blurry images, whether 

from motion or poor focus, reduce the clarity of features; angular changes alter the perceived appearance of 

objects; and occlusions hide essential visual cues. Addressing these limitations is essential for improving the 

robustness of deep vision in applications ranging from autonomous driving and medical imaging to 

manufacturing inspection and food safety monitoring. Strategies such as data augmentation, attention 

mechanisms, and multi-view learning continue to push the field toward more reliable real-world performance.  

LITERATURE REVIEW 

The effective cooking oil classification has driven extensive exploration of diverse analytical techniques, each 

possessing unique strengths and limitations [5][6]. Traditional methods often rely on subjective criteria or 

hand-engineered algorithms, limiting their adaptability across diverse oil types and conditions. In contrast, 

machine vision integrated with advanced image processing and deep learning has emerged as a powerful 

solution for food quality assessment [7]. Over the past few decades, integrating artificial intelligence with food 

category recognition has emerged as an important and active research domain. 

Deep learning models, especially CNNs, excel at discerning complex visual patterns, enabling robust 

recognition without explicit physical modelling [5][6]. Their effectiveness is further supported by the 

availability of large-labelled datasets and increasing computational resources, accelerating adoption in food 

processing and safety applications [6]. These methods have proven particularly effective in tasks requiring 

fine-grained classification, making them well-suited for identifying cooking oil usage. 

Challenges Posed by Visual Features 

Despite these advancements, visual factors such as angular variations, blurriness, and occlusions remain major 

obstacles to reliable deep vision-based classification. Each can degrade image quality and hinder accurate 

feature extraction, underscoring the need for models that perform well under real-world conditions. 

Angular Variations 

Angular variations refer to changes in the viewing angle or orientation of an object within an image, which can 

dramatically alter its visual appearance. For cooking oil classification, the same sample may look different 

when captured from diverse perspectives, affecting the perceived texture, colour, or visual indicators of 

degradation. To improve inspection precision, some studies integrate deep learning frameworks with multi-

angle imaging. Research by Lihong Xie et al. on agricultural multi-view learning [8] and Bin Liu et al. on 

multi-angle surface defect detection [9] both demonstrate how diverse viewing angles strengthen convolutional 

networks. Despite these developments, challenges persist in real-time inference, computational demands, and 

the need for large, varied datasets to ensure model generalizability. 

Further addressing object recognition, Nik Mohd Zarifie Hashim et al. proposed a method for "Next Viewpoint 

Recommendation" to minimize pose ambiguity. Their approach recommends optimal poses by quantifying 

pose entropy, significantly increasing the accuracy of 6D pose estimation, especially when initial observations 

are limited or unclear [10]. This strategy directly supports food safety imaging where items require thorough, 

multi-perspective scanning for contamination or degradation. Similarly, Ashish Reddy Mulaka et al.'s work on 

pine seedlings found that low-angle side views and wide fields of view improved detection and differentiation, 
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highlighting how camera settings and spatial arrangements crucially impact machine vision systems for 

applications like food processing inspections [11]. 

Blurriness 

Blurriness caused by motion, limited depth of field, or sensor imperfections leads to loss of image detail and 

reduced clarity. In cooking oil images, blur can arise from various sources, including motion blur due to 

camera movement or object displacement, blur caused by out-of-focus lenses, and atmospheric blur due to 

steam or smoke present during cooking. Blur introduces uncertainty in edge detection and feature extraction, 

which are critical for CNNs to learn discriminative representations [2]. The challenge lies in developing 

algorithms robust to various types of blurs, including motion blur, Gaussian blur, and out-of-focus blur, each 

requiring tailored preprocessing or network architectures to mitigate their effects [12]. 

This degradation compromises a deep learning model’s ability to extract the subtle and fine-grained features 

necessary for accurate classification. Sayed et al. highlight challenges encountered with motion blur in real-

time object detection [13], while one paper discuss advanced blur kernel estimation and deblurring methods 

aimed at restoring image sharpness [14]. In cooking oil analysis, blur can obscure visual cues such as subtle 

changes in viscosity or particulate presence, making blur-robust feature learning or effective deblurring 

essential for reliable assessment. 

Occlusion 

Occlusion occurs when parts of the object are hidden behind other items or artifacts in the scene, resulting 

disrupts the complete visual information required for accurate classification, potentially leading to 

misclassification if the occluded regions contain critical features. Cooking oil samples may be partially 

obscured by food particles, cooking utensils, or other objects, is a common and complex problem in real-world 

cooking scenarios.  

Robust object detection and segmentation techniques can help identify and isolate the cooking oil region from 

occluding elements, enabling more accurate analysis. AI algorithms and models are transforming food safety 

applications by offering advanced capabilities in contamination detection, quality assurance, and risk 

management [15]. Integrating deep learning techniques in food image recognition is leading to innovative 

dietary assessment methods with higher accuracy and precision [16]. Occlusions involving visually similar 

objects further complicate discrimination. For cooking oil usage classification, occlusion may cause 

misinterpretation of clarity or contamination indicators. Therefore, developing models that infer full object 

characteristics from partial observations is crucial for practical deployment. 

Together, these challenging visual factors constitute significant barriers for deep vision analysis in cooking oil 

usage classification. Future research must prioritize the development and integration of advanced algorithms 

capable of mitigating the adverse effects of angular variations, blurriness, and occlusions, thereby enhancing 

the robustness, adaptability, and reliability of deep learning models in real-world application scenarios. 

METHODOLOGY 

This section outlines systematic methodology to achieve reliable cooking oil frequency usage classification 

through deep vision analysis. The approach begins with image acquisition of cooking oil samples under real-

world conditions, including challenging visual features such as blurriness, angular variation, and occlusion. 

Preprocessing techniques are applied to enhance image quality before feeding the data into a deep 

convolutional neural network for feature extraction and classification. Finally, model performance is validated 

using standard evaluation metrics to ensure robustness, accuracy, and generalizability of the proposed 

framework. 

Dataset Preparation 

Accuracy classifying the action performed on three types of selected foods hinges on several distinct phases, 

all critical within the proposed methodology. In this study, chosen foods were ‘chicken’, represents raw fresh 
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food, ‘lekor’ represents a processed traditional food, and ‘nugget’ represents processed industrial food 

illustrated in Fig. 1. 

  

                (a)                                (b)                                 (c)   

Fig. 1   Types of food: (a) ‘chicken’ and (b) ‘lekor’ (c) ‘nugget’ 

Food classification based on processing levels is common framework used to understand the nature and 

implications of food products on diet and health. Raw or unprocessed foods refer to natural, whole foods that 

have undergone minimal alteration from their natural state, such as fresh fruits, vegetables, and meats. 

Processed foods encompass a wide range of products that have been altered to varying degrees, from minimal 

processes like washing and freezing to more extensive treatments like canning, preserving, and instant 

preparation. Importantly, not all processed foods contain chemical preservatives; some rely on physical 

preservation methods such as freezing or vacuum sealing, which maintain the product’s integrity without 

additives. 

 

Fig. 2   Proposed method flowcharts 

A flowchart showing the overall process of proposed method that have been taken place as shown in Fig. 2. 

The first phase is the collection and preprocessing of data. A comprehensive dataset of cooking oil usage by 

using photography collections. The process taken to create and collect the datasets for every cooking oil 

sample.  

In this study, the dataset plays a critical role in ensuring the accuracy and reliability of cooking oil frequency 

usage classification. A custom dataset was created because no existing public dataset adequately represents the 

unique visual challenges associated with cooking oil samples, such as blurriness, angular variations, and 

occlusion. By collecting images directly under controlled and real-world conditions, the dataset reflects the 

true diversity and variability of oil usage scenarios, ensuring that the deep vision model can generalize 

effectively. 

As shown in Table I, total 2160 were taken for each cooking oil samples. These images of cooking oil for each 

sample were meticulously annotated to include species labels that have four classes, for example, “1x usage”, 
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“2x usage”, “3x usage”, and “Others” with total of 540 images for each class. This is to ensure that the training 

data was accurate and representative. 

TABLE I.   TOTAL IMAGE FOR EVERY CLASS 

Cooking Oil 

Samples 

Number of Image for Each Classes  Total     Images 

1x  

Usage 

2x Usage 3x Usage    Others 

‘Chicken’ 540 540 540   540 2160 

‘Lekor’ 540 540 540   540 2160 

‘Nugget’ 540 540 540   540 2160 

 

All the finalized images for each class have been collected. In Fig. 3 shows examples of four classes cooking 

oil usage for all samples. The evaluation used rendered images for training and testing to show the 

effectiveness of the proposed viewpoint recommendation method. 

 

(c) 

Fig. 3   Sample of four classes of cooking oil usage samples:  

(a) ‘chicken’ and (b) ‘lekor’ (c) ‘nugget’ 

1) Angular Datasets: Multi-angle image capture is critical to acquire and ensure all the visual features are 

captured because the quality of oil might differ based on food type used and the time it was used. According to 

Bin Liu et al. on multi-angle surface defect detection, the sample collection was carried out by capturing image 

samples of cooking oil’s visual characteristics sequentially from three different elevation angles: 0°, 45°, and 

90° [7].  

 

Fig. 4   Camera elevation angle for image capturing 

The camera angle schematic shows how all oil samples are viewed from three different heights as shown in 

Fig. 4. Having a 0° view gives a great advantage for clearly inspecting colour and clarity since it provides a 

horizontal view of the oil. A 45° angle works best when searching for particles and other surfaces since it 
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provides oblique views which offers both depth and surface appearance capturing. The 90° angle, or top-down 

view, is ideal for inspecting surface texture, colour uniformity, and possible floating residues. 

 

                (a)                               (b)                             (c)   

Fig. 5   Example of images observed from different elevation angles: 

 (a) 0° (b) 45° (c) 90° 

By capturing images from these three perspectives as shown in Fig. 5, the system gathers richer visual data, 

making it more suitable for detailed analysis. This setup enhances the ability to detect subtle differences 

between oil samples, thereby improving the accuracy of quality assessment models. It plays a key role in 

supporting a vision-based food safety monitoring system. 

As shown in Table II, total 1080 were taken for each cooking oil samples. These images of cooking oil for each 

sample were meticulously annotated to include species labels that have four classes, for example, 1x usage, 2x 

usage, 3x usage, and others with total of 120 images for each class. 

Table Ii. Total Image For Every Class 

Cooking Oil Samples Usage Number of Image Angle Total Images 

0° 45° 90° 

‘Chicken’ 1x 120 120 120 360 

2x 120 120 120 360 

3x 120 120 120 360 

‘Lekor’ 1x 120 120 120 360 

2x 120 120 120 360 

3x 120 120 120 360 

‘Nugget’ 1x 120 120 120 360 

2x 120 120 120 360 

3x 120 120 120 360 
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Blurry Datasets: Blurriness variation in image datasets is critical for evaluating the robustness of vision-based 

classification systems, as the quality of captured features can be significantly affected by different levels of 

blur. In this study, cooking oil image samples were prepared with four controlled blurriness levels: 25%, 50%, 

75%, and 100% as shown in Fig. 6. These levels were applied systematically to the original dataset to simulate 

real-world conditions where factors such as camera motion, focus issues, and environmental vibrations may 

degrade image clarity. 

 

Fig. 6   Example of image samples with different blurriness levels:  

(a) 25% (b) 50% (c) 75% (d) 100% 

Blurriness application illustrating the progressive loss of detail from mild (25%) to extreme (100%) blurring. 

Images with 25% blurriness retain most of the original visual characteristics, allowing for relatively accurate 

inspection of colour and clarity. 50% blurriness starts to obscure finer surface details, making it more 

challenging to detect particles and subtle texture variations. At 75% blurriness, significant feature degradation 

occurs, with only general colour tones and large shapes remaining distinguishable. 100% blurriness represents 

a fully degraded condition where surface features, particles, and even colour uniformity are difficult to 

evaluate.  

By incorporating these four blurriness levels, the dataset provides a comprehensive benchmark for testing 

model performance under varying levels of image degradation. This approach supports the development of 

more robust and adaptive deep learning models capable of maintaining classification accuracy even in visually 

compromised conditions, thereby enhancing the reliability of automated cooking oil quality assessment 

systems. 

Occlusion Datasets: Occlusion image capture plays a crucial role in testing the robustness of vision-based 

systems, as real-world environments often involve partially blocked visual information. In this study, the 

dataset was designed with varying occlusion patterns to simulate challenging inspection conditions. The 

occlusions were applied in different orientations such as horizontal, vertical, left-diagonal, and right-diagonal 

covering different portions of the visual field, as shown in Fig. 7.  

 

Fig. 7   Example of image samples with different occlusion orientation: (a) horizontal (b) vertical (c) right-

diagonal (d) left-diagonal 
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Horizontal occlusions primarily block key visual features across the middle or upper/lower sections of the 

image, while vertical occlusions hide parts of the left or right side of the oil sample. Left-diagonal and right-

diagonal occlusions create slanted obstructions that block both vertical and horizontal information 

simultaneously, making object recognition and feature extraction more difficult. By training and evaluating the 

system on these occluded datasets, the model can be tested for its ability to accurately assess cooking oil 

quality even when parts of the visual information are missing. This method enhances the robustness of the 

quality assessment system, ensuring it can operate reliably in practical scenarios where complete visibility is 

not guaranteed. 

Proposed Model for Deep Vision Analysis 

The second phase focuses on the development and training of the deep learning model. Before developing the 

model, dataset splitting strategy has been applied for the cooking oil image classification task (original, blurry 

and occlusion). These images were divided into three distinct sets to ensure proper model training and 

evaluation. Specifically, 70% of the images, equivalent to 1,512, were allocated to the training dataset, which 

is used to train the deep learning model. Another 20%, or 432 images, were assigned to the evaluation (or 

validation) dataset to fine-tune model parameters and prevent overfitting during training. The remaining 10% 

(216 images) were reserved for the testing dataset, which is used to assess the model's performance on unseen 

data. This split ensures that the model is both effectively trained and accurately evaluated, supporting reliable 

and general predictions. 

However, dataset splitting strategy for angular datasets differ from original, blurry and occlusion because each 

angle has been split. The data splitting for angular datasets was 80% of the images, equivalent to 1080, were 

allocated to the training dataset, which is used to train the deep learning model. Another 20% of images were 

assigned to the evaluation (or validation) dataset to fine-tune model parameters and prevent overfitting during 

training.  

Convolutional Neural Networks (CNNs), known for their efficiency in image recognition tasks, were 

employed. The advantage of CNN compared to another algorithm is CNN can detect the important features 

without any human supervision. CNN is useful in a lot of applications, especially in image related tasks 

including the image classification, image semantic segmentation, object detection in images, and more. The 

model architecture was carefully designed to balance complexity and performance, featuring multiple 

convolutional layers to capture intricate patterns in the cooking oil images. The model was fine-tuned using the 

annotated cooking oil image dataset, with hyperparameters optimized through a combination of grid search 

and cross-validation techniques to ensure the best possible performance.  

Reliable computer vision methods must be evaluated followed by testing then building models capturing every 

relevant detail of utmost importance for model refinement through classification accuracy focused evaluations. 

With the help of confusion matrices, can analyse the specific model classification challenges in deeper detail 

for accurate calibrations. For model derived results meeting expectations, it was subsequently deployed onto a 

seamless tool interface meant for monitoring restaurant food preparation equipment, food vending machines, 

and laboratory centres. Among numerous options embedded inside the application is an instant class usage 

evaluation function by image analysis thought oil image input. Additionally, the system was designed to be 

scalable, capable of handling large volumes of data, and adaptable to future enhancements, for example 

incorporating additional cooking oil when using other types of food or using other types of cooking oil 

RESULT AND ANALYSIS 

This section presents the experimental findings obtained from the proposed cooking oil quality assessment 

framework, evaluated under multiple controlled conditions. The results are organised into four key 

components: state-of-the-art (SOTA) model comparison, angular variation analysis, blurriness evaluation, and 

occlusion assessment. 
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State-of-the-Art (S.O.T.A.) Methods Comparison Analysis 

S.O.T.A. comparison establishes a performance benchmark by evaluating the proposed method against 

existing deep learning architectures widely used in food quality inspection tasks. This highlights the relative 

effectiveness of the proposed approach in terms of classification accuracy, robustness, and computational 

efficiency. 

Table Iii. S.O.T.A. Performance Accuracy 

Cooking Oil Samples Modal Training   Accuracy (%) Validation Accuracy (%) 

‘Chicken’ 

VGG19 99.04 99.77 

ResNet50 95.84 99.56 

EfficientNet 93.76 97.48 

Mobile Net 96.97 100.00 

Proposed Method 1 99.09 99.77 

Proposed Method 2 92.79 98.91 

Proposed Method 3 94.95 100.00 

‘Lekor’ 

VGG19 97.31 99.42 

ResNet50 90.11 96.83 

EfficientNet 87.51 92.75 

Mobile Net 91.25 98.31 

Proposed Method 1 97.46 99.56 

Proposed Method 2 85.44 91.90 

Proposed Method 3 88.31 95.81 

‘Nugget’ 

VGG19 97.67 98.61 

ResNet50 91.67 98.80 

EfficientNet 88.92 93.70 

Mobile Net 94.25 99.72 

Proposed Method 1 98.36 99.54 

Proposed Method 2 89.75 97.25 

Proposed Method 3 92.77 99.05 

From Table III for ‘Chicken’ samples, performance is consistently high, with several models reaching perfect 

or near-perfect evaluation accuracy. Proposed Method 3 and MobileNet achieve 100% evaluation accuracy, 

and Proposed Method 1 and VGG19 also score 99.77%. ResNet50 performs slightly lower at 99.56%, while 

Efficient Net again trails with 97.48% evaluation accuracy. This suggests that chicken oil samples are 

generally easier for the models to classify, with MobileNet and Proposed Method 3 being the most reliable 

choices. However, ‘Lekor’ samples show more variation in results, with Proposed Method 1 and VGG19 

maintaining high evaluation accuracy above 99%, while Proposed Method 2, Proposed Method 3, and 

ResNet50 drop to 91.90%, 95.81%, and 96.83%, respectively. This indicates that ‘lekor’ oil samples may 

present more complex or less consistent visual features, making classification more challenging for certain 

models. 
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For ‘Nugget’ samples, most models perform strongly, with Proposed Method 1 achieving 99.54% evaluation 

accuracy and MobileNet recording the highest at 99.72%. VGG19 and Proposed Method 3 also perform well 

above 97%, while Efficient Net records the lowest results, especially in its first instance (87.51% training and 

92.75% evaluation accuracy), though it improves slightly in the second instance. This indicates that while most 

models can classify nugget oil samples effectively, Efficient Net may require optimization for better results. 

Overall, MobileNet and Proposed Method 1 stand out as consistently strong performers across different sample 

types, whereas Efficient Net shows weaker performance in all categories, suggesting it may not be as well-

suited for this dataset without further tuning. 

Angular-based Image Capturing Analysis 

The angular variation analysis examines the effect of multi-angle image capture (0°, 45°, and 90°) on model 

performance, simulating real-world variability in camera positioning. This is essential for assessing the 

system’s ability to maintain accuracy despite changes in viewpoint. Two experiments of performance of the 

multi-angle in classify the images highlights how the model behaves under same and different angle. By 

analysing the output, this study observe on how each multi-angle contributes to prediction of cooking oil 

usage. 

First Experiment: Training and Testing Dataset Using Same Angle: For first experiment, the model had 

been develop based on training and testing dataset using same angle to predict and classify the images samples.  

TABLE IV.   PERFORMANCE ACCURACY FOR FIRST EXPERIMENT 

Cooking Oil Samples Image Angle Proposed Method 

Training   Accuracy (%) Validation Accuracy (%) 

‘Chicken’ 0° 100.00 100.00 

45° 77.78 76.67 

90° 100.00 98.89 

‘Lekor’ 0° 58.06 58.89 

45° 58.89 52.22 

90° 74.72 51.11 

‘Nugget’ 0° 60.00 71.11 

45° 81.94 53.33 

90° 100.00 100.00 

 

Second Experiment: Trained on One Angle but Tested with All Angles: For second experiment, the model 

had been developed when trained on one angle but tested with all angles, simulating a more practical scenario 

with varied input orientations. 

TABLE V. PERFORMANCE ACCURACY FOR SECOND EXPERIMENT 

Cooking Oil Samples Image Angle Proposed Method 

Training   Accuracy (%) Validation Accuracy (%) 

‘Chicken’ 0° 66.67 78.89 

45° 66.67 77.78 

90° 65.00 44.00 

‘Lekor’ 0° 51.67 43.33 

45° 53.06 30.00 

90° 70.00 38.89 
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‘Nugget’ 0° 80.56 55.56 

45° 53.06 42.22 

90° 62.50 50.00 

 

Third Experiment: Combining All Angle of Image: For this experiment, the model had been develop based 

on combining all angles for training and testing dataset to predict and classify the images samples, enhancing 

its exposure to orientation variations. 

TABLE VI.   PERFORMANCE ACCURACY FOR THIRD EXPERIMENT 

Cooking Oil Samples Proposed Method 

Training   Accuracy (%) Validation Accuracy (%) 

‘Chicken’ 99.80 99.82 

‘Lekor’ 99.93 97.92 

‘Nugget’ 100.00 98.84 

 

From all experiments obtained as shown in the three tables, collectively offer valuable insights into how image 

angle affects the model's performance across different types of cooking oil samples. The comparison reveals 

three key aspects: consistency in image angle, generalization capability, and impact of diverse training data. It 

is shown when the model is trained and tested on the same image angle (Table IV), it performs well especially 

for 'Chicken' and 'Nugget' samples due to its ability to memorize features from a consistent perspective, though 

it still struggles with less distinctive samples like 'Lekor'. However, when tested on different angles than it was 

trained on (Table V), the model’s performance drops significantly, particularly for 'Lekor', revealing poor 

generalization and strong angle sensitivity. In contrast, training with images from all angles combined (Table 

VI) leads to a substantial improvement in accuracy across all samples, indicating that exposure to diverse 

orientations enables the model to learn more robust, angle invariant features and perform reliably in varied 

real-world conditions. 

The overall findings underline a crucial principle were data diversity during training leads to generalization 

and robustness. A model trained only in fixed conditions (like a single angle) may excel in controlled settings 

but fail in real-world applications. By combining data from multiple perspectives, the model becomes more 

adaptive and reliable, making it far better suited for real-life implementation. 

Blurriness-based Image Capturing Analysis 

The blurriness tolerance evaluation investigates model performance degradation when image clarity is 

progressively reduced at four levels: 25%, 50%, 75%, and 100% blur. This simulates situations where images 

are captured under suboptimal conditions such as motion, focus issues, or poor lighting. 

Blurriness Analysis for ‘Chicken’ Sample:  

 

Fig. 8   Performance Accuracy for ‘Chicken’ Sample 
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The results as shown in Fig. 8 indicate that the Proposed Methods (PM1, PM2, PM3) consistently demonstrate 

strong classification performance across different blurriness levels when compared with conventional deep 

vision architectures. Among them, Proposed Method 2 achieves the highest accuracy across all degraded 

conditions, reaching 95.6% at 25% blurriness and maintaining 93.55% at 50% blurriness, which is superior to 

VGG19, ResNet, EfficientNet, and MobileNet under the same conditions. Similarly, Proposed Method 3 also 

shows high robustness, with 94.21% at 25% blurriness and 90.2% at 50% blurriness, reflecting its reliability in 

handling moderate image distortions. 

As the blurriness level increases to 75% and 100%, all models experience a natural decline in accuracy. 

However, the proposed methods still outperform traditional networks, particularly in high distortion scenarios 

where standard models such as MobileNet and EfficientNet drop below 80% accuracy. In contrast, the 

proposed methods maintain accuracies above 80%, highlighting their resilience in dealing with challenging 

visual features. At the original (non-blurred) dataset, all models achieve near-perfect results, with Proposed 

Method 3 and MobileNet reaching 100% accuracy, showing that performance degradation is primarily 

influenced by visual distortion rather than dataset bias. 

Overall, these findings demonstrate that the Proposed Methods are more robust and reliable than established 

architectures, especially under conditions of visual degradation. This robustness confirms the suitability of the 

proposed approaches for real-world food safety monitoring applications, where image imperfections such as 

blur, occlusion, and angular variation are common. 

Blurriness Analysis for ‘Lekor’ Sample: 

 

Fig. 9   Performance Accuracy for ‘Lekor’ Sample 

The classification results for the ‘Lekor’ sample as shown in Fig. 9 demonstrate that the Proposed Methods 

deliver consistently strong performance across varying levels of blurriness, though a gradual decrease in 

accuracy is observed as distortion increases. At 25% blurriness, Proposed Method 2 achieves the highest 

accuracy (93.2%), followed closely by Proposed Method 3 (91.8%) and Proposed Method 1 (88.5%). These 

results highlight the capability of the proposed approaches to capture key visual cues even under moderate 

image degradation. 

At 50% and 75% blurriness, accuracies decline across all models, with Proposed Method 2 maintaining a 

relatively high performance (91.0% and 83.5%, respectively). Despite the reduction, the proposed approaches 

remain superior to conventional architectures such as Efficient Net and MobileNet, which experience more 

significant drops in accuracy under similar conditions. At 100% blurriness, all models show notable decreases, 

with accuracies ranging from 64.2% to 78.9%, reflecting the challenge of extracting meaningful features from 

heavily degraded images. 

On the original (clear) dataset, nearly perfect classification is achieved across all models, with Proposed 

Method 3 reaching 99.1% accuracy, confirming the effectiveness of the framework when image quality is 

preserved. Overall, the findings confirm that the Proposed Methods are more resilient to visual distortions and 

are well-suited for reliable cooking oil frequency usage classification in real-world applications where image 

imperfections are inevitable. 
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Blurriness Analysis for ‘Nugget’ Sample:  

 

Fig. 10   Performance Accuracy for ‘Nugget’ Sample 

From Fig. 10, the results for the ‘Nugget’ sample show that while the Proposed Methods maintain relatively 

strong performance, the overall accuracies are slightly lower compared to other sample types. At 25% 

blurriness, Proposed Method 2 records the best performance at approximately 88%, followed by Proposed 

Method 3 (86%) and Proposed Method 1 (83%). These values reflect a modest reduction in robustness when 

handling early-stage image distortion, suggesting that nugget samples may present more complex or less 

distinctive visual patterns. 

As the blurriness level increases, classification performance decreases further. At 50% blurriness, the proposed 

approaches range between 80–85%, still outperforming conventional architectures but with a noticeable 

accuracy drop compared to clearer conditions. By 75% and 100% blurriness, accuracies fall into the 70–78% 

range, highlighting the difficulty in extracting reliable visual features under heavy distortion. Traditional 

models such as MobileNet and Efficient Net drop further, reaching the mid-60% range at maximum blurriness, 

reinforcing the sensitivity of these architectures to degraded visual inputs. 

On the original dataset, however, all models achieve near-perfect classification, with Proposed Method 3 

reaching about 97% accuracy, confirming that image clarity strongly influences detection reliability. Overall, 

the findings suggest that while the proposed framework remains effective, nugget samples introduce additional 

classification challenges under blurred conditions, making this food type more demanding for deep vision 

analysis 

Occlusion-based Image Capturing Analysis 

Finally, the occlusion robustness assessment tests the system’s resilience when parts of the visual features are 

blocked. Four occlusion patterns horizontal, vertical, left-diagonal, and right-diagonal are applied at varying 

coverage levels to evaluate the model’s ability to infer cooking oil quality from incomplete visual information. 

Horizontal Occlusion Analysis: Horizontal occlusion, in which a thick band obscures the middle horizontal 

region of the oil sample, introduced a greater performance challenge compared to vertical blocking. This type of 

distortion interrupts both the oil’s surface reflection at the top and the depth representation at the bottom, two 

critical features necessary for evaluating transparency and quality. 

TABLE VII.   PERFORMANCE ACCURACY FOR HORIZONTAL OCCLUSION 

Cooking Oil 

Samples 

Modal Training   Accuracy 

(%) 

Validation Accuracy 

(%) 

‘Chicken’ VGG19 90.76 87.98 

ResNet50 92.55 88.81 

EfficientNet 89.77 88.79 
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Mobile Net 88.31 85.21 

Proposed Method 1 91.7 91.38 

Proposed Method 2 93.78 92.57 

Proposed Method 3 93.14 92.19 

‘Lekor’ VGG19 85.75 86.25 

ResNet50 88.12 86.71 

EfficientNet 85.94 85.54 

Mobile Net 83.73 81.86 

Proposed Method 1 89.58 85.59 

Proposed Method 2 90.85 86.8 

Proposed Method 3 90.76 86.62 

‘Nugget’ VGG19 85.66 83.19 

ResNet50 83.48 82.51 

EfficientNet 83.1 80.96 

Mobile Net 81.7 78.93 

Proposed Method 1 86.17 84.74 

Proposed Method 2 89.29 86.44 

Proposed Method 3 85.96 84.54 

 

As result shown in Table VII, most baseline deep learning models exhibited notable decreases in accuracy, with 

VGG19 and ResNet experiencing significant performance loss. This indicates that central horizontal visual cues 

are more influential than side regions in distinguishing subtle oil quality features. 

The proposed methods (PM2 and PM3 in particular) demonstrated superior robustness against horizontal 

occlusion, suggesting that their design effectively incorporates redundancy from unblocked areas, such as the 

left and right regions of the sample. These models appear capable of reconstructing context from side features 

and compensating for missing top-bottom depth information. Nevertheless, even the proposed methods showed 

some decrease in accuracy, underscoring that horizontal occlusion is more damaging than vertical since it 

interferes with both surface-level reflections and sedimentation layers. This implies that future methods may 

need specialized augmentation strategies to simulate horizontal occlusion during training to further enhance 

resilience. 

Vertical Occlusion Analysis: The vertical occlusion scenario introduces a central block that disrupts the 

middle portion of the image, where key visual cues such as the oil’s clarity, colour uniformity, and 

sedimentation levels are typically most prominent. 

TABLE VIII.   PERFORMANCE ACCURACY FOR VERTICAL OCCLUSION 

Cooking Oil 

Samples 

Modal Training   Accuracy (%) Validation Accuracy (%) 

‘Chicken’ VGG19 92.13 88.36 

ResNet50 89.66 89.47 
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EfficientNet 88.44 88.8 

Mobile Net 88.15 86.55 

Proposed Method 1 93.37 89.98 

Proposed Method 2 92.75 93.83 

Proposed Method 3 94.4 91.27 

‘Lekor’ VGG19 89.06 85.39 

ResNet50 89.93 86.23 

EfficientNet 87.08 83.78 

Mobile Net 86.35 83.92 

Proposed Method 1 89.62 88.62 

Proposed Method 2 90.98 89.65 

Proposed Method 3 89.48 91.71 

‘Nugget’ VGG19 83.85 81.76 

ResNet50 87.05 84.98 

EfficientNet 83.94 83.11 

Mobile Net 81.78 80.81 

Proposed Method 1 87.56 86.69 

Proposed Method 2 86.97 85.83 

Proposed Method 3 87.94 84.24 

 

From the experimental results as shown in Table VIII, it is evident that this type of occlusion reduces model 

accuracy, though not as severely as other forms of occlusion. The reason is that while the center is blocked, 

enough peripheral features at the top and bottom of the oil sample remain visible, allowing models to capture 

partial patterns necessary for classification. Traditional deep networks such as VGG19 and ResNet showed 

moderate resilience but still recorded performance degradation compared to the unoccluded baseline. 

On the other hand, the proposed methods (PM1–PM3) consistently maintained stronger performance under 

vertical occlusion. Their ability to extract peripheral texture cues and compensate for the missing central region 

reflects better adaptability to real-world scenarios where objects may be partially blocked. Interestingly, 

MobileNet and EfficientNet, which are optimized for lightweight feature extraction, demonstrated steeper 

drops, indicating that smaller architectures struggle when critical regions are missing. Overall, the vertical 

occlusion test highlights the importance of designing models capable of leveraging contextual background 

information when key regions are obscured. 

Left-Diagonal Occlusion Analysis: The left diagonal occlusion case presented one of the most challenging 

conditions, as it disrupted both vertical and horizontal symmetry across the image.  

TABLE IX.   PERFORMANCE ACCURACY FOR LEFT-DIAGONAL OCCLUSION 

Cooking Oil Samples Modal Training   Accuracy 

(%) 

Validation Accuracy 

(%) 

‘Chicken’ VGG19 89.01 88.26 
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ResNet50 90.58 85.41 

EfficientNet 88.54 86.65 

Mobile Net 86.8 84.36 

Proposed Method 1 89.56 88.69 

Proposed Method 2 92.58 88.57 

Proposed Method 3 90.94 88.99 

‘Lekor’ VGG19 83.98 83.21 

ResNet50 85.26 85.35 

EfficientNet 83.41 83.03 

Mobile Net 81.8 83.4 

Proposed Method 1 87.88 85.11 

Proposed Method 2 88.49 84.83 

Proposed Method 3 88.4 86.61 

‘Nugget’ VGG19 84.56 81.33 

ResNet50 83.57 84.04 

EfficientNet 82.89 81.25 

Mobile Net 78.88 78.54 

Proposed Method 1 85.48 82.64 

Proposed Method 2 84.91 82.46 

Proposed Method 3 85.05 83.77 

 

Unlike straight occlusions, diagonal blocking introduces irregular distortion that overlaps with multiple critical 

regions simultaneously. This led to a substantial drop in accuracy across most models, especially Efficient Net 

and MobileNet, which struggled to generalize when diagonal cues were missing. The diagonal cut reduced 

visibility of the oil’s surface shine, its central transparency, and even part of its lower sedimentation, leading to 

incomplete feature representation for classification. 

Among all models as shown in Table IX, the proposed methods again performed relatively better, with PM1 

sustaining moderate performance compared to deep baselines. This suggests that the proposed techniques may 

have better adaptability to irregular distortions by extracting context from available fragments rather than 

relying heavily on global symmetry. The left diagonal occlusion highlights the vulnerability of standard 

architecture when confronted with non-orthogonal noise patterns. It also emphasizes the necessity of training 

models with occlusion-aware augmentation strategies that simulate diagonal blockages to improve their 

robustness for real-world applications 

Right-Diagonal Occlusion Analysis: The right diagonal occlusion produced results like the left diagonal case 

but with slightly less severe degradation. This type of occlusion cuts across the sample from the opposite side, 

again interfering with both vertical and horizontal regions simultaneously. 
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TABLE X.   PERFORMANCE ACCURACY FOR RIGHT-DIAGONAL OCCLUSION 

Cooking Oil Samples Modal Training   Accuracy (%) Validation Accuracy (%) 

‘Chicken’ VGG19 86.89 85.76 

ResNet50 88.53 85.45 

EfficientNet 85.35 82.49 

Mobile Net 85.76 82.27 

Proposed 

Method 1 

91.76 87.79 

Proposed 

Method 2 

89.57 90.6 

Proposed 

Method 3 

89.73 88.74 

‘Lekor’ VGG19 85.38 84.47 

ResNet50 87.01 83.25 

EfficientNet 86.4 80.22 

Mobile Net 85.5 78.55 

Proposed 

Method 1 

86.73 84.92 

Proposed 

Method 2 

86.24 88.65 

Proposed 

Method 3 

86.28 85.7 

‘Nugget’ VGG19 82.32 81.26 

ResNet50 82.02 79.65 

EfficientNet 80.5 80.4 

Mobile Net 78.27 77.58 

Proposed 

Method 1 

84.5 80.91 

Proposed 

Method 2 

83.81 86.19 

Proposed 

Method 3 

81.94 81.27 

 

The drop in performance was somewhat smaller compared to left diagonal occlusion. This difference may be 

attributed to dataset asymmetry, where lighting conditions or the natural distribution of oil features may have 

made the right side less critical for accurate classification. Nevertheless, baseline models such as MobileNet 

and EfficientNet still suffered noticeable declines, indicating their sensitivity to oblique distortions. 
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The proposed methods, particularly PM2, demonstrated stronger robustness as shown in Table X, maintaining 

higher testing accuracy under diagonal occlusion compared to other models. This suggests that their feature 

extraction mechanisms are less dependent on symmetry and more capable of reconstructing contextual cues. 

The resilience under right diagonal blocking shows promises for deployment in real environments, where 

random occlusions may occur due to glass markings, utensils, or camera angles. Overall, this test reinforces 

that diagonal occlusions represent one of the toughest challenges for visual inspection systems, but the 

proposed models show encouraging adaptability 

CONCLUSION 

This study introduced a vision-based framework for cooking oil quality assessment that effectively addresses 

key challenges in food safety monitoring. The proposed method outperformed state-of-the-art deep learning 

models and showed resilience to variations in angle, blurriness, and occlusion, with multi-angle capture 

proving especially useful. While performance remained high at moderate blur levels, extreme distortions 

reduced accuracy, and occlusion effects varied by orientation. Overall, the findings confirm the model’s 

reliability under common visual challenges. Future improvements could include automated imaging, real-time 

preprocessing, larger datasets with synthetic distortions, hybrid sensing with spectral data, and optimization for 

edge deployment, making the system a scalable and practical solution for real-world cooking oil monitoring. 
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