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ABSTRACT 

This paper investigates the structure of generalized Jordan derivations and generalized Jordan centralizers on 

torsion-free semiprime rings. We establish conditions under which every nonzero generalized Jordan derivation 

is a derivation mapping the ring into itself. Similarly, we prove that every generalized Jordan centralizer 

coincides with a two-sided centralizer. The approach builds upon several supporting lemmas to demonstrate that 

torsion-free restrictions and semiprimeness provide sufficient conditions for such equivalences. These results 

extend classical findings on derivations and centralizers in associative ring theory and contribute to the structural 

analysis of operator mappings in algebraic systems. 

Keywords: Semiprime rings; Jordan derivations; generalized Jordan derivations; centralizers; torsion-free rings; 
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INTRODUCTION 

The study of operator mappings such as derivations, Jordan derivations, and centralizers has been central to the 

development of modern ring theory and its applications [1]. Derivations, which generalize the concept of 

differentiation into algebraic structures, serve as powerful tools in detecting symmetries and measuring 

noncommutativity within rings [2]. Likewise, centralizers, which capture the extent to which elements commute 

with operators, provide valuable insights into the internal consistency and commutative behavior of algebraic 

systems [3]. These mappings have been extensively investigated in prime and semiprime rings, with rich 

connections to operator algebras, functional identities, and commutativity-preserving transformations [4, 5, 6, 7, 

8]. 

Over the years, mathematicians have introduced generalized versions of these operators to extend the scope of 

study beyond classical derivations and centralizers [9]. A generalized Jordan derivation associates an additive 

mapping with a Jordan derivation, thereby enlarging the class of admissible operators and providing a more 

flexible framework for analyzing ring structures [10]. Similarly, a generalized Jordan centralizer extends the 

idea of a centralizer by linking it with a Jordan centralizer, opening pathways to the investigation of new 

structural properties [11]. These generalizations, while broadening the theoretical landscape, also raise natural 

questions: under what conditions do these generalized notions collapse back to their classical counterparts? Are 

these generalizations genuinely more powerful, or do they reveal the inherent rigidity of certain ring structures? 

This paper addresses these questions in the setting of torsion-free semiprime rings, which constitute an important 

class of associative rings widely studied for their structural robustness. Semiprime rings generalize prime rings 

by allowing a broader algebraic framework while retaining the essential feature that eliminates nilpotent ideals 

[12]. Torsion-free assumptions, on the other hand, ensure that divisibility constraints do not interfere with the 

structure, thereby providing a cleaner environment for algebraic characterization [13]. 
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The main results of this work establish that: 

1. Every nonzero generalized Jordan derivation on a torsion-free semiprime ring is, in fact, a derivation 

mapping the ring into itself. 

2. Every generalized Jordan centralizer on a torsion-free semiprime ring coincides with a two-sided 

centralizer. 

These results demonstrate that in the presence of torsion-free semiprimeness, the generalized concepts introduce 

no genuinely new operator behavior; instead, they reduce to their classical forms. Thus, the work not only 

strengthens known results in the literature but also highlights the inherent rigidity of semiprime rings under 

torsion-free restrictions. 

The significance of these findings is twofold. First, they contribute to the simplification and classification of 

operator mappings in semiprime rings, showing that the landscape of possible behaviors is narrower than 

expected. Second, they provide a solid foundation for future investigations into more general classes of rings, 

functional identities, and potential applications in operator algebra and mathematical physics. 

Main Results 

Lemma 1: Lett 𝑅 be a 2-torsion free semiprime ring, 𝑚, 𝑛 ≥  0 be distinct integers with 𝑚 +  𝑛 ≠ 0 and 𝐹 ∶
 𝑅 →  𝑅 be a nonzero generalized (𝑚, 𝑛) −Jordan derivation with an associated (𝑚, 𝑛) −Jordan derivation 𝑑. 

Then, (m +  n)2 𝐹(𝑥𝑦𝑥) = 𝑚(𝑛 −  𝑚)𝐹(𝑥)𝑥𝑦 +  𝑚(3𝑚 +  𝑛)𝐹(𝑥)𝑦𝑥 +  𝑚(𝑚 −  𝑛)𝐹(𝑦)𝑥2 +
 4𝑚𝑛𝑥𝑑(𝑦)𝑥 + 𝑛(𝑛 − 𝑚)𝑥2𝑑(𝑦) + 𝑛(𝑚 +  3𝑛)𝑥𝑦𝑑(𝑥) + 𝑛(𝑚 − 𝑛)𝑦𝑥𝑑(𝑥) for all 𝑥, 𝑦 ∈  𝑅. 

Lemma 2: Let 𝑅 be a semiprime ring, 𝑚, 𝑛 ≥  0 be distinct integers with 𝑚 +  𝑛 ≠ 0,  and 𝑇 ∶  𝑅 →  𝑅 be a 

nonzero generalized (𝑚, 𝑛) −Jordan centralizer with an associated (𝑚, 𝑛) −Jordan centralizer 𝐶′. Then, 

2(𝑚 + 𝑛)2𝑇(𝑥𝑦𝑥)  =  𝑚𝑛𝑇(𝑥)𝑥𝑦 +  𝑚(2𝑚 +  𝑛)𝑇(𝑥)𝑦𝑥 −  𝑚𝑛𝑇(𝑦)𝑥2 +  2𝑚𝑛𝑥𝐶′(𝑦)𝑥 −  𝑚𝑛𝑥2𝐶′(𝑦)  +
 𝑛(𝑚 +  2𝑛)𝑥𝑦𝐶′(𝑥)  + 𝑚𝑛𝑦𝑥𝐶′(𝑥) for all 𝑥, 𝑦 ∈  𝑅. 

Lemma 3: Let 𝑅 be a semiprime ring and  𝑇 ∶  𝑅 →  𝑅 be an additive mapping. If either 𝑇(𝑥)𝑥 =
 0 𝑜𝑟 𝑥𝑇(𝑥)  =  0 holds for all 𝑥 ∈  𝑅, then 𝑇 =  0. 

Lemma 4: Let 𝑅 be 𝑚𝑛(𝑚 +  𝑛)|𝑚 − 𝑛| − 𝑡orsion free semiprime ring, 𝑚, 𝑛 ≥  1 be distinct integers and 𝑑 ∶
 𝑅 →  𝑅 be (𝑚, 𝑛) −Jordan derivation. Then 𝑑 is a derivation which maps 𝑅 into 𝑍(𝑅). 

Lemma 5: Let 𝑅 be an 𝑚𝑛(𝑚 +  𝑛) − torsion free semiprime ring, 𝑚, 𝑛 ≥  1 be distinct integers and T∶  𝑅 →
 𝑅 be an (𝑚, 𝑛) - Jordan centralizer. Then 𝑇 is a two-sided centralizer.  

Theorem 1: 

Let 𝑅 be a 𝑘-torsion free semiprime ring, 𝑚, 𝑛 ≥  1 be distinct integers, where 𝑘 =  6𝑚𝑛(𝑚 +  𝑛)|𝑚 −
 𝑛|   and    𝐹 ∶  𝑅 →  𝑅 be a nonzero generalized (𝑚, 𝑛)- Jordan derivation.  Then 𝐹 is a derivation which maps 

𝑅 into Z(R). 

Proof 

Let 𝑑 be the associated (𝑚, 𝑛)- Jordan derivation of 𝐹. Since 𝑅 is a semiprime ring, 𝑑 is a derivation which maps 

𝑅 into 𝑍(𝑅) (by Lemma 4). Let use the relation 𝐷 = 𝐹 − 𝑑 then, we have 

(𝑚 +  𝑛)𝐷(𝑥2) =  (𝑚 +  𝑛)𝐹(𝑥2) −  (𝑚 +  𝑛)𝑑(𝑥2) 

                                                            =  2𝑚𝐹(𝑥)𝑥 +  2𝑛𝑥𝑑(𝑥) −  2𝑚𝑑(𝑥)𝑥 −  2𝑛𝑥𝑑(𝑥) 

                                                            =  2𝑚𝐷(𝑥)𝑥 for all 𝑥 ∈  𝑅. 
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Thus, 

(𝑚 +  𝑛)𝐷(𝑥2) = 2𝑚𝐷(𝑥)𝑥                                                                              (1) 

Now by replacing 𝑥 with 𝑥2 in Eq. (1), we get 

        (𝑚 +  𝑛)𝐷(𝑥4) = 2𝑚𝐷(𝑥2)𝑥2.                                                            (2) 

Multiplying Eq. (2) by 𝑚 + 𝑛 we obtain, 

(𝑚 +  𝑛)2𝐷(𝑥4) = 2𝑚𝐷(𝑥2)𝑥2(𝑚 +  𝑛). 

Using Eq. (1) we get, 

(𝑚 +  𝑛)2𝐷(𝑥4) = 4𝑚2𝐷(𝑥)𝑥3,    𝑥 ∈  𝑅                                    (3) 

On the other hand, replacing 𝑥2 with 𝑦 in Eq. (3) we have, 

(𝑚 +  𝑛)2D(𝑦2) = 4𝑚2𝐷(𝑥)𝑦𝑥,     𝑥, 𝑦 ∈  𝑅.                                    (4) 

By using Lemma 1 and the fact that 𝐷 is a generalized (𝑚, 𝑛)- Jordan derivation associated with the zero map 

as an (𝑚, 𝑛)-Jordan derivation we get, 

(𝑚 +  𝑛)2𝐷(𝑥4) = 𝑚(𝑛 − 𝑚)𝐷(𝑥)𝑥3 + 𝑚(3𝑚 + 𝑛)𝐷(𝑥)𝑥3 + 𝑚(𝑚 − 𝑛)𝐷(𝑥2)𝑥2 

                                                    for all    𝑥 ∈ 𝑅.                                                                                      (5) 

Multiplying both sides of Eq. (5) by 2 we get 

2(𝑚 +  𝑛)2𝐷(𝑥4) = 2𝑚(𝑛 − 𝑚)𝐷(𝑥)𝑥3 + 2𝑚(3𝑚 + 𝑛)𝐷(𝑥)𝑥3 + 2𝑚(𝑚 − 𝑛)𝐷(𝑥2)𝑥2  

                                                         for all    𝑥 ∈  𝑅.                                                                                  (6) 

Combining Eq. (2) and Eq. (6), we get 

2(𝑚 +  𝑛)2𝐷(𝑥4) = 2𝑚(𝑛 − 𝑚)𝐷(𝑥)𝑥3 + 2𝑚(3𝑚 + 𝑛)𝐷(𝑥)𝑥3 

                                                               +(𝑚 +  𝑛)(𝑚 − 𝑛)𝐷(𝑥4),   𝑥 ∈ R                      (7) 

which give 

                      (𝑚 +  𝑛)(𝑚 +  3𝑛)𝐷(𝑥4) =  4𝑚(𝑚 +  𝑛)𝐷(𝑥)𝑥3 , 𝑥 ∈  𝑅.                                            (8) 

Multiplying both sides of Eq. (8) by 𝑚 +  𝑛, we get 

                                        (𝑚 +  𝑛)2(𝑚 +  3𝑛)𝐷(𝑥4) =  4𝑚(𝑚 +  𝑛)2𝐷(𝑥)𝑥3 , 𝑥 ∈                              (9) 

Multiplying Eq. (3) by 𝑚 +  3𝑛, we get 

                     (𝑚 +  𝑛)2(𝑚 +  3𝑛)𝐷(𝑥4) = 4𝑚2(𝑚 +  3𝑛)𝐷(𝑥)𝑥3,      𝑥 ∈  𝑅.                                   (10) 

By comparing (9) and (10), we get 

        4𝑚𝑛(𝑚 −  𝑛)𝐷(𝑥)𝑥3 =  0,    𝑥 ∈  𝑅.               (11) 

Since 𝑅 is a 2𝑚𝑛|𝑛 −  𝑚| − torsion free ring, 𝐷(𝑥)𝑥3 =  0 for all 𝑥 ∈  𝑅. Applying 𝐷(𝑥)𝑥3 =  0,  we get 
(𝑚 +  𝑛)2𝐷(𝑥4) =  0, for all  𝑥 ∈  𝑅. By using the torsion free restriction, we have 𝐷(𝑥4)  =  0    for all 𝑥 ∈
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 𝑅. Hence, 𝐷(𝑥𝑦) =  𝐷(𝑥)𝑦   for all   𝑥, 𝑦 ∈  𝑅 (by Lemma 4). This yields (𝑚 +  𝑛)𝐷(𝑥)𝑥 =
 2𝑚𝐷(𝑥)𝑥  for all    𝑥 ∈  𝑅. Equivalently, (𝑚 −  𝑛)𝐷(𝑥)𝑥 =  0. Since 𝑅 is an |𝑚 −  𝑛| −
torsion free ring,   𝐷(𝑥)𝑥 =  0   for all   𝑥 ∈  𝑅. Therefore, by Lemma 3, 𝐷 =  0. This completes the proof. 

Theorem 2: 

Let 𝑅 be an 6𝑚𝑛(𝑚 + 𝑛)(2𝑛 + 𝑚) −torsion free semiprime ring  𝑅, 𝑚, 𝑛 ≥  1 be two fixed integers, and 

suppose 𝑇 ∶  𝑅 → 𝑅 be a nonzero generalized (𝑚 + 𝑛) - Jordan centralizer. Then 𝑇 is a two-sided centralizer. 

Proof 

Suppose that 𝐶′ be the associated (𝑚 + 𝑛) - Jordan centralizer of  𝑇. Since 𝑅 is a semiprime ring, 𝐶′ is a two-

sided centralizer (by Lemma 5). Let use the relation 𝐷 = 𝑇 − 𝐶′. Then, we have  

(𝑚 + 𝑛)𝐷(𝑥2) =  (𝑚 + 𝑛)𝑇(𝑥2) − (𝑚 + 𝑛)𝐶′(𝑥2) 

                                                             =  𝑚𝑇(𝑥)𝑥 +  𝑛𝑥𝐶′(𝑥) −  𝑚𝐶′(𝑥)𝑥 −  𝑛𝑥𝐶′(𝑥) 

                                                             =  𝑚𝐷(𝑥)𝑥 for all 𝑥 ∈  𝑅.                                     (12) 

                                    (𝑚 + 𝑛)𝐷(𝑥2) =  𝑚𝐷(𝑥)𝑥,    𝑥 ∈  𝑅.                                                (13) 

Replacing 𝑥 with 𝑥2 in (13), we get 

(𝑚 +  𝑛)𝐷(𝑥4)  =  𝑚𝐷(𝑥2)𝑥2,    𝑥 ∈  𝑅.                      (14) 

Multiplying Eq. (14) by  𝑚 +  𝑛 and then using Eq. (13), we get 

                               (m +  n) 2𝐷(𝑥4)  =  𝑚2𝐷(𝑥)𝑥3 𝑥 ∈  𝑅.                       (15) 

On the other hand, if we put 𝑦 = 𝑥2 in the relation of Lemma 2, we get 

2(𝑚 +  𝑛)2𝐷(𝑥4)  =  𝑚𝑛𝐷(𝑥)𝑥3 +  𝑚(2𝑚 +  𝑛)𝐷(𝑥)𝑥3  −  𝑚𝑛𝐷(𝑥2)𝑥2 , 𝑥 ∈  𝑅.                           (16) 

Multiplying both sides of Eq. (15) by 2 we get 

2(𝑚 +  𝑛)2𝐷(𝑥4)  =   2𝑚2𝐷(𝑥)𝑥3, 𝑥 ∈  𝑅.                                  (17) 

Combining Eq. (15) and Eq. (16), we get 

2(𝑚 +  𝑛)2𝐷(𝑥4)  =   𝑚𝑛𝐷(𝑥)𝑥3 +  𝑚(2𝑚 +  𝑛)𝐷(𝑥)𝑥3 − 𝑛(𝑚 + 𝑛)𝐷(𝑥3), 𝑥 ∈  𝑅,                      (18) 

which Implies  

(𝑚 +  𝑛)(2𝑚 +  3𝑛)𝐷(𝑥4)  =  2𝑚(𝑚 +  𝑛)𝐷(𝑥)𝑥3 , 𝑥 ∈  𝑅.                        (19) 

Multiplying both sides of above relation by 𝑚 +  𝑛, we have 

 (𝑚 +  𝑛)2(2𝑚 +  3𝑛)𝐷(𝑥4) =  2𝑚(𝑚 +  𝑛)2𝐷(𝑥)𝑥3,    𝑥 ∈  𝑅.          (20) 

Multiplying Eq. (15) by (2𝑚 +  3𝑛), we get 

(𝑚 +  𝑛)2(2𝑚 +  3𝑛)𝐷(𝑥4) =  𝑚2(2𝑚 +  3𝑛)𝐷(𝑥)𝑥3,   𝑥 ∈  𝑅                              (21) 

By combining Eq. (20) and Eq. (21), we get 

         𝑚𝑛(2𝑛 +  𝑚)𝐷(𝑥)𝑥3 =  0,    𝑥 ∈  𝑅.                           (22) 
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Since 𝑅 is a 𝑚𝑛(2𝑛 +  𝑚)-torsion free ring, 𝐷(𝑥)𝑥3,  = 0 for all  𝑥 ∈  𝑅.  

Applying  𝐷(𝑥)𝑥3  =  0 in equation Eq. (15) and then using (𝑚 +  𝑛) − torsion freeness of 𝑅, we get 𝐷(𝑥4) =
0. Moreover, since 𝑅 is a 2 and a 3-torsion free ring, by Lemma 4, we get 𝐷(𝑥𝑦) =  𝐷(𝑥)𝑦   for all  𝑥, 𝑦 ∈  𝑅. 

Applying this in Eq. (13), yields (𝑚 +  𝑛)𝐷(𝑥)𝑥 =  𝑚𝐷(𝑥)𝑥 for all  𝑥 ∈  𝑅. So 𝑛𝐷(𝑥)𝑥 =  0, which implies 

that 𝐷(𝑥)𝑥 =  0 for all 𝑥 ∈  𝑅. Therefore, by Lemma 3,  𝐷 =  0. This completes the proof. 

DISCUSSION 

The results obtained in this paper contribute to a rich line of research on derivations, Jordan derivations, and 

centralizers in associative ring theory. Since Herstein’s pioneering work on derivations and Jordan derivations 

in prime and semiprime rings, much progress has been made in identifying structural conditions under which 

these mappings exhibit rigidity. One of the most influential findings is that, in semiprime rings, Jordan 

derivations often coincide with derivations, thereby collapsing the generalized notion into its classical form. This 

phenomenon has been extensively studied and confirmed in various contexts (see Bresar and Vukman [1], and 

others on functional identities and operator mappings). 

Similarly, centralizers have received significant attention in the literature due to their role in characterizing 

commutativity and structural constraints of rings. It is well established that in prime and semiprime rings, Jordan 

centralizers can often be reduced to two-sided centralizers under suitable conditions. This has motivated the 

exploration of generalized Jordan centralizers, which potentially extend the class of mappings. However, the 

present results show that in the torsion-free semiprime setting, such generalizations do not lead to fundamentally 

new behaviors: the mappings collapse back to their two-sided centralizer counterparts. 

The contributions of this paper may be viewed from two complementary perspectives: 

1. Structural Rigidity of Semiprime Rings. The main theorems highlight that torsion-free semiprime rings 

exhibit a form of operator rigidity: generalized mappings cannot deviate from their classical definitions. 

This provides clarity on the scope of admissible operator actions and narrows the classification landscape 

of mappings on these rings. 

2. Extension of Classical Results. Our findings extend several earlier works on Jordan derivations and 

centralizers, confirming that the torsion-free restriction suffices to eliminate nontrivial counterexamples. 

By systematically applying functional identities derived from associated mappings and employing 

torsion-free assumptions, we provide a unified approach that generalizes and strengthens existing results. 

From a broader standpoint, these results are valuable in two ways. First, they provide algebraists with 

simplification tools, showing that within torsion-free semiprime rings, studying generalized derivations and 

centralizers is equivalent to studying their classical counterparts. Second, they open avenues for further inquiry 

into whether similar collapses occur in weaker algebraic structures (such as non-associative rings, Lie algebras, 

or near-rings), or whether torsion restrictions can be relaxed without losing the equivalence. 

Moreover, the results also suggest potential applications in operator algebras and functional analysis, where 

derivations and centralizers play a critical role in studying automorphisms, symmetries, and commutativity-

preserving transformations. The elimination of generalized complexity in torsion-free semiprime rings ensures 

that the focus can be directed toward identifying more nuanced structural behaviors in broader or less restrictive 

classes of rings. 

In summary, the discussion underscores that the present work not only strengthens but also unifies classical 

results within a generalized framework, reinforcing the inherent rigidity of torsion-free semiprime rings under 

derivational and centralizer mappings. 

CONCLUSION 

In this paper, we investigated the behavior of generalized Jordan derivations and generalized Jordan centralizers 

on torsion-free semiprime rings. Our main theorems establish that every nonzero generalized Jordan derivation 
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in this setting reduces to a derivation mapping the ring into itself, and that every generalized Jordan centralizer 

coincides with a two-sided centralizer. These findings reveal a structural rigidity: in torsion-free semiprime rings, 

the generalized concepts collapse into their classical forms. 

The implications of these results are noteworthy. First, they streamline the classification of operator mappings 

in semiprime rings, confirming that generalized Jordan derivations and centralizers do not introduce genuinely 

new phenomena under torsion-free conditions. Second, they extend classical results on derivations and 

centralizers by showing that torsion-free restrictions suffice to eliminate pathological behaviors, thereby 

providing a more general and unified framework. 

At the same time, certain limitations and open questions remain. The equivalence established here relies heavily 

on the torsion-free and semiprime assumptions. It is natural to ask whether similar results can be obtained under 

weaker conditions, such as in rings with mild torsion, or in broader algebraic systems such as near-rings, Lie 

algebras, or non-associative rings. Additionally, while our results highlight structural rigidity, further 

investigation is required to determine how these mappings behave in operator algebras or in the context of 

functional identities. 

Future research may therefore focus on relaxing the torsion-free restriction, exploring analogous results in non-

semi-prime or non-associative settings, and applying these findings to operator theory and mathematical physics. 

In particular, connections with functional identities and commutativity-preserving mappings may yield further 

insights. 

In conclusion, the results presented in this paper reinforce the inherent robustness of torsion-free semiprime rings 

and provide a clear framework for understanding generalized Jordan derivations and centralizers. By showing 

that these generalized notions collapse into their classical counterparts, we offer both clarity and simplification, 

laying the groundwork for further investigations in the structural theory of rings and operator mappings. 
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