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ABSTRACT 

An accurate assessment of oil palm Fresh Fruit Bunch (FFB) ripeness is vital to maximize oil yield and ensure 

product quality. For a decade traditional method such as visual inspection and loose fruit counting remains 

common,due to simplicity but face limitations including subjectivity, labor shortage and low scalability. This 

review evaluates advances in sensor-based and artificial intelligence (AI) approaches for ripeness detection. 

The focus is on computer vision and deep learning models, multispectral and hyperspectral imaging as well 

as sensor-based systems. The integration of Internet of Things (IoT) and edge computing is also examined for 

real-time deployment. Based on the study, AI-driven methods, including Convolutional Neural Networks 

(CNNs) and YOLO frameworks, achieve accuracies above 95% in ripeness classification. Hyperspectral 

imaging combined with machine learning predicts oil content with more than 90% accuracy, while low-cost 

sensors demonstrate up to 94% accuracy in field conditions. IoT-enabled frameworks enhance scalability 

through continuous monitoring and localized decision-making. However, adoption is reminded limited due to 

high costs, computational demands, environmental variability and limited standardized datasets. Beyond 

technical constrains, socioeconomic barriers such as lack of expertise, inadequate infrastructure and 

affordability constrain adoption in resources limited context. As an assumption, a future research should 

prioritize on cost-effective sensors, adaptive algorithms, hybrid solutions and open-access datasets.  It should 

also complement with supportive policies and farmer training to enhance accessibility to the new technology 

approach.  The integration of artificial intelligence with imaging and sensor-based technologies constitutes a 

transformative approach for sustainable, scalable, and precise detection of FFB ripeness, thereby facilitating 

the advancement of the palm oil industry toward precision agriculture. 

Keywords: Oil Palm, Fresh Fruit Bunch (FFB), Ripeness Detection, Computer Vision, Machine Learning, 

IoT, Hyperspectral Imaging 

INTRODUCTION 

Over 35% of the world vegetable oil is contributing by oil palm (Elais guineensis) (FAQ, 2023). Accurate 

assessment of Fresh Fruit Bunch (FFB) ripeness is essential to optimize oil yield and product quality, as 

harvesting at the wrong stage leads to reduced oil content or compromised oil quality (Nasution et al., 2022). 

Figure 1 illustrates the color changes in FFB from young to unripe (MPOB, 2003). As the demand for 

sustainable and efficient palm oil production grows, there is a strong need for automated and scalable ways to 

detect fruit ripeness. 
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For a decade traditional detection method such as visual inspection and loose fruit counting has been the 

industries mainstay. Figure 2, shown how workers identify, detect and classify ripe oil palm fruits upon their 

arrival at the palm oil processing mill. These approaches rely on human observation of mesocarp color changes 

from green to orange and red as well as the number of detached fruits in a bunch (MPOB, 2003, Fadilah et.al, 

2014). Although these methods are cost-effective, they have limitations in terms of subjectivity, labor 

dependency, and inconsistencies, particularly in large-scale operations (Lai et al., 2023). Furthermore, the 

increasing labor shortages in major producing regions such as Malaysia and Indonesia underscore the urgent 

need to adopt technological solutions for ripeness assessment (Razali et al., 2016; Shiddiq et al., 2024). 

 

Fig. 1 The color changes of oil palm fresh fruit bunch from young until over ripe 

   

Fig. 2 Identification and classification process of ripe oil palm fresh fruit bunches at the processing mill 

Recent advances in sensor-based technologies, computer vision and machine learning have shown promising 

results in automating ripeness detection. Convolutional Neural Networks (CNNs) can extract intricate visual 

features such as color, texture and shape from digital images, achieving classification accuracies exceeding 

99% (Ashari et al., 2022). Cutting-edge object detection models like YOLOv8 improve real-time performance, 

making them suitable for large-scale deployment (Priyadi et al., 2023). Additionally, multispectral and 

hyperspectral imaging provide non-destructive, high-resolution assessments of fruit maturity through spectral 

analysis (Shiddiq et al., 2024). These technologies, when integrated with IoT frameworks, can deliver real-
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time, remote monitoring and predictive analytics, transforming how oil palm plantations operate (Goh et al., 

2024). 

Despite various advancements, challenges still persist. High costs, the need for skilled operators and 

environmental variability (such as lighting conditions and fruit orientation) hinder the widespread adoption of 

these technologies (Harmiansyah et al., 2024). In addition, the lack of standardized datasets for model training 

and evaluation limits the generalizability of AI-based solutions (Omar et al., 2024). Therefore, the 

development of more cost-effective, scalable, and robust technologies capable of operating under diverse 

agricultural conditions is highly needed. 

This review examines the latest innovations in sensor-based and AI-driven ripeness detection for oil palm 

FFBs, while also exploring IoT integration and addressing the socioeconomic and adoption challenges 

associated with these technological advancements. 

TRADITIONAL APPROACH 

Accurate detection of oil palm Fresh Fruit Bunch (FFB) ripeness is essential for optimizing oil extraction 

yields, minimizing waste, and maintaining consistent product quality. For decades, manual methods including 

visual inspection and loose fruit counting have been the industry’s primary means for ripeness assessment. 

However, as well as global demand for sustainable palm oil increases, the limitations of these traditional 

approaches have become increasingly, particularly in terms of accuracy, scalability, and operational efficiency 

(Ghazalli et al., 2023; Lai et al., 2023). This section reviews these conventional methods in detail, emphasizing 

their limitations and the necessity for technological advancements 

Visual Inspection and Loose Fruit Counting 

Visual inspection remains the most widely used method for assessing oil palm ripeness due to its simplicity 

and low-cost implementation (MPOB, 2012). This process relies on human workers visually analyzing the 

mesocarp color of FFBs progressing from green (immature) to yellow-orange (ripe) in purpose to determine 

optimal harvesting times (Nasution et al., 2022). Typically, a fully ripe bunch exhibits 10%–15% loose fruits 

around the tree base, providing a secondary indicator of ripeness (Sabri et al., 2018). Despite its ubiquity, this 

approach is highly subjective and prone to error, as it depends on the experience and judgment of individual 

workers (Shiddiq et al., 2023). 

Recent studies highlight the limitations of these manual processes. A study by Mansour (2022) revealed that 

visual inspection misclassified FFB ripeness by 18%–22%, leading to substantial oil yield losses. Moreover, 

Suharjito et al. (2022) found that human-based assessments vary significantly under poor lighting conditions 

and adverse weather, reducing classification accuracy by up to 30% in real-world settings. This inconsistency 

is further amplified in large plantations where the volume of FFBs overwhelms human capacity, causing delays 

and errors in ripeness identification. 

In addition to accuracy concerns, labor dependency is a significant drawback. The Malaysian Palm Oil Board 

(MPOB, 2023) estimates that labor shortages, exacerbated by COVID-19 disruptions, reduce annual oil palm 

yields by 15%–20%. This is especially problematic in Malaysia and Indonesia, which together account for 

over 85% of global palm oil production (Lai et al., 2023). As skilled workers become scarce and the industry 

faces growing pressure to transition toward automated and data-driven solutions (Razali et al., 2016). 

Challenges of Traditional Method 

While manual techniques remain cost-effective and accessible, their practical application in large-scale 

commercial plantations is becoming increasingly untenable. These challenges fall into four categories such as 

labor dependency and shortage, subjectivity and inconsistency, environmental sensitivity and scalability 

issues. 
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Labor Dependency and shortages 

The reliance on skilled human labor makes the system vulnerable to labor shortages. According to Omar et al. 

(2024), the Malaysian palm oil industry faced a 32% decline in harvest efficiency between 2020 and 2023 due 

to migrant labor shortages. As plantations expand, the inefficiency of manual methods poses a barrier to 

meeting growing global demands (Ghazalli et al., 2023). 

Subjectivity and inconsistency 

The reliance on skilled human labor makes the system vulnerable to labor shortages. According to Omar et al. 

(2024), the Malaysian palm oil industry faced a 32% decline in harvest efficiency between 2020 and 2023 due 

to migrant labor shortages. As plantations expand, the inefficiency of manual methods poses a barrier to 

meeting growing global demands (Ghazalli et al., 2023). 

Environmental Sensitivity 

The traditional methods are susceptible to environmental conditions such as poor lighting, rainfall, and dense 

foliage. Suharjito et al. (2022) reported a 24% reduction in accuracy during rainy seasons due to altered 

mesocarp coloration. Furthermore, Gunawan et al. (2023) demonstrated that ripeness detection through visual 

inspection fails when fruit bunches are partially occluded, contributing to an increased error margin.  

Scalability Issues 

Manual methods are time-consuming and impractical for large-scale plantations. The reliance on skilled 

human labor makes the system vulnerable to labor shortages. Mansour (2022) found that a trained worker can 

assess only 20–25 FFB/hour, whereas automated technologies can process up to 200 FFB/hour, demonstrating 

the inefficiency of human-based methods for high-throughput production.  According MPOB (2023), the 

Malaysian palm oil industry faced a harvest efficiency between 2020 and 2023 due to migrant labor shortages. 

As plantations expand, the inefficiency of manual methods poses a barrier to meeting growing global demands 

(Ghazalli et al., 2023). Summary for advantages and limitation for traditional approaches is shown in Table I. 

TABLE I summary of traditional approaches 

Method Advantages Limitation 

Visual inspection 
Cost effective, simple, wisely adopted 

and minimal technical expertise required 

Subjective, labor intensive, labor prone, 

inconsistent under pure lighting, occlusion 

Loose Fruit Counting - Provides additional ripeness indication 
- Time-consuming and imprecise for large-

scale use 

Hybrid Manual Method 
- Combines human decision-making with 

tech 

- Still requires substantial manual 

oversight 

RECENT ADVANCES TECHNOLOGY 

Emerging sensor-based and AI-driven techniques offer a non-destructive and real-time assessment of FFB 

ripeness to overcome the limitations of traditional methods. Nevertheless, the emerging technology also led to 

several innovations aimed at enhancing ripeness detection. Hybrid systems, which combine human oversight 

with automated monitoring, help reduce human error while maintaining the flexibility of manual approaches 

(Suharjito et al., 2023). Mobile applications equipped with computer vision provide workers with real-time 

ripeness assessments, thereby supporting decision-making in the field (Shiddiq et al., 2024). In addition, low-

cost sensors capable of measuring moisture and capacitive properties are being tested as affordable, field-

ready solutions to deliver real-time data for smallholder farms (Aziz et al., 2023). These approaches also 

contribute to improved efficiency and accuracy, full-scale automation, address labor shortages and advance 
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ripeness detection. Three emergence technology driven will be explained are computer vision and machine 

learning, multispectral and hyperspectral imaging and sensor-based technology. 

Computer Vision and Machine Learning 

Computer vision is a technology that processes digital images to interpret and analyze visual information. In 

the context of FFB ripeness detection, deep learning techniques, especially CNNs are frequently employed to 

process those images. CNN have become a dominant approach in the detection of oil palm FFB ripeness due 

to capability of automatically extracting hierarchical visual features such as color, texture, and shape, which 

are closely associated with maturity levels. This automated feature extraction reduces the subjectivity inherent 

in manual assessments and improves classification consistency (Sunyoto et al., 2022). 

Within this domain, lightweight architectures such as MobileNetV1 and V2 have been increasingly adopted 

due to their efficiency and suitability for edge-based applications. Notably, Suharjito et al. (2022) 

demonstrated that MobileNetV1 outperformed AlexNet, achieving an accuracy of 92% in FFB ripeness 

detection, thus underscoring its potential for real-time, resource-constrained environments. Conversely, deeper 

networks such as ResNet-50 have shown superior capability in feature representation and classification 

accuracy; however, their reliance on higher computational resources presents a limitation for deployment in 

large-scale plantation settings (Alfatni et al., 2022). 

To overcome the challenges posed by environmental noise and variability in field conditions, hybrid 

approaches have also been explored. For instance, Shiddiq et al. (2023) reported that integrating CNNs with 

Artificial Neural Networks (ANNs) enhanced robustness under noisy conditions, achieving an accuracy rate 

of 93.5%. Collectively, these findings suggest that while lightweight models offer practical deployment 

advantages, deeper and hybrid architectures provide higher accuracy and resilience, indicating the importance 

of selecting models based on the trade-off between computational efficiency and robustness in real-world 

plantation environments. 

In summary, a computer vision system combined with deep learning models offer automated, scalable and 

highly accurate solutions for ripeness detection. Advances in Convolutional Neural Networks (CNNs) and 

real-time object detection frameworks like YOLO (You Only Look Once) have significantly improved 

performance in large-scale plantations (Ashari et al., 2022; Priyadi et al., 2023). 

Multispectral and Hyperspectral Imaging 

Multispectral Imaging (MSI) and Hyperspectral Imaging (HSI) are advanced non-destructive approaches 

increasingly applied in oil palm Fresh Fruit Bunch (FFB) ripeness detection, as both extend beyond the visible 

spectrum to capture biochemical changes associated with maturity. MSI typically utilizes 3–10 spectral bands, 

with key wavelengths such as 680 nm (chlorophyll degradation) and 900 nm (moisture content) serving as 

reliable ripeness indicators (Minarni, 2024). Its non-invasive nature enables real-time monitoring under both 

laboratory and field conditions (Shiddiq et al., 2023). 

In contrast, HSI acquires hundreds of contiguous spectral bands, providing higher spectral resolution and 

precision. Statistical methods such as Partial Least Squares (PLS) and Principal Component Analysis (PCA) 

regression have been employed to process HSI data, achieving up to 90% accuracy in oil content prediction 

(Shiddiq et al., 2022). Recent developments include lightweight HSI sensors integrated with drones for large-

scale plantation monitoring (Chan et al., 2022) and hybrid models combining HSI with machine learning 

algorithms, such as Artificial Neural Networks (ANNs), to improve robustness under variable field conditions 

(Lee et al., 2023). Collectively, MSI offers cost-effective adaptability for field applications, while HSI delivers 

high-resolution predictive capability, particularly when integrated with machine learning techniques. 

Both MSI and HSI provide a non-destructive tool for assessing oil palm FFB ripeness by capturing 

biochemical changes across visible and near-infrared wavelengths. MSI offers cost-effective adaptability for 
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field applications, while HSI delivers high-resolution predictive capability, particularly when integrated with 

machine learning and drone-based monitoring. However, widespread adoption is constrained by equipment 

cost, computational demands such as storage required for data processing and scalability challenge (Shiddiq 

et al., 2024).  Therefore, the future research should highlight on affordable sensors, efficient algorithms and 

IoT-based integration. 

Sensor based technology 

Sensor-based technologies have become increasingly important in enhancing the detection of oil palm Fresh 

Fruit Bunch (FFB) ripeness, offering non-visual, non-destructive alternatives to traditional manual methods. 

These technologies measure physical and chemical properties such as moisture content, capacitanceand 

volatile organic compounds (VOCs) which change dynamically during the ripening process (Misron et al., 

2020). Inductive and capacitive sensors are among the most widely used in this industry. Inductive sensors 

have demonstrated up to 88% accuracy in detecting moisture-related changes in FFBs (Misron et al., 2020), 

while capacitive sensors achieved 91% accuracy in differentiating ripe from unripe fruits (Aziz et al., 2014). 

These approaches provide low-cost, real-time monitoring solutions that are particularly suitable for field 

deployment. 

Another promising advancement is electronic nose (E-nose) systems, which analyze VOC emissions as 

biochemical indicators of ripening. Siddiq et al. (2021) developed an E-nose system using MOS gas sensors 

(MQ3, MQ5, MQ135), achieving 94.2% accuracy in classifying ripeness stages. While such systems perform 

well under controlled conditions, ongoing research is exploring their reliability under variable plantation 

environments. 

Recent studies highlight that integrating multisensory systems with deep learning frameworks can further 

improve performance, achieving classification accuracies exceeding 90% in field conditions (Lee et al., 2022). 

Hybrid approaches that combine sensor data with imaging technologies supported by cloud-based AI 

platforms. This approach also shown potential to improve robustness against environmental variability while 

reducing operational costs (Gunawan et al., 2024; Goh et al., 2025). Collectively, these findings underscore 

the significant role of sensor-based technologies as a foundation for developing automated, scalable and 

sustainable ripeness detection systems. 

IoT and Edge Computing Integration 

The integration of Internet of Things (IoT) and edge computing technologies has emerged as a transformative 

enabler for real-time monitoring and data-driven decision-making in oil palm plantations. IoT frameworks 

allow seamless connectivity between sensors, mobile applicationsand cloud services. Its supporting large-scale 

deployment and remote accessibility. Edge AI systems, as demonstrated by Goh et al. (2024), process ripeness 

data locally at the device level which can reduce the dependencyon centralized computation. This localized 

processing significantly improves response times and supports scalability across plantations. 

In parallel, Wireless Sensor Networks (WSNs) have enabled continuous and remote tracking of FFB ripeness, 

optimizing harvesting schedules and enhancing operational efficiency (Salim et al., 2023). Furthermore, low-

cost wireless IoT solutions have proven effective in extending monitoring capabilities to remote plantation 

areas where connectivity is limited (Omar et al., 2023). By combining edge computing, WSNs, and AI-driven 

analytics, plantations can move toward a more resilient and efficient ecosystem for ripeness assessment. 

In summary, these advances demonstrate that IoT and edge computing are not merely complementary 

technologies but essential components in scaling sensor-based solutions from experimental setups to real-

world plantation applications. When fully integrated with multisensory data and AI-driven classification 

models, IoT-enabled systems have the potential to transform ripeness detection into a fully automated, scalable 

and sustainable process within the palm oil industry. Summary for recent advances technology approach apply 

for oil pam industries is illustrated in Table II. 
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TABLE II summary of RECENT ADVANCE Technology approaches 

Technology Model Accuracy Application Benefit 

YOLO Models YOLOv4, YOLOv8 91-96.7% Real-time object detection Fast, scalable, accurate 

Vision 

Transformers 
ViT-B/16 97.3% High-resolution feature analysis 

Superior long-range 

visual dependencies 

MSI and HSI PCA, PLS Regression 90-95% Spectral biochemical detection 
Non-invasive, high-

resolution monitoring 

Sensor Systems Inductive, Capacitive 88-94.2% Physical property assessment 
Real-time, robust in 

dynamic conditions 

YOLO Models YOLOv4, YOLOv8 91-96.7% Real-time object detection Fast, scalable, accurate 

FINDING AND DISCUSSION 

The shifting from traditional to automated technology for ripeness detection in FFBs has led a significant 

improvement in accuracy, efficiency and scalability. Advancements in machine learning (ML), multispectral 

and hyperspectral imaging, sensor-based systems and embarking of IoT and edge computing integration have 

significantly enhanced the accuracy and efficiency of oil palm FFB ripeness detection. These emerging 

technologies address many of the limitations inherent in traditional methods, such as labor dependency, 

subjectivity, and inconsistency. 

Further section presented the comparative analysis of traditional and emerging approaches. Technology barrier 

and performance evaluation should be overcome to ensure broad adoption in the palm oil industry. 

Comparative Analysis of Traditional vs Emerging Current Technology 

The transition from manual to automated ripeness detection in oil palm reflects the broader evolution toward 

precision agriculture and data-driven decision-making. Traditional methods like visual inspection and loose 

fruit counting are still widely used because they are simple and inexpensive. However, they are subjective, 

labor-intensive, and not suitable for large-scale applications that require higher accuracy and efficiency 

(Shiddiq et al., 2023; Priyadi et al., 2023). 

Among machine learning models, CNNs and YOLO have shown strong performance, with MobileNet and 

ResNet reaching 92–93% accuracy in controlled settings (Suharjito et al., 2022), while YOLOv8 improves 

real-time detection by achieving 96.7% accuracy with faster processing (Priyadi et al., 2023). 

Multispectral and hyperspectral imaging provide non-invasive and precise methods for detecting biochemical 

ripening indicators. Combined with Partial Least Squares (PLS) regression, Hyperspectral Imaging (HSI) can 

achieve 93%–95% accuracy in predicting oil content and assessing early maturity (Shiddiq et al., 2022), while 

drone-mounted sensors make large-scale, real-time monitoring possible (Lee et al., 2023). 

Sensor-based technologies such as inductive, capacitive, and electronic nose systems offer cost-effective and 

portable solutions for in-field applications. Capacitive sensors have achieved 91% accuracy (Aziz et al., 2023), 

while electronic noses have reached 94.2% accuracy by detecting volatile organic compounds (Siddiq et al., 

2021). 

Overall, the integration of AI, imaging, and sensor significantly improve the accuracy, efficiency, and 

scalability of ripeness detection compared to traditional methods. CNNs and YOLO frameworks achieve 

classification accuracies above 95%, while multispectral and hyperspectral imaging provide biochemical 

maturity indicators with more than 90% accuracy (Shiddiq et al., 2022). Low-cost capacitive and inductive 

sensors also show promising performance, with accuracies between 88–94%, making them more feasible for 
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smallholder adoption. Table III summarizes the methods, accuracy, strengths, and limitations of traditional 

approaches versus emerging technologies currently being explored in the oil palm industry. 

Challenge and Limitation on current technology 

Although automated approaches to oil palm fruit ripeness detection demonstrate high accuracy, their 

widespread adoption is constrained by several key challenges. First, the deployment of advanced imaging 

systems and AI models remains costly, as they require specialized hardware and substantial computational 

resources (Mansour et al., 2022). Second, environmental variability including fluctuating lighting conditions, 

occlusions and background interference reduces the robustness and reliability of image-based models in real 

plantation settings (Harmiansyah et al., 2024). Third, hyperspectral imaging and deep learning techniques 

generate large, complex datasets that demand high storage capacity and processing power, thereby limiting 

their feasibility for mobile or edge-based applications (Shiddiq et al., 2024). These limitations indicate that 

future research should focus on developing cost-effective, resource-efficient and environmentally robust 

systems to enable scalable and practical implementation of automated ripeness detection in the oil palm 

industry. 

TABLE III COMPARATIVE OVERVIEW BETWEEN of traditional approaches VS CURRENT 

TECHNOLOGY 

Approach Model / Method Accuracy Strengths Limitations 

Traditional 

Methods 

Visual inspection, loose 

fruit counting 
– NA 

Simple, low cost, 

widely used 

Subjective, labour-

intensive, not scalable 

Machine 

Learning  

- MobileNet, ResNet 

(CNNs) 

- YOLOv8 

- YOLO, Faster R-CNN, 

CNN 

- 92%–93% (Suharjito 

et al., 2022) 

- 96.7%(Priyadi et al., 

2023) 

-95% (Espinoza et. Al, 

2023) 

High accuracy, 

scalable, suitable 

for automation; 

YOLO offers 

real-time 

detection; 

Computationally 

demanding; requires 

large datasets; 

environmental 

variations reduce 

robustness, sensitive to 

lightning and acclusion 

Spectral 

Imaging  

- Multispectral Imaging 

(MSI) 

- Hyper-spectral Imaging 

(HSI + PLS regression) 

- 93%–95% (HSI, 

Shiddiq et al., 2022) 

Non-invasive, 

detects 

biochemical 

changes; drone 

integration 

enables large-

scale monitoring 

(Chan et al., 

2022) 

High equipment cost; 

large data storage and 

processing needs 

Sensor-

Based 

Systems 

- Inductive sensors 

- Capacitive sensors 

- E-nose 

- 91% (Aziz et al., 

2014) 

- 94.2% (Siddiq et al., 

2021) 

Portable, cost-

effective, real-

time field use 

Sensitive to 

environmental 

variability; limited 

scalability 

Challenge and Limitation on current technology 

Automated methods for detecting oil palm fruit ripeness have shown promising levels of accuracy, but their 

use in real plantations is still limited by several challenges. One major barrier is cost: hyperspectral sensors 

and the specialized hardware needed to run advanced AI models remain expensive and out of reach for many 

growers (Mansour et al., 2022). Environmental factors such as changes in lighting, rainfall, fruit occlusion and 

background noise often reduce the consistency and reliability of image-based models in actual field settings 

(Harmiansyah et al., 2024). 
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Techniques like hyperspectral imaging and deep learning also produce large and complex datasets that require 

significant storage space and processing power whereby it difficult to deploy on mobile or edge devices 

(Shiddiq et al., 2024). Apart of the technical issues, socioeconomic gap in rural areas highlights the need for 

expertise, infrastructure, and intensive training to enable farmers to use available tools more efficiently and 

effectively. 

FUTURE RECOMMENDATION 

Recent advances technology in FFB ripeness detection has shown a great potential. However, the technology 

application is still limited by high costs, environmental variability, dataset constraints, and accessibility issues. 

These barriers must be addressed to make future systems more affordable, efficient, and sustainable across 

different plantations. 

A key priority is to develop affordable and scalable solutions. Current multispectral and hyperspectral systems, 

especially drone-based platforms, remain too expensive for wide adoption (Chan et al., 2022). Future research 

should focus on hybrid approaches that combine low-cost sensors with lightweight AI models. For example, 

capacitive sensors integrated with smartphone-based CNNs can balance affordability and accuracy. Edge AI 

and modular solutions can also support real-time, on-site assessment without heavy dependence on cloud 

infrastructure 

Image and sensor-based methods often face difficulties in the field because of inconsistent in lighting, rainfall 

and fruit occlusion (Suharjito et al., 2022). Therefore, enhancing environmental robustness is crucial. Future 

research should focus on adaptive sensing, robust algorithms and advanced learning strategies. Techniques 

such as transfer learning and self-supervised learning can also make these systems more reliable in 

unpredictable plantation environments. 

Expanding dataset availability and improving model generalization is another critical area. The lack of 

standardized, large-scale, annotated datasets across diverse regions limits current AI-based models (Espinoza 

et al., 2023). Future efforts should prioritize the creation of open-access datasets and explore synthetic data 

generation techniques, such as Generative Adversarial Networks (GANs), to improve model robustness and 

scalability. 

The integration of IoT and edge computing also holds significant promise. Wireless sensor networks coupled 

with edge AI can support continuous monitoring and localized decision-making (Goh et al., 2024). Research 

should aim to optimize low-power IoT platforms and ensure interoperability with cloud systems, creating 

scalable and resource-efficient monitoring frameworks. 

Finally, improving accessibility for smallholder farmers is crucial for industry-wide adoption. Low-cost 

mobile apps and IoT-enabled tools designed for field use can make advanced detection technologies more 

accessible. Policy support through government incentives, public–private partnerships, and digital agriculture 

programs will also play an important role. In addition, training modules are needed to improve digital literacy 

among farmers and workers. 

By addressing all these priorities, future research can unlock the transformative potential of automated ripeness 

detection, positioning the palm oil industry as a leader in precision agriculture that is efficient, sustainable and 

resilient in the face of global challenges. 
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