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ABSTRACT  

This paper presents a custom late fusion multimodal deep learning technique for milk quality classification by 

integrating visual and numerical features. Top-performing unimodal models such as MobileNet, Inception V3, 

and DenseNet for visual data, and LightGBM, CatBoost, and XGBoost for numerical data were identified 

through comparative evaluation. The proposed concatenation-with-proposed-layers fusion model achieved a 

peak testing accuracy of 99.77%, matching or surpassing alternative fusion techniques while employing fewer 

layers for improved computational efficiency. Comparative experiments demonstrated superior performance 

over max pooling, majority voting, and weighted average methods, with notable robustness across nine visual–

numerical model pairings. A human-centered study further validated the approach, showing that combining 

visual and numerical inputs improved classification accuracy by up to 45.1% in certain cases. The results 

highlight the proposed model’s effectiveness, stability, and applicability in quality control and safety-critical 

domains, with potential extension to other multimodal classification tasks requiring high precision. 

Keywords— Classification, Data fusion, Late fusion technique, Milk quality, Multimodal Deep Learning. 

INTRODUCTION 

Ensuring the quality and safety of milk is a critical aspect of public health and food industry standards [1]. 

Traditional methods of milk quality assessment, such as laboratory testing and sensory evaluation, are often 

time-consuming, costly, and subjective [1], [2], [3]. With the increasing availability of sensor technologies and 

digital imaging, automated milk quality analysis using artificial intelligence (AI) has gained significant 

attention [2], [4], [5]. 

Deep learning, in particular, has shown promise in handling both image and numerical data for classification 

tasks [6], [7]. However, most existing studies rely on unimodal approaches [1], [8], focusing either on visual 

cues such as color and texture [5], [9] or numerical features like pH, temperature and storage conditions 

separately [2]. These single-modality models may overlook important cross-modal correlations, which can 

limit their classification performance, especially in complex real-world environments. 

To address these limitations, multimodal deep learning has emerged as a powerful solution by integrating 

multiple types of data. Among the various fusion strategies, late fusion offers greater flexibility by allowing 

each modality to be processed independently before being combined [10], [11]. Despite its advantages, most 

late fusion implementations in current literature are typically employed as fixed, non-trainable operations that 

do not adapt to the characteristics of the input modalities or the specific demands of the task. To address this 

limitation, we propose a custom late fusion layer that embeds these operations within a configurable 

architecture. This approach enables the model to perform modality integration in a more adaptive and learnable 

manner, thereby enhancing its ability to extract and combine complementary features from both visual and 

http://www.rsisinternational.org/
https://dx.doi.org/10.47772/IJRISS.2025.908000643


INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS) 

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue VIII August 2025 

Page 7730 www.rsisinternational.org 

 

 

 

 

 

numerical inputs for improved milk quality classification. 

The contributions of this study are as follows: 

1. A comparative analysis of unimodal models for visual and numerical milk quality data. 

2. The design of a custom late fusion layer for multimodal integration. 

3. An evaluation showing excellent classification performance and alignment with human judgment, 

validating the effectiveness of the proposed method. 

Dataset Acquisition and Preparation 

 

The preparation of these samples is conducted in a controlled environment, to reduce the influence of external 

factors such as contamination, changes in temperature, or inconsistent lighting, which could affect the quality 

and consistency of the collected data. Both the visual and numerical datasets were self-collected concurrently 

during the same sampling sessions to ensure that each modality accurately reflects the same milk condition. 

This approach was adopted to maintain consistency between modalities and to prevent discrepancies that could 

arise from data collected at different times or from separate sources. 

Fig. 1 Top-view image of milk: (a) in carton and (b) in glass cup 

The visual dataset comprises top-view images of milk contained in cartons and glass cups as shown in Fig. 1(a) 

and (b) respectively. They were captured using a Sony α6000 E-mount camera with APS-C Sensor along with 

an SELP1650 interchangeable lens. Simultaneously, the numerical dataset includes recorded features such as 

sample time, pH level, temperature, storage condition, exposure status, and odor. In addition to the primary 

milk quality classes which are ‘Good’, ‘Spoiling’, and ‘Spoiled’, an extra class labeled ‘Others’ was introduced 

to include images and data unrelated to milk. For effective intermediate fusion, each image is assigned a 

sample ID that corresponds to its respective numerical data, ensuring proper alignment between the modalities. 

Table I provides a sample of the recorded numerical data, while Table II presents the coding scheme used to 

represent storage condition, exposure status, and odor in numerical form. Table III presents the dataset 

distribution across training, validation, and testing sets for both visual and numerical inputs. 

TABLE I SAMPLE OF THE RECORDED NUMERICAL DATA 

Sample Time 24 48 72 96 

pH 5.62 6.29 6.38 -999 

Temp. (°C) 30.25 18.23 31.51 -999 

Storage 0 1 0 -999 

Exposure 1 0 2 -999 

Odor 1 0 1 -999 

Class Spoiled Good Spoiling Others 
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TABLE II NUMERICAL REPRESENTATION FOR STORAGE CONDITION, EXPOSURE STATUS, AND ODOR 

Numerical Representation Storage Exposure Odor 

0 Room temperature Perfectly sealed No odor 

1 Refrigerator Breached seal Slight odor 

2 - Fully opened Strong odor 

 

TABLE III DATASET DISTRIBUTION FOR VISUAL AND NUMERICAL DATASET 

 Good Spoiling Spoiled Others 

Training (88%) 5,646 1,485 4,233 1,070 

Validation (6%) 380 97 343 86 

Testing (6%) 397 86 355 50 

 

Visual Analysis 

In this study, a range of well-established deep learning architectures are employed as baseline models for 

visual classification. These include AlexNet, DenseNet, Inception V1, Inception V3, LeNet-5, MobileNet, 

ResNet, VGG16, and VGG19. The model that demonstrates the highest classification accuracy will be selected 

as the final architecture for integration within the multimodal deep learning framework. 

Pre-trained versions of each model are utilized to perform milk quality analysis using the visual dataset. Using 

pre-trained models enables the use of feature representations learned from large-scale image datasets, which 

enhances classification accuracy and reduces training time, particularly beneficial when dealing with limited 

data. To ensure a fair and unbiased comparison among models, all hyperparameters are held constant. The 

epoch, optimizer and learning rates for all models were set to 10, Adam optimizer and 0.0001 respectively. 

This uniformity eliminates discrepancies caused by individual model tuning and ensures that any differences in 

performance are attributed solely to the model architecture rather than varying experimental conditions. 

Referring to Fig. 2, among the evaluated models, MobileNet achieved the highest classification accuracy at 

99.66%, followed by Inception V3 at 99.44% and DenseNet at 99.1%. These architectures outperformed others 

in effectively capturing critical visual features relevant to milk quality classification. In contrast, ResNet 

recorded the lowest accuracy at 52.93%, indicating its limited suitability for this dataset. Based on these 

findings, MobileNet, Inception V3, and DenseNet were selected for integration into the late fusion multimodal 

framework. Their strong performance and ability to generalize key visual cues make them well-suited for 

contributing to a robust and accurate multimodal classification system. 

Fig. 2 Visual models’ accuracy 
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Numerical Analysis 

For numerical data analysis, eight baseline models are selected which are CatBoost, K-Nearest Neighbors (K-

NN), LightGBM, Logistic Regression, Naïve Bayes, Random Forest, Support Vector Machine (SVM), and 

XGBoost. These models are chosen due to their proven effectiveness in a wide range of classification 

applications. Similar to visual analysis, the model that demonstrates the highest classification accuracy will be 

selected as the final architecture for integration within the multimodal deep learning framework. By assessing 

the accuracy of these models, the most suitable one for the current classification task can be determined. Pre-

trained versions of each model were employed to classify milk quality based on the numerical dataset. 

Among the models evaluated as shown in Fig. 3 below, LightGBM achieved the highest accuracy at 96.85%, 

closely followed by CatBoost at 96.51%. Both Random Forest (RF) and XGBoost recorded identical 

accuracies of 96.28%. These models outperformed the others due to their inherent capability to effectively 

process structured, tabular data. Gradient boosting algorithms such as LightGBM, CatBoost, and XGBoost are 

particularly well-suited for capturing complex, non-linear relationships and interactions among numerical 

features such as sample time, pH, temperature, storage condition, exposure status, and odor which are critical 

indicators in assessing milk quality. 

 

Fig. 3 Numerical models’ accuracy 

As the two highest-performing models in this analysis, LightGBM and CatBoost are directly selected for 

inclusion in the final late fusion model. For the third model, Random Forest and XGBoost demonstrated 

identical testing accuracies, prompting a comparison of their training and validation performance to determine 

the more suitable option. Table IV presents a comparison of their training and validation accuracies. 

TABLE IVTRAINING AND VALIDATION ACCURACY FOR RANDOM FOREST AND XGBOOST 

 Random Forest XGBoost 

Training Accuracy (%) 99.84 100 

Validation Accuracy (%) 96.36 96.25 

 

Based on the above analyses, LightGBM, CatBoost, and XGBoost are identified as the top three performing 

numerical models and are therefore selected for the development of the late fusion model. 

Late Fusion Multimodal Model Development 

Late fusion, also referred to as decision fusion, involves combining the outputs of models trained on different 

data modalities [10], [12], [13]. This approach uses the strengths of each individual model, making it 

particularly effective when models excel in handling specific types of input data [12], [13]. A common use 
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case of late fusion can be found in sentiment analysis, where textual, audio, and visual information are 

independently processed and their results integrated to produce a final sentiment classification [14], [15]. In 

this paper, a custom concatenation-based late fusion method is proposed and implemented through specially 

designed layers. This approach is evaluated against other late fusion techniques, including standard 

concatenation, max pooling, majority voting, and weighted averaging. 

Following the independent training of nine visual models and eight numerical models, the top three highest-

performing models from each category (visual and numerical analysis) are selected for late fusion multimodal 

analysis. Selecting the top three provides greater flexibility in exploring various fusion combinations while 

maintaining a focus on the most promising candidates. This strategy also minimizes the risk of depending 

solely on a single model that may not perform consistently across different scenarios. The selected models are 

then systematically paired to assess their performance using the proposed concatenation-based late fusion 

technique. In total, nine unique model pairings as shown in Table V are evaluated to determine which 

combination achieves the highest classification accuracy. 

TABLE V LATE FUSION UNIQUE MODEL PAIRING (TOP THREE FROM VISUAL AND NUMERICAL ANALYSIS) 

 

 

 

 

 

 

 

 

 

Once the visual model is trained from scratch using the visual dataset and the numerical model is trained using 

the numerical dataset, their respective feature representations are extracted and fed into the late fusion model. 

The visual dataset is processed through the trained visual model, which serves as a feature extractor to capture 

high-level representations of the images. Likewise, the numerical model generates feature representations 

based on the output probability distributions, effectively summarizing the key patterns in the numerical data. 

These extracted features are then concatenated into a unified feature vector, allowing the fusion model to make 

use of the complementary information from both modalities for excellent classification performance. 

Concatenation with Proposed Layers 

Fig. 4 Concatenation with proposed layers 

Model Pairing 

Visual Numerical 

MobileNet LightGBM 

MobileNet CatBoost 

MobileNet XGBoost 

DenseNet  LightGBM 

DenseNet  CatBoost 

DenseNet  XGBoost 

Incp. V3 LightGBM 

Incp. V3 CatBoost 

Incp. V3 XGBoost 
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In the first late fusion model as shown in Fig. 4, which utilizes concatenation with proposed layers, the 

concatenated features are passed through a fully connected layer consisting of 256 neurons with a ReLU 

activation function. This is followed by a dropout layer with a dropout rate of 0.4 to reduce the risk of 

overfitting. Finally, a softmax output layer with four neurons is applied to produce probability distributions 

across the four target classes. 

Standard Concatenation 

 

Fig. 5 Standard concatenation 

The second late fusion model, which uses a standard concatenation approach, is illustrated in Fig. 5. In this 

model, the concatenated features are processed through a series of fully connected layers. It begins with a 

dense layer of 256 neurons activated by a ReLU function, followed by a dropout layer with a rate of 0.5 to 

mitigate overfitting. This is followed by another dense layer with 128 neurons and an additional dropout layer 

with a 0.3 dropout rate. Finally, a dense layer with four neurons is applied, and the output is passed through a 

softmax activation function to produce probability distributions across the four target classes. 

Max Pooling with Proposed Layers 

The third late fusion model follows the same architecture as the first model which is concatenation with 

proposed layers, but it includes an additional global max pooling layer applied to the concatenated features. 

This modified structure is illustrated in Fig. 6 below. 

Fig. 6 Max pooling with proposed layers 
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Majority Voting 

Fig. 7 Majority Voting 

The fourth late fusion models differ from the previous models by utilizing the model’s final predictions instead 

of their extracted features. As illustrated in Fig. 7, the majority voting model receives output from two 

independently trained models, each processing a different modality. Instead of fusing feature-level 

representations, this approach combines the final predictions through a soft voting mechanism, aggregating the 

predicted class probabilities to determine the overall classification result. 

Weighted Average 

Fig. 8 below depicts the weighted average fusion technique, which, similar to majority voting, combines 

predictions from two independently trained models, one for each modality. In this approach, the visual model 

is given a higher weight of 0.7, while the numerical model is assigned a weight of 0.3. These weights were 

selected empirically, with greater emphasis placed on the modality expected to contribute more informative 

features to the classification task. The visual modality is prioritized due to its ability to capture rich physical 

characteristics of the milk samples, whereas the numerical modality, although structured, provides a more 

limited feature set. This weighting strategy ensures that the fusion process makes use of the strengths of each 

modality to enhance the final prediction accuracy. 

Fig. 8 Weighted Average 

RESULTS AND DISCUSSION 

This section will present the results of late fusion multimodal specifically concatenation technique with 

proposed custom layers, standard concatenation, max pooling, majority voting, and weighted average. Based 

on the results presented in visual and numerical analysis, MobileNet achieved the highest accuracy among the 

visual classification models, while LightGBM outperformed other models in numerical classification. Hence, 

both models were used for the analysis of late fusion multimodal model. 

Concatenation with Proposed Layers 

Table VI below displays the accuracy percentages across various epoch and batch size combinations for the 

first model which is concatenation with proposed csutom layers. The highlighted row in Table 6 indicates the 

specific combination that yielded the highest classification accuracy. 
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TABLE VI MOBILENET X LIGHTGBM (CONCATENATION WITH PROPOSED LAYERS) 

Epoch Batch Size Training Acc. 

(%) 

Validation Acc. 

(%) 

Testing Acc. 

(%) 

10 

 

32 99.99 100 99.77 

64 100 100 99.77 

128 99.99 100 99.66 

25 

 

32 100 100 99.77 

64 100 100 99.77 

128 100 100 99.77 

50 

 

32 100 100 99.77 

64 100 100 99.77 

128 100 100 99.77 

 

The optimal combination for this model was identified as 10 epochs with a batch size of 64, achieving 100% 

training and validation accuracy and 99.77% testing accuracy. This setting offers an effective balance between 

generalization and stability. Increasing the number of epochs did not yield notable accuracy improvements, as 

training, validation, and testing accuracy consistently remained around 100% and 99.77%, respectively. This 

indicates that the model can effectively learn dataset patterns within a relatively small number of epochs, and 

higher epoch counts neither enhance nor degrade performance. Similarly, variations in batch size across all 

epochs had no measurable impact on testing accuracy, demonstrating that the concatenation-with-proposed-

layers model maintains strong generalization regardless of batch size. 

To assess the effectiveness of the proposed custom late fusion model, the rest of model pairings as listed in 

Table 5 were analysed. This design choice ensures that performance differences across the nine model pairs are 

solely attributable to the choice of base models, rather than variations in the fusion strategy. By applying the 

same fusion mechanism to all pairings, the results directly reflect the robustness and adaptability of the 

proposed custom model across diverse combinations of visual and numerical classifiers. As the optimal 

combination of epoch and batch size of MobileNet X LightGBM are 10 and 64 respectively, hence, the 

combination is used for the rest of model pairings. The model pairings’ results are as tabulated in Table VII 

below. 

TABLE VII OTHER MODEL PAIRING AT EPOCH=10, BATCH SIZE=64 (CONCATENATION WITH PROPOSED LAYERS) 

Model Pairing Training Acc. (%) Validation Acc. (%) Testing Acc. (%) 

MobileNet X CatBoost 99.99 100 99.77 

MobileNet X XGBoost 99.99 100 99.77 

DenseNet X LightGBM 99.85 99.89 99.32 

DenseNet X CatBoost 99.96 100 99.77 

DenseNet X XGBoost 99.85 99.89 99.44 

Incp. V3 X LightGBM 99.91 99.89 99.66 

Incp. V3 X CatBoost 99.98 99.89 99.77 

Incp. V3 X XGBoost 99.90 99.89 99.77 

 

Across all model pairings, training and validation accuracy consistently approached 100%, while testing 

accuracy was slightly lower, ranging from 99.32% to 99.77%. The highest testing accuracy of 99.77% was 
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achieved by multiple pairings, including MobileNet with CatBoost and XGBoost, DenseNet with CatBoost, 

and Inception V3 with CatBoost and XGBoost matching with MobileNet X LightGBM. This consistency 

indicates that the concatenation-with-proposed-layers model effectively integrates complementary features 

from visual and numerical modalities. Moreover, MobileNet X LightGBM outperformed certain LightGBM-

based combinations, such as DenseNet X LightGBM and Inception V3 X LightGBM, which achieved slightly 

lower accuracies of 99.32% and 99.66% respectively. 

Other Late Fusion Techniques 

Table VIII below displays the accuracy percentages for other late fusion techniques which are standard 

concatenation, max pooling, majority voting, and weighted average. 

TABLE VIII OTHER MODEL PAIRING AT EPOCH=10, BATCH SIZE=64 (CONCATENATION WITH PROPOSED LAYERS) 

Model Pairing Training Acc. (%) Validation Acc. (%) Testing Acc. (%) 

Standard Concatenation 100 100 99.77 

Max Pooling 45.41 41.94 44.71 

Majority Voting N/A N/A 99.77 

Weighted Average N/A N/A 82.55 

 

A comparison between the concatenation-with-proposed-layers model and the standard concatenation model 

shows identical accuracies for training, validation, and testing which are 100%, 100%, and 99.77%, 

respectively. Notably, the proposed model employs a reduced number of layers. This indicates that comparable 

performance can be achieved without additional architectural complexity. By eliminating unnecessary layers, 

the proposed model offers a more computationally efficient solution, reducing training time and memory 

requirements while maintaining state-of-the-art accuracy. 

In contrast, the max pooling model achieves only 45.41% training accuracy, 41.94% validation accuracy, and 

44.71% testing accuracy. This substantial performance gap indicates that the concatenation-with-proposed-

layers model offers markedly superior generalization and learning capabilities. 

Although both the concatenation-with-proposed-layers model and the voting ensemble achieve the same 

testing accuracy of 99.77%, training and validation accuracy data are unavailable for the voting ensemble, 

making it challenging to evaluate its learning behavior and generalization ability. The voting ensemble, 

however, is exceptionally fast, with an approximate training time of 0 seconds. This indicates that while the 

voting ensemble offers high computational efficiency, its performance during the training and validation 

phases remains unclear. If the aim is to maximize precision with full transparency across training, validation, 

and testing, the concatenation-with-proposed-layers method is the preferable choice. Conversely, the voting 

ensemble is a strong alternative when rapid prediction is the priority, provided that the model’s generalization 

capability has already been established. 

Similar to majority voting, the weighted average fusion method demonstrates efficient training time, making it 

suitable for real-time applications where quick results are essential. However, this speed advantage comes at 

the cost of precision. Its testing accuracy of 82.55% is notably lower than the 99.77% achieved by the 

concatenation-with-proposed-layers model. Furthermore, the absence of training and validation accuracy data 

makes it challenging to assess the model’s generalization capability or consistency in learning. 

Overall, while the weighted average approach offers simplicity and speed, it underperforms in prediction 

accuracy. It may be practical in scenarios where speed outweighs precision or when computational resources 

are limited. In contrast, the concatenation-with-proposed-layers model delivers far greater robustness and 

reliability, making it the preferred choice for applications that demand high classification accuracy, such as 

quality control or safety-critical systems. 
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Human Analysis for Unimodal VS Multimodal 

This paper also provides a qualitative validation of multimodal deep learning through a human-centered 

experiment conducted using Google Forms. The survey was divided into three parts. The first part gathered 

general demographic details from respondents, including gender, age, occupation, and frequency of milk 

consumption. In the second part, participants were asked to classify nine milk samples based solely on visual 

information. The third part presented the same samples along with both visual and numerical data, such as 

sampling time, pH level, temperature, storage condition, exposure status, and odor. For each sample, 

respondents are required to classifiy it as either ‘Good’, ‘Spoiling’, or ‘Spoiled’. Table IX below presents a 

comparative analysis between the ground truth labels and human classification accuracy. 

TABLE IX GROUND TRUTH VS HUMAN ANALYSIS 

No. GROUND 

TRUTH 

Accuracy (%) Increase in 

accuracy (%) 
Image only Image & Numerical 

1 Good 66.7 94.6 1 

2 Spoiling 33.3 43 2 

3 Spoiled 31.2 76.3 3 

4 Spoiling 35.5 55.9 4 

5 Good 48.4 78.5 5 

6 Spoiled 72 93.5 6 

7 Spoiled 92.5 73.1 7 

8 Good 33.3 68.8 8 

9 Spoiling 23.7 55.9 9 

 

As presented in Table IX, incorporating numerical data such as sample time, pH, temperature, storage 

condition, exposure status, and odor significantly enhances the accuracy of human milk quality classification. 

For instance, in Question 3, accuracy rose from 31.2% using only visual data to 76.3% when numerical 

information was included, marking a 45.1% improvement. Comparable gains were observed in Questions 1, 5, 

and 8, with increases of 27.9%, 30.1%, and 35.5% respectively, indicating that numerical features support 

better decision making. However, an exception occurred in Question 7, where accuracy declined from 92.5% 

to 73.1% upon adding numerical data. This suggests that in certain cases, supplementary information may 

cause confusion, particularly when visual cues alone provide a clear assessment. Nevertheless, the overall 

findings reinforce the conclusion that combining visual and numerical inputs improves judgment accuracy in 

milk quality evaluation. 

CONCLUSION 

This paper demonstrated the effectiveness of a multimodal deep learning model for milk quality classification 

by integrating visual and numerical features through a custom late fusion technique. For visual classification, 

MobileNet, Inception V3, and DenseNet emerged as the top-performing architectures, achieving accuracies of 

99.66%, 99.44%, and 99.10% respectively, with MobileNet selected as the primary visual model in the fusion 

framework. In the numerical analysis, LightGBM, CatBoost, and XGBoost achieved the highest accuracies, all 

exceeding 96%, confirming their suitability for capturing complex relationships in structured data such as pH, 

temperature, and odor. 

The proposed concatenation-with-proposed-layers fusion model proved highly effective, consistently 

delivering near-perfect training and validation accuracy and achieving a peak testing accuracy of 99.77% 

across multiple visual–numerical pairings. Comparative analysis with alternative fusion techniques showed 

that max pooling and weighted average fusion significantly underperformed in prediction accuracy, while 
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majority voting achieved high testing accuracy but lacked transparency in training and validation performance. 

These findings indicate that the proposed model offers the best balance of precision, robustness, and 

interpretability, making it well-suited for quality control and safety-critical applications. 

Human-centered evaluation further reinforced the advantages of multimodal inputs. The addition of numerical 

data alongside visual data substantially improved respondents’ classification accuracy in most cases, with gains 

of up to 45.1% for specific samples. While a minor decrease in accuracy occurred in one scenario due to 

potential information overload, the overall results confirmed that multimodal data presentation enhances 

decision-making quality. 

In conclusion, the integration of high-performing unimodal models into a late fusion architecture with the 

proposed concatenation method provides a powerful and reliable solution for milk quality classification. The 

approach demonstrates strong generalization capabilities, high predictive accuracy, and meaningful 

performance improvements over simpler fusion strategies. Beyond the milk quality field, these findings 

highlight the potential of multimodal deep learning frameworks to improve classification accuracy and 

decision support in other applications where both visual and numerical features are critical. 
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