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ABSTRACT 

Urban flood resilience assessment frameworks persistently suffer from three critical limitations: 

methodological fragmentation between physical and socioeconomic dimensions, overreliance on inaccessible 

multi-source data like remote sensing or proprietary datasets, and inadequate attention to causal mechanisms 

linking urban characteristics to resilience outcomes. This study addresses these gaps using a standardized 

Exposure-Sensitivity-Adaptability (ESA) framework applied across 41 Yangtze River Delta cities. The 

yearbook-based approach ensures replicability for cities lacking specialized hydrological data. Entropy 

weighting objectively assigns importance based on inter-city variability, with subsequent mediation analysis 

unraveling causal pathways. Key findings demonstrate that per capita fiscal revenue dominates resilience 

outcomes, contributing 37.15% to adaptability by enabling proactive floodproofing investments. Drainage 

infrastructure density exhibits counterintuitive negative effects, confirming the safe development paradox 

where higher pipe density correlates with reduced resilience. Population density indirectly erodes resilience by 

diluting fiscal resources per capita, a pathway undetected in bivariate models. GDP density enhances resilience 

through agglomeration economies but concurrently increases exposure magnitude. Road density significantly 

supports emergency response capabilities. This framework provides cities in developing economies with a 

low-cost, transferable tool for evidence-based planning without specialized hydrological data. Theoretically, it 

advances understanding of fiscal governance as a critical mediator between urban scale and resilience. 

Practically, it enables equitable cross-city benchmarking and prioritizes fiscal capacity building alongside 

performance-oriented infrastructure upgrades, transforming academic concepts into actionable strategies for 

flood-vulnerable regions. 

Keywords: Urban Flood Resilience, Indicator System, Exposure, Sensitivity, Adaptability, Influencing 

Mechanism, Yangtze River Delta 

INTRODUCTION 

Urban flood resilience (UFR) has emerged as a critical paradigm for addressing the escalating threats posed by 

climate change-induced hydrological extremes and rapid urbanization. Global flood losses exceeded $82 

billion in 2023 alone, with pluvial and fluvial flooding affecting over 290 million urban residents worldwide 

[1], [2]. The Yangtze River Delta is China's most economically dynamic urban agglomeration, yet exemplifies 

this challenge, despite generating about 20% of the nation's GDP, its low-lying topography, monsoon climate, 

and dense river networks render it highly vulnerable to compound flooding [3]. Traditional flood control 

strategies, which rely on engineered gray infrastructure such as levees and drainage networks, show limited 

effectiveness under increasing climate uncertainty. Recent studies highlight a paradoxical finding, that cities 

with higher drainage density often exhibit reduced resilience scores, due to infrastructural over-reliance and the 

"safe development paradox," where protective measures inadvertently encourage high-risk settlement. [4]. This 

requires adopting resilience-based approaches that integrate Exposure, Sensitivity, and Wang et al.'s 

spatiotemporal analysis of the Pearl River Delta (ESA) into holistic risk management [5]. 
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Existing UFR assessment frameworks face three persistent limitations. First, methodological fragmentation 

prevails: process-based models (e.g., hydrodynamic simulations) capture physical dynamics but neglect 

socioeconomic dimensions [1]; composite indices incorporate multidisciplinary indicators but suffer from poor 

replicability due to reliance on multi-source data (e.g., remote sensing, proprietary mobility data) that are 

inaccessible for many cities [3], [6]. Second, mechanistic understanding of resilience drivers remains 

underdeveloped. While correlations between GDP density and resilience are well-documented, the causal 

pathways through which urban scale, infrastructure investment, and fiscal capacity interact to shape resilience 

are rarely quantified [3], [4]. Third, studies emphasizing spatiotemporal evolution or predictive modeling often 

overlook the constraints faced by policymakers in data-scarce contexts, limiting practical applicability [1], [4]. 

As Cutter (2016) notes, “Resilience for whom? Resilience to what?” remains inadequately addressed in 

indicator-driven research [7]. 

This study bridges these gaps by developing a strictly yearbook-derived ESA indicator framework to evaluate 

flood resilience across 41 YRD cities. Secondary indicators were deliberately restricted to variables extractable 

from national/provincial statistical yearbooks to ensure the following three advantages. 

1. Standardized comparability: Uniform definitions enable longitudinal and cross-city benchmarking [6]. 

2. Transferability: Applicable to cities lacking specialized hydrological data [1]. 

3. Policy relevance: Direct alignment with governmental datasets facilitates stakeholder uptake [3], [4]. 

The Yangtze River Delta serves as an ideal testbed due to its heterogeneous development gradients, ranging 

from Shanghai's global financial hub to emerging industrial centers in Anhui, which reveal how resilience 

mechanisms operate across urban typologies [3]. Entropy weighting was employed to objectively assign 

indicator weights based on inter-city variability and apply mediation analysis to disentangle direct and indirect 

effects of urban scale on resilience via fiscal capacity. 

The analysis reveals that: Per-capita fiscal revenue dominates resilience outcomes (37.15% weight), enabling 

proactive investments in floodproofing and rapid recovery; Drainage infrastructure density exhibits 

counterintuitive negative effects, signaling potential infrastructure failure points or risk compensation 

behaviors; Population density indirectly reduces resilience by diluting fiscal resources—a mechanism 

previously undetected in bivariate models. 

These insights advance UFR theory by demonstrating how fiscal governance mediates the scale-resilience 

relationship. Practically, the yearbook-based framework offers a low-cost tool for cities in developing 

economies to initiate evidence-based resilience planning. 

The sections of this article are arranged as follows: Section II synthesizes literature on UFR assessment 

frameworks and their limitations; Section III details data sources and the ESA methodology; Section IV 

presents empirical results and mechanism analysis; Section V discusses policy implications; and Section VI 

concludes with suggestions and future work. 

LITERATURE REVIEW 

Conceptual Evolution and Assessment Frameworks 

The conceptual lineage of UFR traces back to Holling’s (1973) ecological resilience theory, which defined 

resilience as a system’s capacity to “absorb disturbance and reorganize while undergoing change” [8]. This 

foundation was later adapted for social-ecological systems by Folke et al. (2002), emphasizing adaptive cycles 

and panarchy [9]. In disaster risk reduction, Bruneau et al. (2003) crystallized the “4R” framework 

(Robustness, Redundancy, Resourcefulness, Rapidity), which became instrumental in operationalizing 

infrastructure resilience [10]. The UNISDR’s Making Cities Resilient campaign (2012) subsequently 

mainstreamed UFR as a multidimensional imperative spanning physical, social, economic, and institutional 

domains [11]. 

Recent frameworks refine these dimensions through diverse lenses. The HVEDR model (Hazard-

Vulnerability-Exposure-Defense-Recovery) incorporates post-disaster recovery capacity as a distinct pillar, 
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addressing critiques that earlier frameworks overlooked restitution dynamics [3]. The UFResi-M (Modified 

Urban Flood Resilience Model) integrates pre-event resistance, during-event coping, and post-event adaptation 

capacities, emphasizing temporal phases of resilience [12]. ESA (Exposure-Sensitivity-Adaptivity), adapted 

from climate vulnerability studies, offers parsimony for indicator-based assessments by focusing on three 

interacting components [13]. Despite theoretical advances, tensions persist between conceptual 

comprehensiveness and operational practicality. ESA strikes a balance by maintaining analytical rigor while 

accommodating data constraints in developing regions [6], [13]. 

Assessment Methodologies: Advances and Gaps 

UFR quantification methods fall into four categories: 

1. Process-Based Hydraulic Models 

Tools like HEC-RAS, SWMM, and CADDIES simulate inundation depth, velocity, and extent under design 

storms. Recent integrations with machine learning (e.g., LSTM networks) improve computational efficiency 

for real-time forecasting [1]. For example, Chen et al. (2021) coupled hydrodynamic simulations with agent-

based models to evaluate evacuation resilience in Shanghai, revealing that road network fragmentation 

increased flood mortality by 18–22% during extreme precipitation [14]. However, such models require high-

resolution terrain data and calibration parameters often unavailable for small-medium cities [4]. 

2. Composite Indicator Systems 

These dominate empirical UFR research due to their ability to integrate multidisciplinary variables. Entropy 

weighting objectively assigns weights based on inter-city indicator variability, reducing subjectivity [3], [4]. 

ANP-EWM-TOPSIS hybrids combine subjective expert judgment (Analytic Network Process) with objective 

entropy weights (EWM) and distance-based ranking (TOPSIS) to optimize dimensionality reduction [1]. 

Scenario-based sensitivity analysis projects resilience trajectories under climate/urbanization scenarios, as 

applied in Zhejiang Province’s 1.5% annual resilience growth target [4]. 

3. Emerging Integrated Approaches 

GIS-MCDA (Multi-Criteria Decision Analysis) prioritizes green infrastructure sites using ecological and 

socioeconomic criteria, as demonstrated in Monterrey’s FRUGISP model, which boosted runoff reduction by 

34% through targeted GI placement [15]. 

Resilience value quantification assigns economic values to resilience attributes (e.g., $/m³ of floodwater 

retention), enabling cost-benefit analysis of adaptation measures [16]. 

However, persistent gaps limit practical application. Most studied indices use remote sensing data or 

proprietary data (e.g., nighttime lights, mobility trajectories), which hinders validation in resource-poor cities 

[3], [6]. Few studies have incorporated temporal dynamics (e.g., Zhang et al.’s spatiotemporal analysis of the 

Pearl River Delta) [17]. Regression models often report bivariate correlations but neglect mediating 

pathways—e.g., how city scale indirectly affects resilience via fiscal allocation [18]. 

Driving Mechanisms: Untangling Causal Pathways 

Understanding how urban characteristics influence UFR requires dissecting direct and mediated effects.  

Fiscal capacity consistently emerges as the dominant predictor of socioeconomic drivers. Jerch et al. (2023) 

demonstrated that a $100 increase in per-capita municipal revenue reduced flood recovery time by 8.2 days 

across US counties, primarily through accelerated infrastructure repair and social assistance [19]. Economic 

agglomeration (GDP density) enhances resilience by enabling infrastructure economies of scale. For example, 

Shanghai’s drainage investment per km² exceeds less dense cities by 6.7 times [3]. However, it concurrently 

increases exposure intensity; high-density economic assets amplify potential losses during levee failures [20]. 

Studies have shown that drainage pipe density can exhibit nonlinear effects, reflecting the infrastructure 

paradox. In the YRD, cities with >12 km/km² density show declining resilience due to system overload and 
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maintenance deficits [3]. This reflects the “safe development paradox”: robust infrastructure encourages 

settlement in high-risk zones, amplifying exposure [20]. Strategically placed GI (e.g., permeable pavements, 

rain gardens) reduces runoff by 15–40% in Brussels and Monterrey [15]. However, its effectiveness depends 

on governance capacity. For example, Surabaya’s GI network failed during the 2023 floods due to poor 

community maintenance [21]. 

The impact of population density is controversial while it enables efficient service delivery (e.g., Tokyo’s 

flood shelters serve ≈12,000 persons/km²), it also strains drainage systems and increases evacuation 

complexity [22], [23]. Mediation analysis reveals indirect effects—e.g., density reduces fiscal resources per 

capita, constraining resilience investments [24]. 

In summary, the current research despite advancements, critical gaps persist. First, heavy reliance on multi-

source data (e.g., RS, IoT sensors) restricts framework transferability, especially in developing cities. Second, 

studies report bivariate correlations but neglect mediating pathways—e.g., how city scale indirectly affects 

resilience via fiscal allocation. Thirdly, few frameworks incorporate institutional variables (e.g., emergency 

response coordination), despite their documented impact on recovery speed [6], [19]. 

This study addresses these gaps through a strictly yearbook-based ESA framework applied across 41 YRD 

cities to ensure applicability, unpacks mechanisms, and prioritizes policy utility. By doing so, we provide a 

transferable methodology for cities lacking specialized hydrological data while advancing theoretical 

understanding of resilience pathways. 

METHODOLOGY 

Study Area 

The Yangtze River Delta (YRD) urban agglomeration comprises 41 prefecture-level cities across Jiangsu, 

Zhejiang, Anhui provinces and the municipality of Shanghai [25], [26]. It is one of China’s most densely 

populated and economically dynamic regions, yet also highly exposed to pluvial and fluvial flood risks due to 

its low-lying topography, monsoon climate, and intensive urbanization [27], [28]. The region’s diverse urban 

sizes, infrastructure levels, and socioeconomic capacities make it a suitable testbed for evaluating an indicator-

based, yearbook-data-only flood resilience framework. 

Indicator System and ESA Framework 

Following the Exposure-Sensitivity-Adaptability (ESA) framework widely adopted in resilience assessments, 

we operationalized flood resilience through nine secondary indicators, all directly obtainable from national or 

provincial statistical yearbooks [7], [29]. Exposure (E) refers to the degree to which urban assets and 

populations are subject to potential flooding. Sensitivity (S) refers to intrinsic characteristics influencing 

damage severity when exposed. Adaptability (A) refers to the ability to cope with, adapt to, and recover from 

flood events. The ESA framework and the description for each indicator are shown in Table 1. 

Table 1 the Esa Framework And Indicator Description 

Dimension Indicator Indicator Description 

Exposure Built-up area Physical exposure range 

Built-up area population density Potentially affected population 

GDP density Economic value of exposure 

Sensitivity Built-up area green coverage rate Capacity for flood mitigation and stormwater absorption 

Annual average rainfall Natural risk context for flooding 

Built-up area drainage pipeline 

density 

Urban drainage capacity 

Adaptability Built-up area road density Emergency access and material transportation capacity 

Per capita fiscal revenue Post-disaster recovery and investment capacity 

Hospital beds per 10,000 people Post-disaster public health protection capacity 
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The selection of indicators follows the ESA framework and takes into account universality and replicability, 

and has the following characteristics: all indicators are (a) annually updated, (b) standardized in definition, and 

(c) applicable to Chinese cities because data of these indicators can be obtained through official statistical 

yearbooks, while other countries and regions can also use it after adjustments if similar statistical systems 

exist. 

While some indicators fit multiple resilience categories, road density is placed under adaptability, not 

exposure. The reason is that, beyond just indicating built-up area, a dense road network crucially enhances 

evacuation and emergency access during floods, directly boosting a city's adaptive capacity. This view aligns 

with recent work on infrastructure's dual role in both creating exposure and enabling response [17]. Similarly, 

drainage pipeline density was grouped under adaptability as a proxy for drainage capacity [30]. 

Data Sources and Collection 

In this study, all indicator data for the 41 cities in the Yangtze River Delta are from the 2023 edition and are 

sourced from the latest national and provincial statistical yearbooks. Specifically, data for four indicators, 

namely, built-up area, built-up area green coverage rate, built-up area drainage pipeline density, and built-up 

area road density, for Shanghai and 11 cities in Zhejiang Province, are from the 2023 China Urban 

Construction Statistical Yearbook published by China's Ministry of Housing and Urban-Rural Development. 

The remaining data are from the 2024 editions of the provincial statistical yearbooks for Jiangsu, Zhejiang, 

Anhui, and Shanghai. All data are detailed in Table A1 in Appendix A. 

Normalization 

To render indicators dimensionless and comparable, the min–max normalization method was applied: 

If the indicator is positive, the normalization formula is: 

 (1) 

If the indicator is negative, the normalization formula is: 

 (2) 

where 𝑋𝑖𝑗 is the raw value of city i on indicator j. 

Weighting via Entropy Method 

Following common practice in objective index construction, entropy weights were computed as [31], [32]: 

1. Compute proportion: 

 (3) 

2. Calculate entropy: 

 (4) 
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3. Determine divergence: 

 (5) 

4. Normalize weights: 

 (6) 

where n is the number of cities and m is the number of indicators. 

Entropy weighting ensures that indicators with greater inter-city variation receive higher weights, reducing 

subjective bias. 

Index Aggregation 

Sub-indices for Exposure (E), Sensitivity (S), and Adaptability (A) were calculated as the weighted sum of 

their respective normalized indicators. The composite Flood Resilience Index (FRI) was then computed as: 

 (7) 

This formulation reflects the conceptual logic that resilience increases with adaptability and decreases with 

exposure and sensitivity. 

Mechanism Analysis 

To explore how urban size, infrastructure, and socioeconomic capacity affect flood resilience, the following 

methods were used for variable construction, analysis, and robustness testing. 

1. Variable Construction: 

The variables were constructed to capture urban scale, infrastructure level, and socioeconomic capacity, where 

urban scale was measured by population density and GDP density, infrastructure level was represented by 

drainage pipeline density and road density, and socioeconomic capacity was reflected in per capita fiscal 

revenue and hospital beds per ten thousand persons. 

2. Statistical Models: 

The statistical analysis first applied Pearson correlation to examine the bivariate relationships among the 

variables, followed by multiple linear regression in which the FRI served as the dependent variable and the 

predictors were organized according to the hypothesized mechanisms, and finally mediation models were used 

to investigate whether socioeconomic capacity mediated the influence of urban scale on resilience [33], [34]. 

3. Robustness Checks: 

The robustness of the results was examined through Variance Inflation Factor tests to assess multicollinearity 

and sensitivity analysis using equal-weight aggregation, and all analyses were conducted in Python version 

3.11 with the pandas, numpy, and statsmodels libraries [35], [36]. 
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RESULTS 

Descriptive statistics of indicators 

Table 2 summarizes descriptive statistics for the 9 indicators across the 41 YRD cities (means, standard 

deviations, minimum and maximum). These descriptive statistics indicate substantial cross-city heterogeneity, 

particularly in economic (GDP density) and fiscal variables, which motivates the use of an objective weighting 

scheme (entropy) to reflect informative variation among indicators.  

Table 2 Key Statistics Of 9 Indicators For 41 Cities In Yrd 

Indicator Unit Mean Standard 

Deviations 

Minimum Maximum 

Built-up Area km² 289.23 265.12 50.03 1242.01 

Built-up Area Population Density people/km² 7,261.91 4,202.62 765.00 18,890.21 

GDP Density 10,000 RMB/ km² 250,595.75 89,608.14 125,121.88 507,257.38 

Built-up Area Green Coverage Rate % 44.74 2.21 37.83 49.95 

Annual Average Rainfall mm 1,222.73 231.56 768.10 1,671.60 

Built-up Area Drainage Pipeline Density km/km² 12.16 5.69 4.49 25.40 

Built-up Area Road Density km/km² 7.84 1.60 4.16 12.09 

Per Capita Fiscal Revenue RMB/ person 26,456.62 27,399.73 5,333.49 110,122.01 

Hospital Beds per 10,000 People Beds/ 10,000 people 86.06 39.06 33.40 165.65 

Entropy weights and normalized indices 

Using the min–max normalization described in Section III and entropy weighting (Shannon information 

entropy procedure), the final indicator weights (rounded) are as shown in table 3 [31], [32]. 

Table 3 Indicator Weight Of The Esa Framework 

Dimension Wight Indicator Wight 

Exposure 11.59% Built-up area 3.02% 

Built-up area population density 4.33% 

GDP density 4.24% 

Sensitivity 28.14% Built-up area green coverage rate 3.61% 

Annual average rainfall 8.59% 

Built-up area drainage pipeline density 15.94% 

Adaptability 60.27% Built-up area road density 6.69% 

Per capita fiscal revenue 37.15% 

Hospital Beds per 10,000 People 16.43% 

Per these weights, per-capita fiscal revenue and hospital bed availability carry the largest weights, indicating 

they exhibit relatively large inter-city variation and thus contribute strongly to the composite indices under the 

entropy scheme. 

After computing weighted sub-indices for Exposure (E), Sensitivity (S) and Adaptability (A), summary 

statistics for the three sub-indices and the composite FRI (FRI = A / (E + S)) are as shown in table 4. 

Table 4 Summary Statistics For The Three Sub-Indices And The Composite Fri 

Dimension Mean Standard Deviations Minimum Maximum 

Exposure (E) 0.6937 0.1661 0.2459 0.9741 

Sensitivity (S) 0.4326 0.1361 0.1720 0.7936 

Adaptability (A) 0.2843 0.1675 0.0273 0.7115 

Flood Resilience Index (FRI) 0.2585 0.1617 0.0217 0.6831 
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These values indicate that, on average across the YRD sample, Exposure is relatively high compared with 

Adaptability, which leads to moderate-to-low FRI values for many cities. Exposure (E), Sensitivity (S), 

Adaptability (A) and FRI of the 41 cities in YRD are shown in Fig. 1. Detailed data on exposure (E), 

sensitivity (S), adaptability (A), and flood resilience index (FRI) for the 41 cities in YRD are shown in Table 

A2 in Appendix A. 

  

Fig. 1 Spatial distribution of Exposure (E), Sensitivity (S), Adaptability (A), and Flood Resilience Index (FRI) 

across 41 cities in the Yangtze River Delta (2023) 

 Fig. 1 reveals sharp regional disparities in flood resilience. Ningbo achieves the highest FRI (0.6831) among 

all cities, with Jiaxing (0.6544) and Lishui (0.5927) also showing strong resilience; these coastal Zhejiang 

cities share adaptability scores above 0.65. In northern Jiangsu, Suqian records the lowest resilience 

(FRI=0.0217), accompanied by Yancheng (0.0447), where adaptability falls below 0.05. Shanghai maintains 

moderate resilience (0.2727) through controlled sensitivity (0.4587) despite high exposure (0.4299). Huainan 

exemplifies compounded risk in Anhui, with extreme exposure (0.9415) and sensitivity (0.4543) driving 

minimal resilience (0.1660). Wuxi emerges as a critical case with peak sensitivity (0.7308) and bottom-quartile 

adaptability (0.1772), resulting in severely low FRI (0.1389), directly demonstrating drainage infrastructure's 

negative correlation from regression analysis. 
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Ranking results (top and bottom cities by FRI) 

Table 5 lists the five highest and five lowest cities by computed FRI. 

Table 5 The Top Five Cities And Bottom Five Cities In Fri Ranking 

Ranking City FRI 

Top 5 Ningbo 0.6831 

Jiaxing 0.6544 

Lishui 0.5927 

Huzhou 0.5414 

Hangzhou 0.5160 

Bottom 5 Suqian 0.0217 

Yancheng 0.0447 

Lianyungang 0.0709 

Xuzhou 0.0744 

Yangzhou 0.0833 

The top-ranked cities are mainly those with higher adaptability scores (notably stronger fiscal capacity and 

health resources) relative to their exposure and sensitivity, whereas the lowest-ranked cities are characterized 

by relatively high exposure or low adaptability in the yearbook indicators. 

Bivariate relationships (Pearson correlations) 

Pearson correlation coefficients between the raw city characteristics and the computed FRI are as shown in 

table 6. The Pearson correlation coefficient (r) measures the strength and direction of a linear association 

between two continuous variables [37]. It yields values between −1 and +1, where magnitudes closer to 1 

denote stronger linear relationships, while values near zero indicate negligible linearity. The sign (+/−) reflects 

the directionality of the association (positive/negative). Statistical significance was evaluated using p-values, 

with p<0.05 indicating that the observed correlation is unlikely attributable to random sampling variability 

[38]. In this study, Pearson correlations were computed to quantify pairwise relationships between urban 

characteristics and the FRI. For instance, per-capita fiscal revenue exhibited a very strong positive correlation 

with FRI (r=0.8785, p<0.001), whereas population density showed no significant linear association 

(r=−0.0821, p=0.6100). 

Table 6 Pearson Correlation Coefficients Between The Raw City Characteristics And The Computed Fri 

Indicator r p Iinear Association 

Built-up Area Population Density −0.0821 =0.6100 not significant 

GDP Density 0.6227 < 0.0010 strong positive 

Built-up Area Drainage Pipeline Density 0.0689 = 0.6684 not significant 

Built-up Area Road Density 0.3078 = 0.0502 marginally significant 

Per Capita Fiscal Revenue 0.8785 < 0.0010 very strong positive 

Hospital Beds per 10,000 People 0.1864 = 0.2432 not significant 

These correlations highlight that fiscal capacity and GDP density display the strongest positive associations 

with the composite resilience metric in the YRD sample, road density shows a marginally significant 

correlation, while population density, drainage density and hospital beds show no significant simple 

correlation with FRI.  

Multiple regression analysis 

While the Pearson correlation results (Section D) provide an initial view of the strength and direction of 

bivariate relationships between individual city characteristics and the FRI, such pairwise analyses do not 

account for potential interdependencies among predictors. For instance, GDP density, per-capita fiscal 
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revenue, and infrastructure measures may be correlated with each other, meaning that simple correlations 

cannot isolate the net contribution of each factor. 

To examine the joint effects of urban scale, infrastructure, and socioeconomic capacity on FRI while 

controlling for these interdependencies, we employed a multivariate Ordinary Least Squares (OLS) regression 

model. The model specification is: 

 

where 𝐹𝑅𝐼𝑖 denotes the FRI of city 𝑖, 𝛽0 is the intercept, 𝛽𝑘 are the regression coefficients for the predictors, 

and 𝜀𝑖 is the error term. 

In this model, urban scale is represented by built-up area population density (𝑃𝑜𝑝𝐷𝑒𝑛𝑠) and GDP density 

(𝐺𝐷𝑃𝐷𝑒𝑛𝑠); infrastructure level by built-up area drainage pipeline density (𝐷𝑟𝑎𝑖𝑛𝐷𝑒𝑛𝑠) and built-up area 

road density (𝑅𝑜𝑎𝑑𝐷𝑒𝑛𝑠); and socioeconomic capacity by per-capita fiscal revenue (𝐹𝑖𝑠𝑐𝑎𝑙𝑃𝑒𝑟𝐶𝑎𝑝) and 

hospital beds per 10,000 people (𝐵𝑒𝑑𝑠𝑃𝑒𝑟10𝑘). 

All variables were entered in their original yearbook-reported units to retain comparability with official 

statistics. Given the large raw scales of GDP density and fiscal revenue, coefficients for these predictors are 

expected to be numerically small when expressed per-unit; substantive interpretation therefore focuses on 

meaningful increments (e.g., per 10,000-unit increase in GDP density, or per 10,000 RMB increase in per-

capita fiscal revenue) [39]. 

Statistical significance of coefficients was evaluated using two-tailed p-values, with p < 0.05 considered 

statistically significant [40]. This criterion tests whether each coefficient differs from zero in either a positive 

or negative direction, given the observed data and model specification. Main results (rounded coefficients and 

two-tailed p-values) are presented in Table 7. 

Table 7 Linear Relationships Between Fri And Covariates 

Indicator Coefficient p Linear Relationships 

Constant =−0.1525 p < 0.001 — 

Built-up Area Population Density ≈ 0.0000 =0.1385 — 

GDP Density ≈ 0.0000 =0.0015 positive and statistically significant 

Built-up Area Drainage Pipeline Density = −0.0039 =0.0006 negative and statistically significant 

Built-up Area Road Density = 0.0145 < 0.001 positive and significant 

Per Capita Fiscal Revenue ≈ 0.0000 < 0.001 positive and highly significant 

Hospital Beds per 10,000 People = 0.0015 = 0.0539 marginally significant 

The model explains a very large share of the variance in FRI (R² = 0.9794), reflecting the strong predictive 

power of the selected yearbook indicators (particularly fiscal capacity and GDP density). Coefficients 

presented in scientific notation (e.g., 0.0000) indicate small per-unit effects given the raw scales of GDP 

density and fiscal variables; substantive interpretation should therefore consider realistic unit changes (for 

example, a 10,000-unit increase in GDP density or 10,000 RMB increase in per-capita fiscal revenue).  

Two key findings are evident. First, per-capita fiscal revenue is the most influential positive predictor of 

resilience, consistent with the entropy weights and bivariate correlations. Second, drainage pipeline density 

shows a statistically significant negative coefficient in the multivariate model, which at first glance appears 

counterintuitive. This negative coefficient may reflect a contextual issue: cities with higher observed drainage 

density in yearbook data may systematically be those with higher exposure or with historical investments 

responding to chronic flooding (reverse causality), or the raw drainage density variable may be capturing 

legacy infrastructural form rather than operational drainage performance. The significant negative coefficient 

for drainage density warrants cautious interpretation, as it may reflect contextual factors (e.g., reverse causality 
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or data limitations) rather than a causal detrimental effect of drainage infrastructure. Further investigation of 

this anomaly is presented in Section V. 

Mediation analysis 

To explore whether per-capita fiscal revenue mediates the link between population density and FRI, we 

conducted a mediation analysis following Baron & Kenny’s (1986) framework [34]. All models controlled for 

GDP density, drainage density, road density, and hospital beds. 

The mediator model (fiscal per capita regressed on predictors) yields a negative association between 

population density and fiscal per capita (coefficient a = −2.3622, p < 0.01), suggesting fiscal resource dilution 

in dense urban areas [41]. The outcome model (FRI regressed on predictors including fiscal per capita) yields a 

positive coefficient for fiscal per capita (b ≈ 0.000005, p < 0.001). Direct and indirect effects indicate the total 

effect of density on FRI was non-significant (c = −0.0018, p = 0.138). After including the mediator, the direct 

effect weakened (c' = −0.0009, p = 0.320), while the indirect effect was marginally significant (ab = −0.0005, 

Sobel z = −1.80, p = 0.072; 95% CI: −0.0031 to −0.0001 units of FRI via bootstrap resampling) [42]. This 

suggests partial mediation: higher-density cities show reduced per capita fiscal capacity, which in turn 

constrains flood resilience. Although statistically borderline (p ≈ 0.07), the effect size (28.6% of total effect) 

and consistency with fiscal stress theories warrant attention [19]. We recommend future studies with larger 

samples to confirm this pathway. 

Multicollinearity and robustness checks 

Multicollinearity diagnostics were conducted using Variance Inflation Factors (VIFs) to assess potential 

correlations among predictors. All VIF values fell below 3 (population density: 2.981, GDP density: 2.200, 

drainage pipeline density: 2.110, road density: 1.219, per-capita fiscal revenue: 1.923, hospital beds per 10,000 

people: 2.377), significantly under common concern thresholds of 5 or 10. This indicates that multicollinearity 

is unlikely to unduly bias coefficient estimates or inflate standard errors [43]. 

Robustness checks included two complementary approaches. One is the sensitivity to weighting methodology: 

The composite FRI was recalculated using an equal-weight aggregation scheme for ESA subindices (replacing 

entropy weights). The resulting FRI correlated strongly with the original entropy-weighted index (Pearson r = 

0.8882, p < 0.001), confirming that spatial rankings and inference are robust to alternative weighting 

assumptions [35]. The second is model stability assessment via cross-validation: A k-fold cross-validation (k = 

5) showed consistent R² values (mean = 0.978, SD = 0.003), indicating highly stable predictive performance 

(SD < 0.5% of mean R²) [44]. 

Brief summary of key empirical findings 

The analysis yields four principal insights regarding flood resilience drivers in the YRD urban agglomeration: 

1. Dominance of fiscal and economic capacity 

Per-capita fiscal revenue consistently emerged as the strongest predictor of flood resilience, dominating both 

entropy weighting (37.15% weight) and regression results. This aligns with global evidence that fiscal 

resources enable investments in flood prevention, emergency response, and rapid recovery [19]. GDP density 

also showed a robust positive association (OLS β > 0, p < 0.001), suggesting economic agglomeration 

enhances infrastructure investment efficiency—though this may concurrently increase absolute exposure risk 

[16].   

2. Contrasting infrastructure roles 

Road density positively contributed to resilience (β = 0.0145, p < 0.001), supporting its role in emergency 

access and logistics. Conversely, drainage pipeline density exhibited a counterintuitive negative coefficient (β 

= -0.0039, p = 0.0006), potentially reflecting the "safe development paradox" where higher infrastructure 

density signals pre-existing high flood risk rather than functional performance [20]. This anomaly warrants 

contextual investigation (Section V). 
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3. Complex role of population density 

No direct positive effect was found in bivariate or multivariate analyses. Mediation analysis revealed a 

marginal indirect pathway: higher density → lower per-capita fiscal revenue → reduced resilience (ab = -

0.0005, p = 0.072). This echoes findings that population pressure can dilute fiscal resources in developing 

cities, constraining resilience investments [24]. 

4. Robustness across methodologies 

High correlation between entropy-weighted and equal-weight FRI (r = 0.8882, p < 0.001) confirms that spatial 

resilience patterns are insensitive to weighting schemes, strengthening validity for cross-city comparisons [35]. 

Collectively, results prioritize enhancing fiscal capacity and economic agglomeration while re-evaluating 

drainage infrastructure investments. Future resilience planning should integrate fiscal equity considerations to 

mitigate density-driven resource dilution. 

DISCUSSION 

The results of this study highlight pronounced spatial disparities in urban flood resilience across YRD, with 

adaptability-related factors—particularly per capita fiscal revenue—emerging as dominant drivers. This 

finding is consistent with prior empirical research indicating that local fiscal capacity significantly enhances a 

city’s ability to invest in flood prevention, emergency response, and recovery infrastructure [19], [45]. The 

high entropy weight assigned to fiscal revenue underscores its central role in shaping resilience outcomes, as 

cities with stronger financial resources can sustain long-term adaptation programs and rapidly mobilize post-

disaster recovery measures. 

GDP density also exhibits a strong positive association with the FRI, suggesting that economically 

concentrated urban areas benefit from agglomeration economies that can facilitate efficient infrastructure 

investment and service delivery. Similar patterns have been observed in other Chinese urban agglomerations, 

where higher economic productivity has been linked to improved disaster preparedness and adaptive 

governance structures [46], [47]. However, this relationship should be interpreted cautiously, as economic 

concentration can also increase absolute exposure, necessitating proportionally greater investment in resilience 

measures to offset potential losses. 

The positive effect of road density on resilience aligns with studies that emphasize the role of transportation 

networks in ensuring emergency accessibility and logistical continuity during and after flood events [48]. In 

contrast, the negative coefficient for drainage pipeline density in the multivariate model is counterintuitive and 

warrants further scrutiny. One plausible explanation is that higher drainage density may be a reactive measure, 

reflecting historical flood-prone conditions rather than proactive resilience planning—a phenomenon also 

noted in infrastructure–risk feedback studies [20], [49]. Additionally, pipeline length as reported in yearbooks 

may not accurately capture operational capacity, maintenance quality, or system redundancy, factors that more 

directly influence drainage effectiveness. 

The absence of a significant direct relationship between population density and FRI echoes mixed findings in 

the literature. While some research associates higher density with efficient infrastructure use and community-

level adaptability  [22], others find that in contexts with constrained fiscal resources, high density can 

exacerbate vulnerability due to overstressed public services [23]. The mediation analysis in this study suggests 

a marginal indirect pathway in which higher density is associated with reduced per capita fiscal capacity, 

which in turn constrains resilience. Although the mediation effect was only borderline significant, it highlights 

the importance of considering fiscal capacity as a mediating factor between urban form and resilience 

outcomes. 

One surprising finding was the negative link between drainage pipe density and resilience. Why would better 

infrastructure correlate with worse outcomes? First, our data only captured pipe length, not its age, condition, 

or capacity. Cities with high-density networks may have old, poorly maintained cores where the system is 
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overwhelmed. Second, these pipes are often in already-vulnerable, high-exposure areas, so density and risk go 

hand-in-hand. This highlights a key limitation—resilience assessments need better data on infrastructure 

quality, not just quantity. 

From a methodological perspective, the high correlation between entropy-weighted and equal-weighted indices 

indicates that the observed spatial patterns are robust to weighting assumptions. This robustness strengthens 

the validity of the findings and supports the applicability of a strictly yearbook-derived indicator framework 

for rapid, cross-city resilience assessment. The approach adopted here offers a cost-effective, replicable 

alternative for contexts where remote sensing or hydrodynamic modelling is impractical, echoing 

recommendations by Cutter (2016) and Yang et al. (2024) for scalable resilience measurement frameworks [7], 

[13]. 

Several limitations warrant discussion. First, while the ESA-based indicator framework captures structural and 

socioeconomic determinants of resilience, it does not incorporate dynamic operational factors such as real-time 

flood forecasting, community preparedness, or governance responsiveness, which are increasingly recognized 

as critical resilience dimensions [51]. Second, the drainage density anomaly underscores the need for 

integrating quality- and performance-oriented infrastructure metrics, potentially through targeted field surveys 

or high-resolution remote sensing validation. Third, the study focuses on a single year of cross-sectional data; 

incorporating temporal analysis could reveal trajectories of resilience improvement or decline and help 

disentangle cause–effect relationships. 

In policy terms, the findings suggest that enhancing fiscal capacity—either through local economic 

development, fiscal transfers, or targeted investment programs—may yield the greatest gains in urban flood 

resilience across the YRD. Infrastructure planning should balance investments in transport connectivity with 

performance-oriented upgrades in drainage systems, ensuring that increased capacity translates into 

measurable flood mitigation benefits. Integrating the yearbook-based framework with supplementary 

geospatial data could improve diagnostic precision and policy relevance, offering a pathway for hybrid 

resilience assessment models that remain accessible to planners in resource-constrained contexts. 

CONCLUSIONS 

This study establishes a standardized urban flood resilience assessment framework using exclusively 

yearbook-derived data across 41 Yangtze River Delta cities. The Exposure-Sensitivity-Adaptability model, 

weighted by the entropy method, reveals fiscal capacity as the dominant resilience driver. Per capita fiscal 

revenue contributes 37.15%= to adaptability, enabling proactive floodproofing investments and rapid recovery. 

Economic agglomeration, GDP density, enhances resilience but concurrently elevates exposure risk. 

Counterintuitively, drainage infrastructure density exhibits significant negative effects, signaling the safe 

development paradox. Population density indirectly erodes resilience by diluting fiscal resources per capita. 

Road density positively supports emergency response capabilities. The framework demonstrates high 

transferability for cities lacking specialized hydrological data. 

This study indicates cities should prioritize enhancing fiscal capacity through local economic development, 

strategic fiscal transfers, or targeted resilience investment programs. Infrastructure planning requires re-

evaluating drainage investments, focusing on system performance, redundancy, and maintenance quality rather 

than mere pipe density. Policies should integrate fiscal equity mechanisms to mitigate resource dilution in 

high-density areas. Complement structural measures with non-structural strategies, including real-time flood 

forecasting and community preparedness programs. In addition, strategically located green infrastructure 

should be actively promoted, and cross-departmental emergency coordination mechanisms should be 

strengthened. 

Future research should integrate dynamic operational indicators such as real-time forecasting accuracy, 

governance responsiveness speed, and community engagement levels. Validate drainage infrastructure metrics 

through field surveys or high-resolution remote sensing to distinguish nominal density from functional 

capacity. Extend temporal analysis to track resilience trajectories using multi-year yearbook data, enabling 

causal inference. Test the ESA framework's applicability in other global urban agglomerations with similar 

http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS) 

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue VIII August 2025 

Page 6689 www.rsisinternational.org 

 

 

statistical systems. Investigate institutional variables, e.g., emergency coordination efficiency and regulatory 

flexibility. Combine with policy evaluations or expert surveys to capture the key dimension of institutional 

strength. Develop hybrid assessment models integrating yearbook data with verified crowdsourced flood 

reports. Quantify mediation pathways, particularly fiscal dilution effects, using larger longitudinal samples. 

Explore thresholds where economic agglomeration shifts from a resilience enhancer to an exposure amplifier.  
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APPENDIX A 

Table A1 Indicator Data For 41 Cities In Yrd 

City Built-up 

area (km2) 

Built-up area 
population 

density 

(people/km2) 

GDP density 
(10,000 

RMB/km2) 

Built-up 
area green 

coverage 

rate (%) 

Annual 
average 

rainfall 

(mm) 

Built-up area 
drainage 

pipeline 

density 

(km/km2) 

Built-up 
area road 

density 

(km/km2) 

Per capita 
fiscal 

revenue 

(RMB 

/people) 

Hospital 
beds per 

10,000 

people 

Shanghai 1242.01 3923.00 380179.36 37.83 1414.20 18.21 4.80 33417.76 66 

Hangzhou 859.14 8425.06 219511.96 42.81 1171.80 12.18 8.03 67923.75 80 

Ningbo 406.51 7775.57 404737.89 43.43 1432.80 18.95 8.03 107061.81 62 

Wenzhou 290.94 6141.63 300096.24 45.33 1455.30 11.62 8.49 57294.84 51 

Jiaxing 170.79 5862.43 413490.25 42.81 1140.40 11.96 7.46 110122.01 38 

Huzhou 142.49 7952.02 281774.16 42.17 1326.00 8.34 8.06 61478.23 96 

Shaoxing 267.37 8372.26 291393.95 45.85 1224.10 14.51 8.77 41393.98 88 

Jinhua 118.50 18890.21 507257.38 43.51 1340.60 17.24 8.86 38767.65 53 

Quzhou 88.34 9638.48 240547.88 43.02 1671.60 25.08 8.35 37729.18 76 

Zhoushan 71.73 9906.19 292903.95 45.32 1102.60 16.44 8.21 74575.24 57 

Taizhou 

(Zhejiang) 
161.73 10162.38 385890.06 45.32 1251.80 13.09 8.10 50618.11 54 

Lishui 50.03 8561.02 392564.46 44.08 1159.30 17.65 6.17 73010.54 166 

Hefei 515.00 5096.00 246092.82 46.04 994.70 7.51 6.80 11028.60 93 

Huaibei 90.00 3405.00 151724.44 47.00 937.20 5.59 8.22 8214.95 101 

Bozhou 77.00 4833.00 287766.23 44.36 933.80 10.39 8.49 7106.66 147 

Suzhou 

(Anhui) 

92.00 3803.00 249071.74 45.44 936.20 6.40 9.66 6391.35 155 

Bengbu 155.00 2722.00 136511.61 44.81 866.20 4.49 8.74 9237.87 134 

Fuyang 156.00 3420.00 213057.05 46.16 944.00 5.78 8.12 5333.49 165 

Huainan 128.00 2776.00 125121.88 48.43 768.10 5.85 8.80 6836.70 110 

Chuzhou 121.00 2542.00 312562.81 48.28 904.70 9.93 8.74 11519.54 108 

Liuan 83.00 3654.00 254627.71 46.30 1215.60 6.70 8.48 7775.49 156 

Maanshan 106.00 4688.00 244391.51 47.23 1097.80 6.51 9.46 12918.34 99 

Wuhu 266.00 1809.00 178235.71 46.31 1221.90 5.70 8.15 14813.25 98 

Xuancheng 77.00 2749.00 253494.81 46.49 1364.20 7.31 8.09 12522.84 113 

Tongling 91.00 2041.00 135146.15 44.42 1424.50 10.05 8.66 12822.01 111 

Chizhou 51.00 1233.00 218074.51 47.62 1485.80 6.86 9.35 11343.45 116 

Anqing 169.00 2501.00 170313.02 43.91 1510.60 6.46 8.14 8177.00 121 

Huangshan 71.00 765.00 147366.20 49.95 1609.20 6.11 9.39 10635.51 132 

Nanjing 901.00 9239.40 193356.27 45.00 1276.20 12.10 12.09 19459.92 87 

Wuxi 584.00 10691.61 264660.79 44.50 1266.00 23.80 7.07 19145.41 60 

Xuzhou 509.00 11985.85 174861.30 43.20 954.60 12.50 5.32 8948.99 56 

Changzhou 315.00 13396.51 321154.29 44.80 1217.80 25.40 9.19 16121.24 68 

Suzhou 776.00 13773.45 317698.07 44.40 1406.80 19.50 9.72 22986.19 33 

Nantong 447.00 12579.64 264278.97 44.50 1238.90 12.70 7.93 12095.82 52 

Lianyungang 324.00 9074.38 134679.32 43.00 1087.10 15.40 6.27 8707.87 54 

Huaian 336.00 9143.15 149257.74 44.60 1226.10 15.70 6.72 10305.98 66 

Yancheng 416.00 10655.05 177977.64 39.20 898.10 6.30 4.16 10890.69 39 

Yangzhou 312.00 10697.12 237925.00 44.00 1549.30 18.70 6.20 10414.08 50 

Zhenjiang 242.00 10757.85 217523.55 43.50 1406.00 10.90 6.48 12318.89 39 

Taizhou 281.00 11239.50 239560.85 44.50 1631.40 14.50 5.43 13922.05 41 

Suqian 298.00 10857.38 147586.24 45.00 1068.70 14.20 4.25 9333.95 35 
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Table A2 Exposure (E), Sensitivity (S), Adaptability (A), And Flood Resilience Index (Fri) Across 41 Cities In 

The Yangtze River Delta (2023) 

City Exposure (E) Sensitivity (S) Adaptability (A) Flood Resilience Index (FRI) 

Shanghai 0.4299 0.4587 0.2423 0.2727 

Hangzhou 0.5748 0.4299 0.5184 0.5160 

Ningbo 0.5099 0.5318 0.7115 0.6831 

Wenzhou 0.6690 0.3457 0.4026 0.3967 

Jiaxing 0.5925 0.4345 0.6721 0.6544 

Huzhou 0.6818 0.2670 0.5136 0.5414 

Shaoxing 0.6366 0.5074 0.3893 0.3403 

Jinhua 0.2459 0.5174 0.3037 0.3978 

Quzhou 0.6984 0.6128 0.3370 0.2570 

Zhoushan 0.6464 0.5952 0.5127 0.4129 

Taizhou (Zhejiang) 0.5324 0.4539 0.3640 0.3691 

Lishui 0.5834 0.5958 0.6989 0.5927 

Hefei 0.6932 0.3974 0.1933 0.1772 

Huaibei 0.9114 0.3749 0.2136 0.1661 

Bozhou 0.7546 0.4782 0.3059 0.2481 

Suzhou (Anhui) 0.8096 0.3808 0.3339 0.2805 

Bengbu 0.9258 0.3460 0.2952 0.2321 

Fuyang 0.8379 0.3688 0.3276 0.2715 

Huainan 0.9415 0.4543 0.2317 0.1660 

Chuzhou 0.7684 0.5169 0.2541 0.1977 

Liuan 0.8093 0.3035 0.3282 0.2949 

Maanshan 0.7928 0.3480 0.2537 0.2224 

Wuhu 0.8804 0.2745 0.2443 0.2116 

Xuancheng 0.8303 0.2719 0.2615 0.2373 

Tongling 0.9552 0.3040 0.2664 0.2116 

Chizhou 0.9011 0.2307 0.2793 0.2468 

Anqing 0.8949 0.1720 0.2537 0.2378 

Huangshan 0.9741 0.1933 0.3083 0.2641 

Nanjing 0.5739 0.4156 0.3048 0.3080 

Wuxi 0.5451 0.7308 0.1772 0.1389 

Xuzhou 0.6209 0.5161 0.0845 0.0744 

Changzhou 0.4942 0.7936 0.2058 0.1598 

Suzhou 0.3889 0.5657 0.1816 0.1903 

Nantong 0.5366 0.4392 0.1301 0.1333 

Lianyungang 0.7598 0.5478 0.0928 0.0709 

Huaian 0.7418 0.5259 0.1318 0.1040 

Yancheng 0.6657 0.3249 0.0443 0.0447 

Yangzhou 0.6301 0.4916 0.0934 0.0833 

Zhenjiang 0.6638 0.3234 0.0847 0.0858 

Taizhou 0.6242 0.3554 0.0830 0.0848 

Suqian 0.7164 0.5426 0.0273 0.0217 
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