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ABSTRACT 

This study determined the minimum sample size that ensures the sampling distribution is normal. The Central 

Limit Theorem states that as the sample size gets larger, the sampling distribution of the mean becomes normal, 

regardless of the population distribution. This study used a Monte Carlo simulation. The data came from a 

population of 10,000, which had a skewed distribution. For each sample size, the software selected data 200 

times. It then calculated the means for these selections. The Kolmogorov-Smirnov test checked if these sample 

means were normal. This process was repeated 10,000 times for each sample size. The results show that at 

sample size 200, about 99% are normal. The findings support that a sample size of 200 is enough for the sampling 

distribution of the mean to be normal. The study suggests that using a sample size of at least 200 satisfies the 

CLT. This helps researchers use statistical tests that need normality. The study also notes that future research 

may look at how other characteristics of the population affect the sampling distribution. 
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INTRODUCTION 

Sample size determination is a critical component of research design. An insufficient sample size may result in 

inaccurate conclusions and compromise the generalizability of findings (Andrade, 2020). Smaller samples 

increase the likelihood of Type I and Type II errors, thereby reducing the validity and reliability of statistical 

inferences (Süt, Ajredani, & Koçak, 2022). A properly determined sample size is necessary to ensure adequate 

representation of the population. Larger samples more closely reflect the population, improving the precision of 

statistical estimates. To ensure representativeness, the sampling distribution of the sample mean should be 

approximately normal at the given sample size. This condition supports the application of parametric statistical 

tests, which assume normality in the sampling distribution (Althubaiti, 2023). 

Researchers often apply Yamane's (1973) formula to determine sample size due to its simplicity and widespread 

use. However, constraints such as limited resources and respondent availability may necessitate smaller samples. 

Many researchers assess normality in the data rather than in the sampling distribution because it is more practical 

to test. Studies show that when the data follow a normal distribution, the sampling distribution of the mean also 

exhibits normality (Zhang & Wu, 2005). Nonetheless, non-normal data do not necessarily lead to non-normal 

sampling distributions, particularly as the sample size increases. The Central Limit Theorem (CLT) states that 

the distribution of sample means approximates normality as sample size increases, regardless of the population 

distribution (Le Cam, 1986). Therefore, larger sample sizes reduce concerns related to the normality assumption. 

A common rule of thumb holds that a sample size of at least 30 is sufficient for the CLT to apply. However, 

when the population distribution is heavily skewed or contains outliers, a much larger sample may be required 

for the sampling distribution to become approximately normal. The greater the deviation from normality in the 

population, the larger the sample size needed (Islam, 2018). A well-justified sample size is essential not only for 

maintaining statistical power but also for improving the precision and confidence of study results. Studies 

consistently highlight the role of adequate sample size across various statistical techniques. For quantitative 

research, larger sample sizes tend to yield more reliable and generalizable outcomes. In regression analysis, a 

minimum of N ≥ 8 is suggested for low variance and N ≥ 25 for high variance, although a single standard remains 
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unidentified (Jenkins & Quintana-Ascencio, 2020). In t-tests, balanced and increased sample sizes enhance 

statistical power (Kim & Park, 2019). Sample size also influences the power of normality tests, with variations 

depending on the test applied (Khatun, 2021). Larger samples improve accuracy in factor analysis and reduce 

classification errors, and they also stabilize outcomes in bibliometric studies (Osborne & Costello, 2019; van 

Smeden et al., 2019; Rogers et al, 2020). 

Furthermore, large samples are important in model development and in minimizing non-sampling errors (Etikan 

& Babatope, 2019). The optimal sample size for updating models varies with the scope of parameter changes 

and the number of predictors added (Archer et al., 2021). A well-calculated sample size aligns with research 

objectives, improves statistical efficiency, and increases the value of collected data (Lakens, 2022). Although 

many studies have addressed sample size requirements for specific analyses, no research has definitively 

established the minimum sample size at which the CLT applies across all data types. This study seeks to address 

that gap by identifying the smallest sample size needed for the sampling distribution of the mean to approximate 

normality across various data characteristics. 

METHOD 

This study applied a Monte Carlo simulation to identify the minimum sample size that the Central Limit Theorem 

considers as large enough for the sampling distribution of the sample mean to approximate a normal distribution. 

The data generation and analysis were conducted using R version 4.4.3. A synthetic population of size 10,000 

was generated from an exponential distribution that is heavily skewed, as shown in figure 1. This distribution 

was selected to test the robustness of the Central Limit Theorem under non-normal population conditions. 

Figure 1 Histogram of the heavily skewed distribution of the population 

 

For each selected sample size, the software randomly selected data from the population and computed their 

sample mean. This process was repeated 200 times to produce 200 sample means for each sample size. The 

sample sizes tested were 100, 200, 300, 400, 500, 600, 700, 800, 900, and 1000. The distribution of the 200 

sample means for each sample size was tested for normality using the Kolmogorov-Smirnov (K-S) test. A p-

value greater than 0.05 was interpreted as evidence that the sampling distribution did not significantly differ 

from a normal distribution. The Kolmogorov-Smirnov test was selected for its high accuracy in detecting 

deviations from normality with minimal risk of false results, making it suitable for Monte Carlo simulations 

where repeated sampling is conducted (Smirnov, 1948). 

This procedure was repeated 10,000 times to produce 10,000 normality results for each sample size. The 

proportion of times the Kolmogorov-Smirnov test failed to reject normality was computed for each sample size. 
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These proportions were converted into percentages for easier interpretation. This percentage represented the 

empirical probability that the sampling distribution of the sample mean was approximately normal at each 

sample size level. 

Upon observing that the percentage approached 99% around a sample size of 200, a more refined analysis was 

conducted. The procedure was repeated for sample sizes between 100 and 300, using increments of 10 (101, 

111, 121, ..., up to 299). This finer interval allowed for a more precise determination of the sample size where 

the sampling distribution of the sample mean first became sufficiently normal. 

Following this refined analysis, the resulting pattern of normality percentages was examined to determine the 

precise sample size at which the sampling distribution of the sample mean began to approximate normality 

reliably. The simulation procedure followed accepted guidelines for applying Monte Carlo methods in statistical 

research (Chalmers, 2017). 

RESULTS AND DISCUSSION 

Table 1 presents the percentage of normal sampling distributions derived from different sample sizes ranging 

from 100 to 1000, with 10,000 trials conducted for each sample size. At a sample size of 100, 95.46% of the 

trials resulted in a normally distributed sampling distribution. This percentage increased significantly to 98.98% 

at a sample size of 200. From sample size 400 onward, the percentages consistently exceeded 99.70%, 

culminating at 99.93% for a sample size of 1000. These findings support the Central Limit Theorem (CLT), 

which posits that larger sample sizes lead to sampling distributions that more closely approximate normality 

(Islam, 2018; Sullivan, 2021). The increase in normality between sample sizes 100 and 200 demonstrates the 

stabilization of the sampling distribution as sample size increases (Elmasry, 2020). The shift from 95.46% 

normality at sample size 100 to 98.98% normality at sample size 200 reflects that smaller sample sizes do not 

reliably produce normal distributions, while a sample size of 200 already shows a notable improvement in 

approximating normality (Brussolo, 2018; Samuels, 2019). 

The data in Table 1 confirms that the CLT becomes increasingly observable as sample size grows, particularly 

after sample size exceeds 200. While the normality rate at a sample size of 200 (98.98%) is already high, the 

remaining 1% can be attributed to the possibility of false positives from tests like the Kolmogorov-Smirnov (K-

S) test, which can occasionally indicate non-normality even with low probability (Sullivan, 2021). Given that 

the K-S test has a small chance of yielding false positives, the slight discrepancy between the normality rate at 

200 and 100% can be considered negligible. Therefore, a sample size of 200 is considered sufficient to achieve 

near-complete normality in the sampling distribution, with the remaining small risk being attributable to the 

limitations of the statistical test (Brussolo, 2018). This reinforces the conclusion that sample sizes of 200 or 

greater are appropriate for ensuring the sampling distribution closely approximates normality in most practical 

applications. 

Table 1 Percent of Normal Sampling Distribution for n = 100 to 1000 

Sample Size Frequency  Percentage 

100 9546 95.46 

200 9898 98.98 

300 9950 99.50 

400 9973 99.73 

500 9982 99.82 

600 9986 99.86 

700 9986 99.86 

800 9992 99.92 
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900 9989 99.89 

1000 9993 99.93 

Note. Total number of trials is 10000. 

 

Figure 2 visually depicts the data from Table 1, illustrating the percentage of normal sampling distributions for 

sample sizes ranging from 100 to 1000. The graph shows a steep increase in normality from sample size 100 to 

200, after which the normality rate stabilizes above 99%. The blue line indicates this upward trend, while the 

red line represents the 99% benchmark. The graph confirms that sample sizes beyond 200 yield a consistently 

normal distribution, with minimal improvements observed as sample size increases further. This observation is 

consistent with earlier studies, which have demonstrated that sample sizes near 200 yield stable results for 

approximating normality, and that beyond this point, the improvements in distribution normality become 

negligible (Turney, 2022; Samuels, 2019). The rapid increase in normality between sample sizes 100 and 200 

supports the notion that this range represents a crucial threshold where the CLT becomes strongly observable 

(Sullivan, 2021).  

Figure 2 Graphical Presentation of the Percent of Normal Sampling Distribution for n = 100 to 1000 

 

Table 2 provides a more detailed examination of the percentage of normal sampling distributions between sample 

sizes 101 and 299. This table reveals a steady increase in the percentage of normal distributions, from 95.75% 

at sample size 101 to 99.55% at sample size 299. The gradual and consistent rise in normality percentages 

suggests that even small increases in sample size improve the likelihood of achieving a normal sampling 

distribution (Hassad, 2016). Between sample sizes 201 and 299, the normality percentages consistently remained 

above 99%, with only marginal increases observed as the sample size increased. This smooth progression aligns 

with the theoretical predictions of the CLT, which suggests that the shape of the sampling distribution of the 

mean approaches normality as sample size increases (Sullivan, 2021; Samuels, 2019). These results support the 

understanding that sample sizes of 200 or greater yield robust approximations of normality, although larger sizes 

are preferable for higher accuracy (Samuels, 2019; Turney, 2022). 

Table 2 Percent of Normal Sampling Distribution for n = 100 to 1000 

Sample Size Frequency Percentage Sample Size Frequency Percentage 

101 9575 95.75 211 9906 99.06 

111 9690 96.90 221 9913 99.13 

121 9701 97.01 231 9911 99.11 
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Normality Percentage from 100 to 1000
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131 9762 97.62 241 9927 99.27 

141 9784 97.84 251 9941 99.41 

151 9827 98.27 261 9943 99.43 

161 9836 98.36 271 9941 99.41 

171 9879 98.79 281 9950 99.50 

181 9878 98.78 291 9953 99.53 

191 9869 98.69 299 9955 99.55 

201 9910 99.10 
 

 
 

Note. Total number of trials is 10000. 

 

Figure 3 provides a detailed visualization of the normality percentages between sample sizes 101 and 299, as 

presented in Table 2. The graph illustrates a smooth and gradual increase in normality from 95.75% at sample 

size 101 to 99.55% at sample size 299. This continuous rise further reinforces the understanding that the 

transition to normality is a progressive process, occurring steadily as sample size increases.  

Figure 3 Graphical Presentation of the Percent of Normal Sampling Distribution for n = 101 to 299 

 

The smoothness of the curve reflects the gradual nature of the improvement, which aligns with the expectations 

of the CLT (Hassad, 2016; Sullivan, 2021). The visual evidence in Figure 2 strengthens the empirical findings, 

highlighting that sample sizes approaching 300 are sufficient for achieving near-complete normality, with 

minimal increases beyond this point. This corroborates recent findings that suggest that while sample sizes above 

200 are generally sufficient, the reliability of normality improves with sample sizes closer to 300 (Brussolo, 

2018; Turney, 2022). 

CONCLUSION 

This study provides robust support for the Central Limit Theorem (CLT), showing that larger sample sizes lead 

to sampling distributions that increasingly approximate normality. Based on the CLT, as the sample size 

increases, the likelihood of non-normal distributions decreases. The normality of the sampling distribution is 

assured starting at a sample size of 200, as the small percent of non-normality result can be due to the possibility 

of false results from the Kolmogorov-Smirnov (K-S) test, which, even with low probabilities, can still yield 

incorrect results. Given this, researchers should consider using this sample size in ensuring normality of sampling 
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distribution. Future research may explore how specific characteristics of the population might influence the 

behavior of the sampling distribution. 
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