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ABSTRACT  

Traditional similarity distance measures (Jaccard, Hamming, Counting Function, Sorensen Dice) in SPL 

testing treat all features equally, ignoring the fundamental distinction between mandatory and optional features 

in feature models. This oversight leads to suboptimal test case prioritization and reduces fault detection 

efficiency. The primary objective is to demonstrate that traditional distance metrics, by treating all features 

equally, often fail to prioritize test cases that cover the most critical parts of an SPL, including those features 

that are present in all product variants. 

Keywords: Software Product Lines (SPLs), Similarity Distance Measures, Test Case Prioritization, Feature 
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INTRODUCTION  

The role of feature models in Software Product Line (SPL) engineering is both vital and far-reaching. They 

serve as the backbone of SPL practices, enabling teams to clearly understand and manage the full scope of a 

product line. A feature model works like a blueprint, mapping out what all the products in a family have in 

common and where they can differ. This enables systematic design, reuse, and customisation of software, 

ensuring that each product is built efficiently while still meeting specific needs. 

 

Fig. 1 Feature model of MobilePhone  

When testing a mobile phone software product line, should the mandatory 'Calls' feature be treated the same as 

the optional 'MP3' feature in similarity calculations? Current state-of-the-art approaches say yes. This research 

argues that this is fundamentally wrong. This research argues that similarity distance measures for SPL test 

case prioritization must incorporate feature model semantics, specifically distinguishing between mandatory 

and optional features, to achieve optimal fault detection and testing efficiency. 

Current State Analysis 

In Software Product Line (SPL) testing, similarity-based test case prioritization is commonly employed to 

make testing more efficient and effective. Standard measures like Jaccard, Hamming, Counting Function, and 
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Sorensen Dice are typically used for these similarity calculations. Several prioritization algorithms, such as the 

All-Yes-Config (AYC), Local Maximum Distance (LMD), Global Maximum Distance (GMD), Farthest-first 

Ordered Sequence (FOS), and Greed-aided Ordered Sequence (GOS), are favoured for their simplicity and 

ease of automation. Nonetheless, a closer look at the field uncovers core issues that weaken these methods and 

restrict their practical utility. 

Semantic Blindness: Features as Just Labels 

One main issue with current techniques is what can be called semantic blindness [5]. Most existing similarity 

measures treat the features of a product configuration simply as labels: each feature is valued equally when 

measuring similarity or differences between test cases, regardless of its significance or role [50]. For example, 

it doesn't matter if a feature is essential for the system's operation, mandatory or optional in this calculation 

[15]. Consequently, these measures lack awareness of the real-world importance and dependencies among 

features, which can cause test prioritizations to overlook critical, fault-prone areas of the software [30]. As 

recent studies point out, ignoring the nature and role of features not only hinders early detection of important 

bugs but also leads to wasting resources testing configurations with less impact first [62] [44]. 

The Equal Weight Assumption: Flattening Critical Functional Distinctions 

Underlying semantic blindness is the assumption of equal weight [5]. This assumption appears in all common 

distance metrics used for SPL test prioritisation, where each chosen feature adds a value of one to the overlap 

or difference calculation, whether it is a crucial component needed in every product or a non-essential addition 

[48]. Consider a mobile phone software product line where the 'Calls' feature is compulsory (present in every 

phone), while 'MP3 support' is optional. Current similarity measures treat differences in either feature as 

equally significant, failing to recognise that issues in 'Calls' might affect all customers, whereas flaws in 'MP3' 

impact only a subset [2]. The result is a systematic undervaluing of faults or coverage gaps in the most 

important functionality, threatening both the robustness and perceived quality of the final products [54]. This 

neglect for feature importance contrasts sharply with real-world product usage and performance expectations 

[8]. 

Missed Optimization Opportunities: Overlooking Test Prioritization for Mandatory features 

Missed optimization opportunities are directly caused by these constraints [18]. A primary objective of test 

prioritizing in SPLs is to optimize early failure detection, especially in the most important components [37]. 

Because similarity-based measurements do not consider whether features are required, they often suggest test 

regimens that prioritize specialized customization scenarios or optional features above core system capabilities 

[4]. In practice, this is counterproductive because the initial phases of testing should concentrate on features 

that are shared by all product configurations [33]. This will ensure that any critical flaws are found promptly 

and that tests covering less important or infrequent feature combinations do not divert effort [9]. 

Additionally, many other features rely on the proper functioning of required features, which frequently act as 

the architectural cornerstones of the entire product line [15]. Multiple product line derivatives may experience 

failures due to cascading defects in these characteristics [23]. Ignoring this fact, a similarity metric runs the 

danger of focusing resources on testing "decorative" elements without examining the underlying bedrock [31]. 

This could lead to catastrophic problems slipping through the cracks until later testing phases or, worse, 

production use [39]. 

The Case of Feature-Aware Similarity 

Argument 1: Mandatory Features Have Higher Impact 

In the landscape of Software Product Line (SPL) engineering, mandatory features are the anchors upon which 

every product variant is built [17]. Unlike optional or alternative features, these core components are included 

in all configurations, regardless of customization or market segment [6]. This universal presence means that 
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the correct functioning of mandatory features is non-negotiable; any failure or defect in such a feature will, by 

definition, propagate through every single product derived from the SPL [11]. 

Feature model semantics make this architectural reality abundantly clear [59]. By explicitly marking certain 

features as mandatory, the model signals to engineers and testers alike which aspects of the system form its 

foundation [2]. Consequently, prioritizing tests that exercise mandatory features is not simply good practice; it 

is essential to safeguarding the integrity and reliability of the entire product line [8]. Overlooking issues in 

these foundational parts risk widespread failures and costly post-release fixes, a scenario no organization wants 

to face [31] [37]. 

Argument 2: Current Measures Miss Critical Dependencies 

Yet, despite the recognized importance of mandatory features, existing similarity-based prioritization methods 

falter in capturing the nuanced dependencies encoded within feature models, particularly those involving 

cross-tree constraints [55]. These relationships, such as one feature requiring the presence of another (e.g., a 

"Camera" feature that requires "HighResolution") or explicitly excluding certain combinations, play a crucial 

role in defining valid and meaningful product variants [22]. 

Current distance measures, focused narrowly on syntactic overlap or difference, ignore these cross-cutting 

dependencies [49]. For example, when a test explores the "Camera" feature, the implications for 

"HighResolution" are profound; faults or omissions here may cascade as hidden errors throughout the system 

[26][7]. However, similarity calculations oblivious to these relationships may inadvertently push such critical 

tests further down the priority order, delaying their execution and increasing the risk of missing serious issues 

early in the process [19]. This gap in test prioritization leads to suboptimal outcomes, where resources may be 

squandered on less impactful scenarios while the integrity of foundational functionality goes unverified [38]. 

Semantic Weighting Improves Fault Detection 

Addressing these shortcomings calls for the integration of semantic information directly into similarity 

calculations [54]. Tests that cover mandatory features, or features deeply embedded in cross-tree dependencies, 

deserve greater emphasis in test prioritization algorithms [41]. Introducing a feature weighting scheme, where 

the significance of a feature (e.g., mandatory vs. optional) is encoded as a numerical factor, allows distance 

measures to reflect the true impact of exercising different parts of the product line [57]. 

A promising enhancement is to modify established metrics, such as the Jaccard distance, to include feature 

weights [53] [21]. Mathematically, this means scaling the calculation of similarity or difference not just by 

feature presence or absence, but by the importance assigned through the feature model structure [27] [64]. 

Theoretical analysis and case studies from recent literature indicate that semantic weighting can deliver 

tangible gains [3] [19]. Experiments demonstrate increased rates of early fault detection when tests are chosen 

based not only on diversity but also on the criticality of features involved [56]. Moreover, analyzing real-world 

feature model structures underscores how often fault-prone areas coincide with mandatory features or key 

dependency chains—areas that traditional, unweighted approaches are likely to under-explore until too late in 

the testing process [32]. 

Embracing feature-aware similarity thus aligns test prioritization strategies with the architectural realities 

encoded in SPL feature models [18]. By doing so, organizations can move beyond surface-level diversity and 

toward a smarter, more risk-driven approach to quality assurance, one that uncovers serious defects sooner and 

more consistently, and that ultimately results in stronger, more dependable software families [5] [37]. 

Addressing Counterarguments 

When proposing any substantial change to existing practices such as integrating feature model semantics and 

weighting into similarity-based test prioritization, scepticism and critical questions are expected. Here, we 

address three of the most frequently raised counterarguments, showing why the transition to feature-aware 

similarity is both justified and warranted for robust Software Product Line (SPL) engineering. 
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Counterargument 1: Additional Complexity Is Not Worth the Gain 

At first glance, it's reasonable to question whether introducing semantic awareness into similarity calculations 

is worth the added complexity [20] [58]. Detractors argue that developing, maintaining, and executing 

weighted similarity measures introduces new layers of technical intricacy, making test prioritization harder to 

implement, understand, or justify to stakeholders [24]. 

However, a closer inspection of modern SPL practices reveals that feature models inherently capture the 

semantic distinctions between features—mandatory, optional, alternative, and inter-dependent—by design 

[45]. Most SPL engineering tools and environments already manipulate and process rich feature model 

structures as part of product derivation, variant management, and automated configuration [58]. The semantic 

information required is not external to existing workflows; it is embedded within the artifacts teams are already 

using [20]. 

Implementing features in similarity metrics leverages this existing structural data [39]. Computationally, 

adding a weight column to feature representations or adjusting distance formulas to sum weighted features 

introduces only minor overhead in terms of storage and processing, especially when juxtaposed with the 

potential cost savings of catching critical faults early [52] [24]. Empirical research has shown that the shift 

from traditional to weighted similarity algorithms involves only incremental computational costs, far 

outweighed by the improvement in prioritization efficacy and early fault detection [12]. In practice, the 

"complexity" argument conflates conceptual change with actual resource demand; in reality, the additional 

logic fits naturally into most modern model-based test automation frameworks [13]. 

Counterargument 2: Current Approaches Work Well Enough 

At first glance, it's reasonable to question whether introducing semantic awareness into similarity calculations 

is worth the added complexity [20] [58]. Detractors argue that developing, maintaining, and executing 

weighted similarity measures introduces new layers of technical intricacy, making test prioritization harder to 

implement, understand, or justify to stakeholders [24]. 

However, a closer inspection of modern SPL practices reveals that feature models inherently capture the 

semantic distinctions between features—mandatory, optional, alternative, and inter-dependent—by design 

[45]. Most SPL engineering tools and environments already manipulate and process rich feature model 

structures as part of product derivation, variant management, and automated configuration [58]. The semantic 

information required is not external to existing workflows; it is embedded within the artifacts teams are already 

using [20]. 

Implementing feature weighting in similarity metrics leverages this existing structural data [39]. 

Computationally, adding a weight column to feature representations or adjusting distance formulas to sum 

weighted features introduces only minor overhead in terms of storage and processing, especially when 

juxtaposed with the potential cost savings of catching critical faults early [52] [24]. Empirical research has 

shown that the shift from traditional to weighted similarity algorithms involves only incremental computational 

costs, far outweighed by the improvement in prioritization efficacy and early fault detection [12]. In practice, 

the "complexity" argument conflates conceptual change with actual resource demand; in reality, the additional 

logic fits naturally into most modern model-based test automation frameworks [13]. 

Counterargument 3: Feature Importance Is Domain-Dependent 

Further criticism claims that assigning importance weights to features is subjective and variable, with reliance 

on domain-specific knowledge potentially leading to inconsistency or bias [34] [51]. Critics suggest that what 

is "mandatory" in one product line may be optional or irrelevant in another, so embedding feature importance 

into similarity metrics compromises generality and portability [16]. 

This concern, while understandable, overlooks the structural universality provided by feature models 

themselves [10]. The distinction between mandatory and optional features is explicitly and formally encoded 
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within the feature model, irrespective of the particular application domain [60]. These annotations are not 

based on ad hoc human judgment but are defined as part of the SPL's architectural blueprint [14]. Any modern 

feature modeling approach, across automotive, consumer electronics, enterprise software, or other sectors, 

relies on this domain-agnostic structure to manage variability and support systematic reuse [61][1]. 

Moreover, the same feature model can support further specification if additional, domain-specific weighting is 

needed [42] [43]. But at the baseline, semantic information about which features are mandatory, optional, or 

involved in critical cross-tree dependencies provide a reliable, generic guide for improving the prioritization 

process across SPLs [35]. This is not only possible but already routine in the workflows of successful SPL 

engineering teams worldwide [10]. 

Synthesis 

Resistance to change is natural, especially when it involves foundational elements of well-established 

engineering practices. Yet, the most effective innovations in software engineering have always emerged from 

embracing new levels of abstraction and making better use of the structured information at our disposal. 

Feature model semantics provide a built-in, low-cost, and robust means of enhancing test prioritization, 

allowing teams to detect the most significant faults early, minimize risk, and optimize testing resources without 

burdensome overhead. In moving past traditional, equal-weighted similarity measures, SPL practitioners can 

align their test processes with the true structure and priorities of their systems, achieving better quality and 

confidence in every product they release. 

Proposed Approach 

This paper considers the feature model notations in our work to improve the existing similarity distance 

algorithm. For the research, only two feature model notations, which are mandatory and optional are selected. 

This is because in a feature model, mandatory and optional are the crucial notations on every feature model. 

The feature models must have both notations. Without them, the Or and Alternative notations cannot be used. 

 

Fig. 2 Proposed Approach 

As shown in Figure 2, the Mandatory and Optional notations need to be considered from the feature model 

inside similarity distances. This research plans to experiment with the similarity distances with four types of 

modifications. This research used a Jaccard distance as an example for all the proposed modifications. 

Modification 1: Addition of Mandatory 

By including a single variable that stands for mandatory notation, this study alters the similarity distance. The 

primary notation for all feature models is the Mandatory notation. The rationale is that it embodies the 

product's required feature or features. Since there wouldn't be a product without the mandatory, even the 

optional notation cannot overshadow its significance. This research thinks about including the Mandatory 

notation in the algorithm because it wants to make it more likely that configurations that incorporate these 

required features would be chosen first. The tester can find any flaw in it far more quickly. Furthermore, the 
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product will be at risk if the tester overlooks any errors related to a required feature. This research defines 

Jaccard distance with the addition of Mandatory variable as 

𝑑(𝑐𝑖, 𝑐𝑗) = 1 −  
(𝑐𝑖 ∩ 𝑐𝑗) + 𝑚

(𝑐𝑖 ∪ 𝑐𝑗) + 𝑚
 

where m is the number of Mandatory notations from the feature model used. If there are two Mandatory 

notations inside the feature model, the value of m is 2. These distances are named Addition Hamming 

Mandatory (AHM), Addition Jaccard Mandatory (AJM), Addition Counting Function Mandatory (ACFM), 

and Addition Sorensen-Dice Mandatory (ASDM). 

Modification 2: Addition of Optional 

By including an additional variable that specifies optional notation, this adjustment alters the similarity 

distance. One type of notation used to describe variable features is optional notation. Variability is expressed 

by the variable features. Reusable software is more variable by nature. Therefore, it's crucial to concentrate 

solely on the optional feature. Later on, the new product will be able to use this capability again. Additionally, 

this optional feature may eventually become required. As a result, while introducing new items, it is prudent 

for the tester to address the issue sooner rather than later. This research defines Jaccard distance with the 

addition of Optional variable as 

𝑑(𝑐𝑖, 𝑐𝑗) = 1 −  
(𝑐𝑖 ∩ 𝑐𝑗) + 𝑜

(𝑐𝑖 ∪ 𝑐𝑗) + 𝑜
 

where o is the number of Optional notations from the feature model used. If there are two Optional notations 

inside the feature model, the value of o is 2. These distances are named Addition Hamming Optional (AHO), 

Addition Jaccard Optional (AJO), Addition Counting Function Optional (ACFO), and Addition Sorensen-Dice 

Optional (ASDO). 

Modification 3: Addition of Mandatory and Optional 

The addition of two variables, which stand for Mandatory and Optional notations, modifies the similarity 

distance. Commonality and diversity are key components of the product line. Features that only describe one 

of them are useless since the system is likely not sufficiently described by the individual instances of 

permissible configurations. As a result, including both notations within the method is taken into account. This 

research defines Jaccard distance with the addition of Mandatory and Optional variables as 

𝑑(𝑐𝑖, 𝑐𝑗) = 1 −  
(𝑐𝑖 ∩ 𝑐𝑗) + 𝑚 + 𝑜

(𝑐𝑖 ∪ 𝑐𝑗) + 𝑚 + 𝑜
 

where o is the number of Optional notations and m is the number of Mandatory notations from the feature 

model used. If there are two Mandatory notations inside the feature model, the value of m is 2. The same 

concept is used for Optional notations. These distances are named Addition Hamming Mandatory Optional 

(AHMO), Addition Jaccard Mandatory Optional (AJMO), Addition Counting Function Mandatory Optional 

(ACFMO), and Addition Sorensen-Dice Mandatory Optional (ASDMO). 

Modification 4: Subtraction of Optional 

This modification modifies the similarity distance by subtracting one variable that represents Optional 

notation. We define the Jaccard distance with the subtraction of Optional variable as 

𝑑(𝑐𝑖, 𝑐𝑗) = 1 −  
(𝑐𝑖 ∩ 𝑐𝑗) − 𝑜

(𝑐𝑖 ∪ 𝑐𝑗) − 𝑜
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where o is the number of Optional notations from the feature model used. If there are two Optional notations 

inside the feature model, the value of o is 2. These distances are named Subtract Hamming Optional (SHO), 

Subtract Jaccard Optional (SJO), Subtract Counting Function Optional (SCFO), and Subtract Sorensen-Dice 

Optional (SSDO). 

EXPERIMENTS AND RESULTS 

This research is towards similarity-based prioritization. This research is to detect more faults as soon as 

possible for the product lines under test. 

Experimental Design 

In SPL, to generate a set of configurations, a feature model is needed. This research used the feature model and 

generated configurations from the MobilePhone product line, which is created by Al-Hajjaji et al. [5]. 

Table I Configuration of Mobilephone Product Line 

ID Configurations 

C1 {Calls, Screen, Color} 

C2 {Calls, GPS, Screen, HighResolution, Media, MP3} 

C3 {Calls, Screen, HighResolution, Media, Camera} 

C4 {Calls, Screen, Basic}  

C5 {Calls, Screen, HighResolution, Media, Camera, MP3} 

C6 {Calls, GPS, Screen, Color, Media, MP3} 

C7 {Calls, GPS, Screen, HighResolution, Media, Camera} 

C8 {Calls, Screen, Basic, Media, MP3} 

C9 {Calls, GPS, Screen, HighResolution} 

Table 1 shows nine configurations that are created from the feature model MobilePhone using pairwise 

sampling with ICPL. Sampling algorithm outputs an ordered list of configurations. 

To measure the effectiveness of our research, this research evaluates the ability of the string distances and 

prioritization techniques to detect faults in the SPL under test. For this purpose, some generated faults are 

needed. Thus, this research uses faults that were already generated by Al-Hajjaji et al. [5]. 

Table II Fault Matrix 

Configuration Fault 

F1 F2 F3 F4 F5 F6 

C1  X    X 

C2  X X    

C3    X X X 

C4 X X X   X 

C5 X   X  X 

C6     X  

C7   X    

C8  X    X 

C9       

Table II shows the distribution of six faults that had been used by Al-Hajjaji et al. [5]. Lastly, to evaluate how 

quickly faults are detected during testing, this research uses the Average Percentage of Faults Detected 

(APFD) metric. The APFD metric measures the weighted average of the percentage of faults detected during 

the execution of the test suite. APFD is illustrated as the T, as the test suite which contains several n 

configurations, and let F be a set of m faults revealed by T. Let TFi be the position of the first test case in 

ordering T’ of T which reveals the fault i. The equation of APFD is given below: 
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𝐴𝑃𝐹𝐷 = 1 − 
𝑇𝐹1 + 𝑇𝐹2 + ⋯ + 𝑇𝐹𝑛

𝑛 × 𝑚
+

1

2𝑛
 

APFD values range from 0 to 1. A prioritized test suite with a higher APFD value has faster fault detection 

rates than those with lower APFD values. 

 

Fig. 3 Experiment Flowchart 

Based on Fig. 3, the experiment is conducted by calculating the similarity distances for each configuration 

first. This can be done by referring to Table I for the configuration and similarity distance algorithm. For this 

paper, this research uses the Jaccard distance similarity algorithm. The output from this process is the different 

distance between the configurations. 

Next is to apply the prioritization algorithm. In this paper, this research uses five different prioritization 

techniques, which are AYC, LMD, GMD, FOS, and GOS. The distance value for each configuration will be 

used as the input. The output for this process is the different order of configurations. For example, the order of 

configurations after using GOS is: 

P= {C4, C1, C2, C5, C7, C3, C8, C9, C6}. 

Lastly, APFD is calculated for the new order of configurations. The input for this process is the new order of 

the configurations, which is the P above and the fault matrix from Table II. The output will be the APFD 

results. 

RESULTS AND DISCUSSION 

This section shows the results of APFD for the original Jaccard distance and the modified Jaccard distances 

that have been prioritized by AYC, LMD, GMD, FOS, and GOS prioritization algorithms. 
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Table III APFD Results 

 AYC LMD GMD FOS GOS 

J 0.759 0.759 0.759 0.740741 0.796 

AJM 0.778 0.759 0.722 0.611 0.796 

AJO 0.759259 0.703704 0.759259 0.740741 0.666667 

AJMO 0.759 0.704 0.63 0.740741 0.778 

SJO 0.796296 0.814815 0.833333 0.833333 0.814815 

From Table III, J represents original Jaccard, AJM represents Addition Jaccard Mandatory, AJO is Addition 

Jaccard Optional, AJMO is Addition Jaccard Mandatory Optional, and SJO is Subtract Jaccard Optional. From 

Table III, the results show significant differences in terms of APFD for the original Jaccard with other 

modifications. 

The results also show that SJO is the most effective modification. It performs 7% better than the original 

Jaccard in terms of the percentage of faults detected. For future work, this research plans to do more 

experiments on different sizes of product lines. Currently, this research is using the MobilePhone product line 

as the case study. It is categorized as a small-sized product line. 

CONCLUSIONS 

In summary, moving towards feature-aware similarity measures doesn’t just advance the academic 

understanding of SPL testing, it delivers real-world results. By prioritizing features that matter most, teams can 

more quickly uncover important faults, boosting confidence in every product release. This approach 

streamlines the entire testing process, letting test suites run faster and directing resources, whether time, talent, 

or tools, where they’ll have the greatest effect. Looking further ahead, adopting feature-aware strategies lays 

the groundwork for building testing tools that can adapt dynamically to the unique context of each product 

line. It also opens the door to integrating sophisticated automation, such as automated test case generation that 

intelligently adapts to changes in feature models. For organizations working in high-stakes or safety-critical 

environments, this means greater reliability and peace of mind as product lines evolve. Ultimately, integrating 

feature semantics into test prioritization empowers organizations to build software families that are not only 

richer in features but also far more robust and reliable, ensuring each product is both high-quality and perfectly 

tailored to user needs. 
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