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ABSTRACT 

Wildfires represent a critical hazard in Southern California, threatening life, infrastructure, and ecosystems. 

This study integrates diverse geospatial datasets like historic fire perimeters, topography, climate, soil, and 

building footprints to assess wildfire risk in Los Angeles and Ventura Counties. Using ArcGIS Pro, a weighted 

overlay analysis was implemented, where environmental factors such as vegetation, slope, aspect, and climate 

were normalized and assigned weights based on expert judgment. The final risk map classified the study area 

into low, moderate, and high-risk zones. Results reveal that approximately 25.1% of buildings fall within high-

risk areas, 54.2% in moderate-risk zones, and 20.7% in low-risk areas, highlighting significant exposure of 

built infrastructure. Model validation using historical fire perimeters achieved 78.96% accuracy, with a kappa 

coefficient of 0.43, confirming reasonable predictive reliability. These findings underscore the urgent need for 

targeted mitigation strategies, such as restricting urban development in high-risk corridors, enhancing 

defensible space standards, and updating building codes. The approach provides a replicable GIS-based 

framework for integrating environmental and exposure data into wildfire planning, offering actionable insights 

for emergency managers, land-use planners, and policymakers to improve community resilience under 

increasing wildfire threats. 
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INTRODUCTION 

Wildfire events in California have grown in frequency and severity, fueled by prolonged droughts, rising 

temperatures, and land-use patterns that increase human presence in fire-prone regions. According to Cal Fire 

(2023), Los Angeles and Ventura Counties have experienced several high-impact wildfires over the past 

decade, resulting in loss of lives, property, and biodiversity. This trend aligns with findings by Syphard et al. 

(2019), who emphasized that climate variability and human expansion into wildland–urban interface zones are 

primary drivers of wildfire incidence in Southern California. Similarly, Radeloff et al. (2018) highlight the 

expanding footprint of development in fire-prone landscapes, increasing exposure and complicating emergency 

management. 

This study aims to assess wildfire risk across a portion of Los Angeles and Ventura Counties using an 

integrated geospatial approach. It combines environmental, topographic, and anthropogenic variables to model 

risk levels and identify exposed buildings. The methodology builds on a multi-criteria decision-making 

framework within a GIS environment, providing both spatially explicit risk maps and quantifiable exposure 

estimates. 

LITERATURE REVIEW 

Wildfire risk modeling typically incorporates environmental variables such as vegetation (fuel load), 

topography, and climatic factors. Chuvieco et al. (2010) emphasized the critical role of fuel continuity and 

moisture content, while slope and aspect influence fire behavior by affecting wind speed, heat transfer, and 

solar radiation exposure (Miller & Ager, 2013). 
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Recent studies have explored machine learning (ML)-based wildfire prediction models, such as Random 

Forest, MaxEnt, and Support Vector Machines, which leverage nonlinear relationships between variables to 

produce highly accurate risk maps (Parisien et al., 2019; Jain et al., 2020). While these methods can 

outperform traditional approaches in predictive precision, they require large, high-quality training datasets and 

advanced computational resources, making them less accessible for resource-constrained agencies. In contrast, 

weighted overlay methods, as employed in this study, offer transparency, simplicity, and ease of 

implementation within GIS platforms like ArcGIS Pro. This makes them suitable for local and regional 

planning where interpretability and replicability are priorities. Moreover, in the context of Southern California, 

climate change is expected to exacerbate wildfire risk by increasing the frequency of droughts, heatwaves, and 

extreme wind events (Westerling, 2016). Therefore, models that can be regularly updated using publicly 

available geospatial datasets remain crucial for adaptive risk management. 

Incorporating historical fire perimeters has proven effective in validating predictive models (Alcasena et al., 

2018), while weighted overlay methods have been widely used to combine multiple raster inputs based on their 

relative contribution to fire risk (Kalogirou et al., 2020). These models can be enhanced by integrating 

infrastructure data, which captures human exposure and vulnerability. Zhu et al. (2020) showed that building-

level analysis provides a more nuanced understanding of community risk, particularly in wildland–urban 

interface zones. 

This study draws upon these methods, adding the dimension of exposure quantification using high-resolution 

OpenStreetMap building data, which is spatially joined with predicted risk classes to identify the number of 

structures at risk. 

METHODOLOGY 

Study Area 

The study area spans wildfire-prone regions of Los Angeles and Ventura Counties in Southern California. The 

terrain is marked by coastal mountains, vegetation, and expanding suburban developments. Both counties are 

historically vulnerable to large wildfires, as evidenced by events like the Woolsey and Thomas Fires. For the 

sake of transparency and integrity, Generative AI was used in this research for idea exploration and language 

improvement. 

Data Sources 

Table 1. Dataset and their respective sources 

Dataset Source 

Historic Fire Perimeters Los Angeles County Enterprise GIS Portal (EGIS LA County) 

DEM (elevation, slope, aspect) USGS (Ventura and Los Angeles Counties) 

County Boundary California Open Data Portal (https://data.ca.gov) 

Climate Data (temperature, precipitation) USDA PRISM (https://datagateway.nrcs.usda.gov) 

Soil Raster NRCS SSURGO, U.S. Department of Agriculture 

Building Footprints OpenStreetMap (via Geofabrik API) 

Processing and Risk Modeling 

 Topography: DEMs were used to derive slope and aspect layers in ArcGIS Pro. The weight assignment 

for the weighted overlay analysis was based on expert judgment informed by prior studies and domain 

knowledge of wildfire behavior in Southern California. Higher weights were allocated to variables with 

strong influence on fire spread, such as vegetation/fuel load and land use/land cover (25% each), due to 

their direct role in determining combustible material availability. Topographic factors like slope and 

aspect (10% each) were given moderate importance because they influence fire intensity and direction. 

Elevation and distance to structures were weighted at 10% each, reflecting their contribution to 

exposure and risk amplification. Climatic variables mean annual temperature and precipitation were 

http://www.rsisinternational.org/
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weighted lower (5% each) as their effects are indirect but still relevant in shaping fuel moisture and 

ignition potential. These weights align with standard practices in wildfire risk modeling while 

accommodating regional characteristics identified through expert consultation. 

 Climate: Mean annual temperature and precipitation from PRISM were reclassified based on dryness 

and heat conditions conducive to fire spread. 

 Soil: SSURGO soil raster was classified based on organic matter and water retention capacity. 

 Historic Fires: Fire perimeters were overlaid with the modeled risk zones to visually assess model 

accuracy. 

 Weighted Overlay: All factors were normalized to a 1–5 scale and combined using weights derived 

from literature and personal judgment (LULC: 25%, Fuel load: 25%, slope: 10%, aspect: 10%, DEM: 

10%, distance to buildings: 10%, annual precipitation: 5%, mean temperature: 5%). 

 Exposure Analysis: OpenStreetMap building polygons were spatially joined to the wildfire risk map. 

Using “Summarize Within” and “Zonal Statistics,” the number of buildings in each risk class (low, 

moderate, high) was computed. 

 

Figure 1. Project process and workflow. 

Post-Classification and Exposure Analysis 

After generating the wildfire risk map via weighted overlay, the output raster was converted to vector polygons 

for spatial analysis. These polygons were spatially joined with building footprint data from OpenStreetMap 

using the “Summarize Within” and “Zonal Statistics” tools in ArcGIS Pro. This enabled quantification of the 

number of buildings situated within each wildfire risk category (low, moderate, and high). The overlay of 

building data provides a detailed understanding of structural exposure, which serves as a proxy for community 

vulnerability. 

http://www.rsisinternational.org/
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RESULTS AND DISCUSSION 

Wildfire Risk Classification 

A wildfire risk map was generated using weighted overlay analysis in ArcGIS Pro, classifying the study area 

into three categories: low, moderate, and high risk. After converting the raster risk map into vector polygons, a 

spatial join was performed with OpenStreetMap building footprints to assess structural exposure across the risk 

zones. 

Building Exposure in Wildfire Risk Zones 

The spatial join and zonal summary revealed a total of 397,302 buildings within the wildfire risk zones across 

the study area. The building counts per wildfire risk category are summarized as follows:  

Table 2. Number of buildings within each wildfire risk category. 

Risk Class Gridcode Number of Buildings  

Low Risk 1 82,249 

Moderate Risk 2 215,342 

High Risk 3 99,711 

 

Figure 2. Bar chart showing the number of buildings in each wildfire risk class. 

These results indicate that over half (54.2%) of the exposed buildings fall within the moderate-risk zones, 

while a significant 25.1% are in high-risk zones. Only 20.7% of the buildings are situated in areas classified as 

low wildfire risk. 

Risk Map Validation with Historic Fire Perimeters 

The combined map showing wildfire risk overlaid with historic fire perimeters from Los Angeles County 

revealed a strong spatial correspondence. Many of the regions historically affected by wildfires particularly in 

the mountainous and wildland–urban interface areas are currently classified as high or moderate risk, 

reinforcing the validity of the model outputs. 
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Figure 3. DEM with OpenStreetMap building footprints in Los Angeles and Ventura Counties. 

 

Figure 4. Classified wildfire risk zones: low, moderate, and high 
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Figure 5.  Historic fire perimeters overlaid on wildfire risk map 

Model Validation 

To evaluate the accuracy of the wildfire risk prediction model, a comparison was conducted between the 

generated risk map and historical fire perimeter data. Using a confusion matrix approach, each cell in the study 

area was assigned a class based on the predicted wildfire risk and whether it had been historically burned. This 

yielded values for true positives (TP), false positives (FP), false negatives (FN), and true negatives (TN), 

allowing for the calculation of key model performance metrics. 

 

Figure 6. Confusion Matrix using Historic Risk Maps and Wildfire Risk Maps 

http://www.rsisinternational.org/
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Table 3. Confusion Matrix of Predicted vs Actual Fire Occurrence. 

Predicted \ Actual Burned Unburned Total 

Burned TP = 419,049,123.19 FP = 460,332,401.94 879,381,525.13 

Unburned FN = 196,259,824.68 TN = 2,034,200,965.57 2,230,460,790.25 

Total 615,308,947.87 2,494,533,367.52 3,109,842,315.39 

Table 4. Model performance metrics derived from confusion matrix. 

Metric Value 

Accuracy 78.96% 

Precision 47.68% 

Recall 68.11% 

Kappa 0.43 

DISCUSSION 

Comparison to Similar Studies 

Urban expansion into wildland-urban interface (WUI) zones is a key driver of wildfire risk in Southern 

California. Radeloff et al. (2018) reported that the WUI in the U.S. grew by 33% between 1990 and 2010, with 

California experiencing some of the most rapid development in high-risk zones. This trend has amplified 

structural exposure, as reflected in this study's finding of nearly 100,000 buildings located in high-risk areas 

across Los Angeles and Ventura Counties. Compared to similar analyses, such as Syphard et al. (2019), which 

identified approximately 22% of structures in high-risk zones across broader Southern California, the 

proportion in this study (25.1%) underscores the localized severity of exposure in these counties. This 

concentration of development near chaparral-dominated landscapes, combined with increasing climatic 

variability, suggests that land-use planning policies must evolve to curb expansion in fire-prone regions and 

implement stricter building regulations to mitigate losses. 

The methodology and findings of this study are consistent with prior work in wildfire risk assessment. 

Alcasena et al. (2018) demonstrated the utility of integrating environmental, topographic, and human exposure 

variables in wildfire modeling, similar to this study’s approach using weighted overlay and building footprint 

data. Kalogirou et al. (2020) also emphasized the effectiveness of GIS-based multi-criteria analysis in 

identifying risk-prone regions, particularly in Mediterranean and chaparral environments that resemble 

California’s terrain. Unlike these studies, however, the current research adds building-level exposure analysis 

using OpenStreetMap data, offering finer-scale insights into infrastructure vulnerability. 

Implications for Policy and Planning 

The study provides actionable insights for land use planners, emergency managers, and local governments. The 

quantified exposure of over 397,000 buildings, including nearly 100,000 in high-risk areas, highlights the 

urgency of updating building codes and enforcing defensible space regulations. These results can support 

zoning laws that restrict expansion into high-risk areas and guide investments in wildfire resilience, such as 

community fire breaks and evacuation planning. The validated risk model could also be integrated into local 

GIS platforms for use in real-time response systems. 

Limitations and Future Directions 

Several limitations affect the generalizability of the results. First, the building footprint data from 

OpenStreetMap may not fully reflect recent construction, especially in peri-urban areas. Second, the model is 

static and does not account for dynamic variables such as wind direction, fuel moisture, or real-time vegetation 

conditions. Third, historic fire perimeters, while useful for validation, may not capture future ignition patterns 

influenced by climate change. Future research should consider machine learning approaches, such as Random 

http://www.rsisinternational.org/
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Forest, to enhance model precision. Additionally, incorporating satellite-based vegetation indices and temporal 

fire occurrence data could improve both prediction accuracy and real-time applicability. 

CONCLUSION 

The wildfire risk model demonstrates that a significant portion of built infrastructure in Los Angeles and 

Ventura Counties remains vulnerable to future wildfire events. With nearly 100,000 buildings located in high-

risk zones, the findings underscore the urgency of implementing defensible space standards, zoning 

regulations, and emergency evacuation planning in these regions. 

The high concentration of exposed structures in moderate-risk areas (over 215,000 buildings) also suggests 

that mitigation should not be limited to extreme-risk zones. These areas, often located adjacent to high-risk 

terrain or with less severe but still fire-prone characteristics, could become dangerous under the influence of 

changing climate conditions or fire suppression gaps. 

The close spatial overlap between high-risk zones and historic burn scars highlights the persistent nature of 

wildfire threats in certain corridors, including the Santa Monica Mountains, Topanga Canyon, and regions near 

Simi Valley and Agoura Hills. These results are consistent with earlier studies by Alcasena et al. (2018) and 

Syphard et al. (2007), which emphasized recurring ignition zones and the role of terrain and land use in fire 

behavior. 

From a methodological standpoint, the integration of building-level exposure analysis distinguishes this study 

from broader landscape-based models. While previous research has focused on environmental conditions 

alone, the addition of OpenStreetMap data provides a more community-centric risk model, making it directly 

actionable for planners and local agencies. 

However, limitations exist in the spatial resolution and completeness of building data, particularly in sparsely 

populated zones. Additionally, while historic fire perimeters serve as a good proxy for model validation, they 

do not necessarily predict future ignitions, especially with evolving urban footprints and climate dynamics. 

Overall, this study reinforces the value of combining geospatial environmental modeling with infrastructure 

exposure assessment to generate practical, risk-informed outputs for wildfire management and planning. 

RECOMMENDATIONS 

The findings of this study underscore the urgent need for proactive wildfire mitigation strategies in Los 

Angeles and Ventura Counties. Given the significant number of structures particularly nearly 100,000 

buildings located in high-risk zones, land use planning should prioritize restricting future developments in 

these vulnerable areas. Zoning regulations must be revised to reflect updated risk assessments, discouraging 

expansion into zones with recurring fire histories or proximity to steep, vegetation-rich terrain. 

Equally important is the consistent enforcement of defensible space standards, which require property owners 

to manage vegetation and reduce fuel loads near buildings. These measures are especially crucial in moderate- 

and high-risk zones where structural density increases the likelihood of fire spread and damage. Integrating the 

validated wildfire risk model into county-level GIS platforms could further support emergency preparedness 

by enabling real-time visualization of risk zones, informing evacuation routes, and assisting in the placement 

of fire breaks or suppression resources. 

Retrofitting efforts such as installing fire-resistant materials and upgrading community infrastructure should be 

prioritized in high-density areas that fall within the elevated risk zones. Regions such as Topanga Canyon, the 

Santa Monica Mountains, and Simi Valley stand out as strategic targets for such interventions due to their 

persistent exposure and fire history. Finally, the study recommends greater investment in up-to-date, high-

resolution spatial data, especially building footprints, to enhance the accuracy of exposure analysis and better 

inform both policy decisions and academic modeling in future research. 

http://www.rsisinternational.org/
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