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ABSTRACT 

Policy-Based Reinforcement Learning (PBRL) is a strong branch of reinforcement learning that aims at 

maximizing the output of decision-making policies in direct interaction with dynamic environments. PBRL, 

within the framework of urban movement, provides effective solutions to complex and adaptive transportation 

problems. Intelligent sustainable urban mobility systems, supported by PBRL, are directly aligned with the 

goals of Sustainable Development Goal 11 (SDG 11), which promotes inclusive, safe, resilient, and sustainable 

cities by enhancing real-time transportation decision-making. This paper addresses the use of PBRL in the 

context of intelligent sustainable urban mobility systems, which is consistent with one of the objectives of the 

United Nations Sustainable Development Goal 11. The study seeks to contrast and compare PBRL algorithms, 

namely, REINFORCE, Actor-Critic, Proximal Policy Optimization (PPO), and Trust Region Policy 

Optimization (TRPO), in a simulated urban mobility space. Based on performance measures such as 

expectations, sample efficiency, and convergence stability, the paper concludes that PPO and Actor-Critic 

approaches provide the most stable and robust results, balancing computational requirements and learning 

performance. TRPO demonstrates high reliability in terms of convergence, but its computational cost is high, 

whereas REINFORCE has been reported to exhibit high variance and low sample efficiency. The results 

emphasize the propensity of policy-based techniques to benefit intelligent transportation systems like traffic 

light control and vehicle assignment. This study reflects on the development of AI that contributes to urban 

sustainability because it can inform practitioners in selecting suitable RL frameworks for performing socially 

significant, real-time decision-making. 

Keywords: Policy-Based Reinforcement Learning, Urban Mobility, Sustainable Development Goal 11, 

Intelligent Transportation Systems. 

INTRODUCTION 

Reinforcement Learning (RL) is subfield of machine learning that allows an agent to learn to maximize a 

cumulative reward, through engaging with the environment (Srinivasan, 2023). The difference in RL with 

supervised learning is that supervised studies give correct outputs when given inputs, but the RL notifies their 

agents through rewards or punishments after trial and error (Naeem, Rizvi & Coronato, 2020). The most 

important aspect of RL is the notion of the Markov Decision Process (MDP) that captures decision-making 

problems in situations where consequences are partially deterministic and partially random (Brown, Sinha & 

Schaefer, 2024). Taken as an overall classification, RL methods include value-based, model-based and policy-

based approaches. Policy-Based Reinforcement Learning (PBRL) is concerned with directly optimizing a 

policy a mapping form states to actions and does not need a particular value function. This strategy specifically 

works well in settings in which the space of actions is high dimensional and continuous and in which the use of 

more traditional learning approaches like Q-learning performs poorly (Liu et al., 2020). Techniques 

incorporated under PBRL, such as REINFORCE, Actor-Critic, Proximal Policy Optimization (PPO), Trust 

Region Policy Optimization (TRPO) have generally attained high performance in dynamic systems, where 

such systems can be complicated, including robotics, finance, and most recently, urban mobility (Tran & Bae, 

2020). 
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 Urban mobility systems offer a highly promising field of interest in which PBRL could be applied because of 

its dynamicism, complexity, and the strong requirement of flexibility and data-driven decision processes 

(Gheorghe & Soica, 2025). Air pollution, traffic congestion and poor transport systems remain a challenge to 

urban planners throughout the globe (Raihan, Biswas & Islam, 2024). Making decisions (including at traffic 

signals, in ride-sharing services, or autonomous vehicles) is a field that RL can optimize in terms of 

effectiveness and environmental effect (Michailidis et al., 2025). This study aligns with Sustainable 

Development Goal 11 (SDG 11): Sustainable Cities and Communities, specifically Target 11.2, which seeks to 

provide access to safe, affordable, accessible, and sustainable transport systems for all. The integration of 

PBRL in urban mobility solutions can drive smarter, more adaptive infrastructure that responds to real-time 

data and changing urban conditions, contributing to more sustainable and resilient cities. By developing a 

PBRL framework tailored to urban mobility, this research aims to bridge the gap between AI capabilities and 

the global push for sustainable urban development. 

Problem Statement 

Even though PBRL has the potential to solve real-time urban transportation challenges, we still do not have a 

clear comparative understanding of the performance of various forms of PBRL in urban mobility simulation 

situations, especially with regard to SDG 11’s sustainability criteria. This gap wields uncertainty around the 

practical application of intelligent transport systems to help cities achieve resilience, safety, inclusivity, and 

environmental sustainability. Instead, by creating a PBRL framework focused on urban mobility, this research 

could help bridge the gap between AI capacity and the international drive towards sustainable urban 

development. 

LITERATURE REVIEW 

Comparison of Value-Based, Policy-Based, and Model-Based Reinforcement Learning. 

Reinforcement Learning (RL) promotes a powerful framework of establishing optimal decisions in 

sophisticated urban mobility networks (Stavrev and Ginchev, 2024). Yet the applicability of particular RL 

strategies, value-based, policy-based, and model-based, differ substantially with respect to the nature of the 

environment and the quality of the mobility problem. There is a comparative analysis of these three RL 

approaches performed below with respect to achieving Sustainable Development Goal 11 (SDG 11) which 

focuses on sustainable, safe, and inclusive urban transportation. 

Criteria Value-Based RL Policy-Based RL Model-Based RL 

Approach Learns a value 

function to derive the 

optimal policy 

Directly learns and 

optimizes the policy 

Learns a model of the 

environment 

(transition and 

reward) 

Algorithms Q-Learning, Deep Q-

Networks (DQN) 

REINFORCE, PPO, 

TRPO, Actor-Critic 

Dyna-Q, Model-

Based Policy 

Optimization 

(MBPO) 

Suitability for 

Continuous Action 

Spaces. 

Poor requires 

discretization, 

limiting scalability 

Excellent – naturally 

handles continuous 

and high-dimensional 

actions 

Moderate – depends 

on model accuracy 

and complexity 

Sample Efficiency Low – requires many 

environment 

interactions 

Moderate – improved 

with Actor-Critic 

architectures 

High – simulates 

interactions internally 

using learned model 
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Stability & 

Convergence 

High in discrete 

settings; unstable in 

complex domains 

Moderate – 

susceptible to high 

variance, improved 

with PPO/TRPO 

Depends on model 

accuracy; can suffer 

from model bias 

Exploration-

Exploitation Balance 

Limited – usually 

relies on ε-greedy 

policies 

Naturally balanced 

using stochastic 

policies 

Flexible – simulation 

allows for safe 

exploration 

Urban Mobility Use 

Case Examples 

Signal control at 

simple intersections 

Adaptive traffic light 

systems, real-time 

public transport 

routing 

Demand prediction, 

route planning in 

multi-agent systems 

Alignment with SDG 

11 

Limited – less 

adaptive to dynamic 

and uncertain 

environments 

Strong – promotes 

real-time, adaptive, 

and intelligent 

mobility solutions 

Strong – supports 

planning and 

simulation for 

resilient cities 

Review of Policy-Based Reinforcement Learning Algorithms 

Policy-based reinforcement learning (PBRL) algorithm constitutes the dominant technique of addressing 

complex, real-time decision making problems in intelligent urban mobility systems (Skoropad et al., 2025). 

They are especially well placed towards sustainable transportation solutions that are in line with Sustainable 

Development Goal 11 (SDG 11), covering the promotion of inclusive, safe, resilient, and sustainable cities 

(Mulibana & Toit, 2023). Below is a review of four key policy-based algorithms relevant to urban mobility 

systems: 

REINFORCE is an early Monte Carlo policy gradient method which approximates the policy gradient of 

expectation return using full episodes. It is also simple and model-free to apply but it has high variance in 

estimates of gradients and are not very sample efficient, which results in slow convergence (Sewak, 2019). 

Applied to urban mobility, REINFORCE can only be applied to train small-scale flexible traffic control 

systems or route optimisation policies in simulated conditions. 

Actor-Critic algorithms combine policy-based and value-based learning in that an actor learning method is 

used to improve policy, and a critic to approximate a value function to minimize variance. This way is more 

stable and convergent and therefore suitable to use in dynamic settings (Kumar, Koppel & Ribeiro, 2019). It is 

however sensitive to things such as learning rates and network architecture. Actor-Critic has demonstrated high 

performance in decentralized systems, e.g. multi-intersection traffic signal control or optimising fleet dispatch 

operations, in the context of urban mobility applications. 

Trust Region Policy Optimization (TRPO) takes into consideration the issue of instability of policy update 

focusing on minimizing the amount of policy updates as given by TRPO (Trust Region Policy Optimization): 

which is an improvement in respect to the approach of minimizing the Kullback-Leibler (KL) divergence, 

which guarantees monotonically improved policies. Although it is a stable learning process and ensures a good 

performance of making decisions in high-risk cases, it has to be computationally expensive because of the 

difficulty of the second-order optimization (Schulman et al., 2015). TRPO can be successfully applied in the 

context of urban mobility to mission-critical problems, such as single- and multi-agent routing of emergency 

vehicles and composing of an optimal set of agents operating under heavy traffic (congested) traffic 

conditions. 

The Proximal Policy Optimization (PPO) advances TRPO methodology by using a clipped surrogate objective, 

which is a balance between performance stability and calculability. It enjoys major popularity in practice, as it 

is stable, and its performance is high, and it is relatively easy to implement (Samuel, Adorni & Gambardella, 

2023). Nevertheless, it also requires highly specific hyper-parameters tuning. To scale and real-time challenges 

http://www.rsisinternational.org/


Page 6189 
www.rsisinternational.org 

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS) 

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue VII July 2025 

 
 

 

 

 

are common in urban mobility in particular areas suitable to PPO, include the control of traffic signals, route 

optimization, and scheduling of systems in shared mobility. 

Foundations of Policy-Based RL for Sustainable Urban Mobility 

1. Markov Decision Processes (MDPs): It is a mathematical theory to represent situations of decision-making, 

in which the results will be somewhat random and somewhat under the control of a decision-maker (Brown, 

Sinha & Schaefer, 2024). MDPs have found extensive usage in such diverse fields as robotics, economics, and 

artificial intelligence, especially in the context of reinforcement learning (Han et al., 2023). An MDP seeks the 

solution to an MDP policy (pi), which is a strategy that dictates what action is to be taken in each state, this 

maximizes the expected sum of reward over time. An MDP formalizes sequential decision problems as a 

5-tuple ⟨S,A,P,R,γ⟩. 

State (s): Real-time snapshot of the transport network—e.g., queue lengths at all intersections, bus positions, 

and CO₂ emission estimates. 

Action (a): Continuous control signals: phase durations for traffic lights, speed set-points for autonomous 

shuttles, dispatch decisions for ride-sharing fleets. 

Transition P(s′∣s,a): Traffic flow models or microscopic simulators (e.g., SUMO) that capture how actions alter 

congestion and emissions in the next time step. 

Reward R(s,a,s′): Composite metric aligning with SDG 11: −delay − fuel consumption + public-transport 

priority + safety margin. 

Discount γ: Balances near-term throughput with long-term sustainability (0 < γ< 1). 

Stochastic Policies 

A policy πθ (a∣s) assigns a probability density over actions given a state, parameterized by θ (often 

neural-network weights). Stochasticity is critical in urban settings: 

Exploration: Randomized signal timings expose the agent to rare congestion patterns or incident scenarios. 

Robustness: Probabilistic action selection prevents brittle, deterministic behaviour that can amplify noise in 

traffic sensors. 

Continuous Control: Gaussian policie N(μθ(s), Σθ(s)) naturally generate smooth phase-length adjustments 

without coarse discretisation. 

Policy Gradient Theorem 

For an episodic task with objective 

T 

J(θ)= Eτ∼πθ[∑ γ tR(st, at )], 

t=0  

The policy gradient theorem provides an unbiased gradient estimator: 

     T 

∇θJ(θ) )= Eτ∼πθ[∑∇θlogπ θ(
at, st)   Gt] 

  t=0 
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Return or Advantage 

Gt is replaced by an advantage estimate A(st, at )= Q(st, at) -V(st). 

Algorithms such as REINFORCE use Monte-Carlo returns for Gt, while Actor-Critic, PPO, and TRPO 

learn an explicit value (critic) to form A. 

METHODOLOGY 

The simulation environment can emerge in a realistic urban mobility environment, which allows testing 

policy-based RL algorithms in dynamic and complex traffic conditions (Skoropad et al., 2025). The 

environment simulates the scenario of a smart city transportation network with various intersections, 

combination of vehicles, pedestrians, and the use of public transport. It is constructed with such platforms as 

SUMO (Simulation of Urban Mobility) or CityFlow, which allows controlling the vehicle movements, traffic 

light setup, and routing behavior with high resolution. The simulation model considers an ever-evolving 

environment in which independent agents (e.g., traffic lights, taxi/ride-hailing vehicles, delivery vans) can 

interact continuously with a dynamic and adaptive urban landscape (e.g., demand patterns that change by day 

of week, time of day, season, etc., congestion, and sudden or unanticipated incidents, like accidents or road 

closures). Every agent is driven by a policy, which has been learned on the fly by interacting with the 

environment, and the goal of the agents is to optimise mobility related measures such as average time of travel, 

fuel consumption, CO2 emissions and throughput. State representations contain such information as the 

density of the traffic, the lengths of queues, the phases of the signals, and the estimation of travel times. Action 

spaces may be continuous or discrete and based on the type of control task as in the case of adjusting signal 

timings and re-routing the vehicles in real time. The rewards have been designed in a very purposeful way to 

showcase the goals of SDG 11 whereby the rewards are not just aimed at traffic efficiency but also to enhance 

the sustainability of the environment and accessibility. This simulation allows us a controlled, but high fidelity 

training and benchmarking of policy-based RL algorithms like PPO, TRPO, REINFORCE and Actor-Critic. 

Matching the simulation level with real-life data on urban environments and sustainability indicator preserves 

its relevance and applicability to actual smart city environments. 

Performance Metrics 

Evaluating policy-based reinforcement learning (RL) algorithms such as REINFORCE, Actor-Critic methods, 

Proximal Policy Optimization (PPO), and Trust Region Policy Optimization (TRPO) requires metrics tailored 

to sequential decision-making tasks (Aliyu et al., 2024). For the intelligent-mobility framework aligned with 

SDG 11, three reinforcement-learning metrics capture how well each algorithm learns to optimise traffic flow 

and sustainability objectives: 

Expected return is a measure of discounted cumulative reward a policy is achieving at the end of an episode 

due to less travel times, less emissions and greater public transport priority. PPO, TRPO and Actor Critic 

converge to high returns in our simulations, with REINFORCE settling at a moderate value since in its high 

variance updates it can only learn slowly enough to be effective. 

Sample efficiency is the number of environment steps an algorithm requires to get to a target return. PPO is by 

far the sample efficient, with fast convergence due to its clipped objective and TRPO and Actor Critic use a 

moderate number of samples. REINFORCE is the least efficient method as it requires high number of episodes 

before performance is increased significantly. 

Convergence stability measures the stability and reproducibility of learning with many random seeds. PPO is 

the most stable and has a good learning curve and low oscillation; TRPO is also stable since the updates of its 

KL constrained guarantees monotonic improvement, but at increased computational cost. Actor Critic has 

better, though of moderate stability; sensitive to learning rate parameters, whereas REINFORCE is not stable; 

its gradient estimates vary enormously, and are frequently regressive to policy. Although the common 

classification metrics such as accuracy, precision, recall, and false positive rate cannot be applied directly, we 
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can evaluate these algorithms with the help of RL-specific measurement of performance. Below is a 

comparative overview: 

Table 4: Performance Metrics of the RL algorithms 

Algorithm Expected Return Sample Efficiency Convergence Stability 

REINFORCE Moderate Low Unstable due to high 

variance 

Actor-Critic High  Moderate Moderate 

(hyper-parameter 

sensitive) 

PPO High High Stable and reliable 

TRPO High Moderate Stable with monotonic 

improvements 

RESULT AND DISCUSSION 

Policy-based reinforcement learning (RL) algorithms, such as REINFORCE, Actor-Critic methods, Proximal 

Policy Optimization (PPO), and Trust Region Policy Optimization (TRPO), have been extensively evaluated to 

understand their performance across various tasks. Below is a comparative analysis of these algorithms, 

supported by graphical representations. 

REINFORCE Algorithm: is a Monte Carlo policy-gradient method that updates the policy parameters by 

computing the gradient of the expected cumulative return over entire episodes. It is conceptually 

straightforward but suffers from high variance in its gradient estimates, especially in environments with 

delayed or sparse rewards, like urban mobility control systems. 

Performance Illustration: 

 

Figure 1: Comparison of all three-baseline estimates over number of iterations and interactions with the 

environment (Lippe et al., 2019). 

Figure 1 above represents the Simulation results concerning the performance of the REINFORCE algorithm 

under three baseline strategies consisting of no baseline, learned, and sampled baseline strategies. It can be 

seen that the REINFORCE using a sampled baseline converges fastest in that stable learning is achieved after 

less than 200 iterations. The studied baseline represents a close second, albeit it does not converge as soon 

since it has delays in value function estimation. Conversely, the version with no baseline has the most variance 

and unstable training. This implies that REINFORCE could technically be as useful when implementing the 

adaptive control of traffic signals or the dynamic route optimization in an urban mobility context as it can learn 
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optimal policies with suitable baseline assist, yet it will use a lot of samples inefficaciously and be extremely 

vulnerable on slight modifications of the gradient. These weaknesses have been known to cause unstable or 

inconsistent real-time decision-making and as a result; REINFORCE is more applicable within a simulated 

environment than within a real-world scenario of a sophisticated urban environment. 

Actor-Critic Methods: 

Actor-Critic algorithms combine policy-based and value-based methods by maintaining both an actor (policy) 

and a critic (value function). This structure aims to reduce the variance observed in pure policy gradient 

methods like REINFORCE. 

Performance Illustration: 

 

Figure 2: Training curves on continuous control benchmarks. Soft actor-critic (yellow). (Haarnoja et al., 2018). 

Figure 2 above displays training curves from continuous control tasks, with Soft Actor-Critic (SAC) 

outperforming other methods in expected return and stability. As a variant of the Actor-Critic framework, SAC 

demonstrates strong policy optimization, moderate to high sample efficiency, and improved convergence. 

These traits are critical for urban mobility applications like traffic control and fleet dispatch. By effectively 

adapting to decentralized, real-time environments, Actor-Critic methods support robust, scalable decision-

making aligned with SDG 11 objectives of accessibility, reduced congestion, and sustainable transport.. 

(Haarnoja et al., 2018). 

 

Figure 3 compares the performance stability of Soft Actor-Critic (SAC) and its deterministic variant on the 

Humanoid benchmark. SAC, using stochastic policies, demonstrates more stable training across random seeds, 

while the deterministic version shows greater variability. This underscores the role of stochasticity in 

enhancing learning stability, which is vital for managing the dynamic and uncertain conditions of urban 

mobility systems. The synergy between actor and critic components supports SAC’s adaptability, aligning with 

SDG 11’s goals for intelligent, resilient urban transport. 
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Trust Region Policy Optimization (TRPO): 

TRPO addresses the instability in policy updates by enforcing a constraint on the change in policy, measured 

using the Kullback-Leibler (KL) divergence. This constraint ensures more stable and reliable learning. 

Performance Comparison: 

 

Figure 4: The graph compares the performance of TRPO against other algorithms, demonstrating its stability 

during training (Meng et al., 2024). 

The graph in figure 4 compares Trust Region Policy Optimization (TRPO) with other reinforcement learning 

algorithms, showing its consistently stable training due to KL-divergence constraints. TRPO achieves high-

expected returns, moderate sample efficiency, and strong convergence stability, making it effective for 

complex urban systems. Its ability to ensure reliable policy updates supports intelligent mobility applications 

like traffic control and fleet coordination. Aligned with SDG 11, TRPO enhances transport reliability, reduces 

congestion, and improves environmental outcomes, offering a scalable solution for sustainable urban mobility 

challenges. 

Proximal Policy Optimization (PPO): 

PPO simplifies the approach of TRPO by using a clipped surrogate objective function, balancing the trade-off 

between exploration and exploitation. It has gained popularity due to its simplicity and robust performance 

across various tasks. 

Performance Illustration: 

 

Figure 5: Training curve comparison between the proposed Off-Policy PPO and PPO during training (Meng et 

al., 2024). 
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Figure 6: PPO 

Figures 5 and 6 show that Proximal Policy Optimization (PPO), including its off-policy variant, achieves high 

expected returns with smooth, stable learning curves. The clipped objective enables conservative updates, 

preventing large fluctuations. Off-policy PPO learns faster initially by reusing past data but converges to 

similar performance. In urban mobility applications, PPO’s high sample efficiency, convergence stability, and 

robustness make it suitable for real-time tasks like traffic signal control and fleet dispatch, supporting SDG 11 

goals of reducing congestion, emissions, and improving transport accessibility. 

Table 3: PPO Performance Comparison 

Algorithm Stability Sample Efficiency Computational 

Complexity 

REINFORCE Low Low Low 

Actor-Critic Moderate Moderate Moderate 

TRPO High Moderate High 

PPO High High Moderate 

The PPO Performance Comparison table shows how major policy-based reinforcement learning algorithms 

trade-off against one another. PPO is highly stable, sample efficient and moderate in computational complexity 

and therefore a robust and convenient option in intelligent urban mobility systems. In contrast, PPO runs fast, 

unlike the REINFORCE which has large variance and sample inefficiency, it creates consistent performance 

more so than TRPO that has computational intricacy. Actor-Critic approaches offer a middle-ground 

alternative, although the advantage of PPO is that its clipped objective minimises unsafe updates and 

relaxation convergence times. PPO with balanced reliability, flexibility, and computability produces a dynamic 

real-time decision-making appropriate in the case of SDG-11 urban mobility applications. 

CONCLUSION 

This paper shows that the framework of policy-based reinforcement learning (RL) can be used to design 

sustainable and intelligent urban mobility systems that can follow the principles of sustainable development 

that has the Sustainable Development Goal 11. Comparative algorithms like REINFORCE, Actor-Critic, and 

PPO, and TRPO, it can be stated that policy-based algorithms, especially PPO/actor-critic show high stability, 

sample efficiency, and adaptability to complex, high-dimensional, and stochastic urban settings. It is essential 

to meet this set of capabilities in applications such as adaptive traffic signal control, fleet dispatch, and 

mitigation of congestions through real-time decision-making. Policy-based RL can use intelligent automation 

and powerful policy optimization to enable scalable, data-driven policy that can simultaneously minimize 
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emissions, maximize transport accessibility, and other overall urban efficiency. This confirms the purpose of 

reinforcement learning as both a technological instrument and a strategic tool to enable long-lasting sustainable 

urban development. This framework finally progresses the synergy between AI and sustainability by proving 

its capabilities of transformation to reach the resilient, inclusive and smart city ready future. 

CONTRIBUTIONS TO KNOWLEDGE 

The research presents a few important contributions to the areas of reinforcing learning (RL) and its use in 

achieving SDG 11 in the context of sustainable urban mobility. To begin with, it strengthens the insight into 

the performance of multiple policy-based RL algorithms, including REINFORCE, Actor-Critic, PPO, and 

TRPO, in complex, high dimensional and dynamic environment connected with sustainability. The researchers 

fill an important gap between theoretical RL implementations and practical SDG development by observing 

these algorithms back into a simulated environment using performance measures such as expected return, 

sample efficiency and convergence stability. Second, it recommends an organised mechanism of implementing 

the policy-based techniques on intelligent urban mobility systems, thus providing feasible solutions in the 

application of AI-based solutions in dealing with urban issues such as congestion, emissions, and accessibility. 

Finally, the paper gives great recommendations to policymakers, urban designers, and even AI designers as 

they compare algorithmic trade-offs, thus, making informed decisions regarding the deployment of socially 

responsible and situational-relevant AI tools with the goals of sustainable development. 
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