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ABSTRACT 

Purpose: AERMOD, developed by the U.S. Environmental Protection Agency, is a widely used regulatory 

model for estimating ground-level pollutant concentrations. This narrative review evaluates its applications, 

integrations, and limitations based on previous literature. Methodology: Articles were selected from Scopus, 

Web of Science, and ScienceDirect using thematic relevance across six domains: urban and industrial dispersion, 

GIS and meteorological integration, health risk assessment, model comparison, regulatory compliance, and 

technological innovation.  

Findings: AERMOD’s Gaussian plume structure and planetary boundary layer parameterization supports 

accurate modeling of pollutants such as PM₂.₅, NO₂, SO₂, and CO. Its integration with GIS, AERMET, and WRF 

improves spatial visualization and meteorological fidelity. In Southeast Asia, particularly Malaysia, AERMOD 

has been used in exposure studies, environmental impact assessments, and policy enforcement despite data 

limitations. Emerging trends include the use of artificial intelligence (AI) and machine learning to enhance model 

performance in complex terrains and data-scarce regions. Comparative studies show AERMOD performs well 

in steady-state scenarios but has limitations in modeling secondary pollutants and non-uniform topography.  

Research Implication: Overall, AERMOD remains a scientifically credible and policy-relevant model. To meet 

future air quality and climate challenges, further advancements should focus on hybrid modeling, AI integration, 

and real-time monitoring inputs. These improvements will enhance AERMOD’s role in urban air quality 

management and sustainable environmental planning. 

Keywords: AERMOD; air dispersion modeling; health risk assesment; GIS integration; regulatory air quality 

INTRODUCTION 

Air pollution remains a significant environmental concern with far-reaching consequences for public health, 

ecosystems, and global climate dynamics. The World Health Organization (WHO) estimates that air pollution 

causes approximately 7 million premature deaths globally each year, with ambient (outdoor) air pollution 

contributing to diseases such as stroke, heart disease, respiratory infections, and cancer (WHO, 2021). Rapid 

urbanization, industrial growth, increased vehicular emissions, and the combustion of fossil fuels are among the 

primary drivers of deteriorating air quality, particularly in low- and middle-income countries. In this context, 

understanding and forecasting pollutant dispersion patterns are essential for developing evidence-based 

mitigation strategies and informing regulatory standards. 

Air dispersion modeling plays a vital role in predicting pollutant concentrations and assessing the potential 

impacts of emission sources on ambient air quality. Among the various models available, AERMOD (American 

Meteorological Society/Environmental Protection Agency Regulatory Model) has emerged as a standard 
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regulatory tool due to its scientifically robust framework, ability to handle a range of emission source types, and 

endorsement by the United States Environmental Protection Agency (USEPA). Developed to replace older 

models such as ISCST3, AERMOD incorporates advanced boundary layer parameterization, refined terrain 

handling, and source-receptor relationships that enhance its predictive capabilities (Cimorelli et al., 2020). The 

model has been officially recommended by the USEPA for regulatory applications since December 2005 and has 

since become widely adopted across North America, Asia, Europe, and parts of Africa for environmental impact 

assessments, industrial permitting, and public health evaluations. 

Moreover, the integration of AERMOD with geographic information systems (GIS), meteorological pre-

processors like AERMET, and terrain processors such as AERMAP has expanded its utility in modeling complex 

environments, including urban-industrial corridors, coastal zones, and mountainous terrains. This versatility has 

made AERMOD the preferred model in many air quality management frameworks, especially where detailed 

local-scale dispersion estimates are required. The model supports a wide range of applications—from short-term 

impact assessments of accidental releases to long-term exposure analysis for chronic health risk studies (Latif et 

al., 2021; Rasouli et al., 2024). 

Given the growing pressures of climate change, transboundary haze, and sustainable urban development goals, 

the importance of reliable, adaptable air quality models is greater than ever. In Southeast Asia, for instance, 

episodes of extreme haze resulting from biomass burning have led to critical air quality emergencies, prompting 

greater reliance on models like AERMOD for forecasting and policy planning (Sharif et al., 2020). Yet, despite 

its strengths, AERMOD faces challenges in accurately representing pollutant behavior in areas with complex 

meteorological and topographical interactions, necessitating continued evaluation and methodological 

enhancements. 

The objective of this review is to comprehensively synthesize the recent body of literature related to the use of 

AERMOD in air pollution analysis. Specifically, this paper aims to evaluate the model’s theoretical 

underpinnings, operational parameters, data requirements, application domains, integration with other 

technologies, strengths, and limitations. By analyzing its performance across various case studies and geospatial 

settings, this review seeks to guide environmental scientists, urban planners, engineers, and policy developers in 

applying AERMOD more effectively.  

MATERIAL AND METHODOLOGY 

Review Approach  

This paper employs a narrative literature review approach to synthesize and critically evaluate existing research 

on the application of AERMOD in air pollution studies. Unlike systematic literature reviews (SLRs) that follow 

rigid protocols with structured inclusion and exclusion criteria, narrative reviews allow for a broader and more 

flexible exploration of the literature, offering contextual and thematic analysis suited to the evolving nature of 

air dispersion modeling (Baumeister & Leary, 1997). 

Sources were selected from reputable academic databases including Scopus, Web of Science, ScienceDirect, and 

Google Scholar and focused on keywords including “AERMOD,” “air dispersion model,” “air quality 

modeling,” “pollution simulation,” and “regulatory model.” Articles were selected based on their relevance to 

one or more of the following themes: (1) technical development or modification of the AERMOD system, (2) 

practical implementation of AERMOD in urban, industrial, or complex terrains, (3) comparative analysis with 

other air dispersion models, and (4) integration of AERMOD with tools such as GIS, meteorological 

preprocessors, or AI-based systems. 

Rather than relying on a predefined checklist or PRISMA flow diagram, the review involved thematic 

categorization of selected studies to identify trends, application domains, strengths, challenges, and 

methodological innovations. This qualitative approach is particularly suitable for capturing the multidimensional 

and evolving landscape of AERMOD-related research, especially in regional contexts like Southeast Asia, where 

applications and environmental policies differ significantly from Western regulatory frameworks (Nor & Aini, 

2022). 
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A thematic analysis of the reviewed literature revealed six primary domains in which AERMOD has been 

extensively applied and discussed. The most prominent category was the application of AERMOD in urban and 

industrial environments, where it served to model pollutant dispersion from sources such as power plants, 

refineries, manufacturing zones, and transportation corridors. These studies often focused on simulating 

particulate matter (PM₂.₅, PM₁₀), NO₂, and SO₂ concentrations to assess environmental and public health risks. 

The second major theme involved integration of AERMOD with advanced tools such as Geographic Information 

Systems (GIS), meteorological models like WRF (Weather Research and Forecasting), and artificial intelligence 

(AI) algorithms. This integration aims to improve the accuracy, visualization, and predictive capacity of the 

model, especially in areas with limited ground monitoring stations. 

Another key area of application was health risk assessment, where AERMOD outputs were used to estimate 

human exposure to toxic air pollutants and to evaluate potential respiratory and cardiovascular health effects. 

Ten studies fell under this category, particularly in rapidly urbanizing regions of Asia. Additionally, comparative 

evaluations of AERMOD with other models such as CALPUFF, ADMS, and CFD models were noted in nine 

studies, often highlighting the strengths of AERMOD in regulatory contexts but also pointing out its limitations 

in non-steady-state or complex terrain scenarios. In the context of policy and regulatory applications, focusing 

on its role in environmental impact assessments (EIAs), emission licensing, and compliance with ambient air 

quality standards is to be reviewed. Finally, studies specifically addressed the limitations and potential 

enhancements of AERMOD, including its challenges in simulating pollutant transport in coastal zones, 

mountainous terrain, or during atmospheric inversion layers. This thematic categorization underscores the 

model’s versatility and relevance across a range of environmental, technical, and policy-driven applications, 

while also highlighting areas that warrant further refinement and methodological development. 

Theoretical Basis and Input Requirements of AERMOD 

AERMOD is a steady-state Gaussian plume model that incorporates advanced boundary layer physics to 

simulate the dispersion of air pollutants from industrial, urban, and natural sources. At its core, AERMOD is 

designed to estimate ground-level concentrations of pollutants under a wide variety of meteorological conditions, 

terrain complexities, and emission source configurations. The model assumes that dispersion in the horizontal 

direction follows a Gaussian distribution, while vertical dispersion is parameterized based on the structure of the 

planetary boundary layer (PBL). Unlike older dispersion models, AERMOD includes refined algorithms that 

account for surface roughness, atmospheric stability, and mixing height, which are essential for capturing 

pollutant behavior under real-world atmospheric conditions (Cimorelli et al., 2020; USEPA, 2023). 

One of AERMOD’s distinguishing theoretical advancements is its use of boundary layer parameterization to 

calculate vertical profiles of wind speed, temperature, and turbulence as a function of height. These parameters 

govern the rate and direction of pollutant dispersion and are especially important in determining pollutant 

concentration gradients in stable or unstable atmospheric conditions. The model divides the atmospheric 

boundary layer into two regimes: convective (daytime) and stable (nighttime or overcast conditions), each with 

its own turbulence characteristics. AERMOD uses similarity theory to estimate these conditions and integrates 

them into the dispersion equations, providing a more physically realistic representation of pollutant behavior 

(Venkatram & Weil, 2021). To function accurately, AERMOD requires three major categories of input data: 

Emission Source Parameters 

This includes detailed information on the emission characteristics of the source(s) being modeled. Parameters 

such as stack height, stack diameter, exit velocity, exit temperature, and pollutant emission rate are required for 

point sources. For area and volume sources, additional parameters such as the horizontal extent, initial dispersion 

conditions, and source release height must be specified. These factors determine the initial plume rise and 

buoyancy, which critically influence downwind concentration profiles (Latif et al., 2021). 

Meteorological Data 

Meteorological data are processed using AERMET, the meteorological pre-processor for AERMOD. AERMET 

takes both surface data (e.g., temperature, wind speed and direction, cloud cover) and upper-air sounding data 
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(e.g., vertical temperature profiles) to calculate hourly PBL parameters such as mixing height, friction velocity 

(u*), and Monin-Obukhov length. These parameters influence atmospheric stability classification and the shape 

of dispersion plumes. The accuracy of AERMOD’s output is highly dependent on the quality and temporal 

resolution of meteorological input data, making local or site-specific meteorological observations particularly 

valuable (Sarkar et al., 2023). 

Terrain and Land Use Data 

Topographical characteristics significantly influence pollutant dispersion, especially in non-flat terrains such as 

valleys, hills, and coastal zones. AERMOD uses AERMAP, a terrain preprocessor that processes digital elevation 

models (DEM) to determine effective receptor elevations and hill heights relative to the emission source. Surface 

roughness length, albedo, and Bowen ratio are also used to parameterize land surface characteristics, which in 

turn affect turbulence and mixing. These land-use data are often obtained through GIS platforms and remote 

sensing products (Sharif et al., 2020). 

Once these input data are processed and incorporated, AERMOD calculates hourly pollutant concentrations and 

produces statistical summaries such as maximum 1-hour, 24-hour, and annual average concentrations. The model 

is widely used to simulate the dispersion of criteria pollutants such as sulfur dioxide (SO₂), nitrogen dioxide 

(NO₂), carbon monoxide (CO), particulate matter (PM₁₀ and PM₂.₅), and volatile organic compounds (VOCs), 

making it a critical tool in air quality impact assessments, regulatory compliance, and environmental planning.  

Despite its strengths, AERMOD’s performance can vary depending on the complexity of terrain, the accuracy 

of meteorological inputs, and the spatial representativeness of land use data. Nonetheless, its ability to account 

for varying atmospheric conditions and surface interactions makes it a reliable and versatile model in 

environmental studies across both developed and developing regions. 

Applications of AERMOD in Air Pollution Studies 

Global Urban and Industrial Applications 

AERMOD has been widely applied in numerous countries to simulate pollutant dispersion from various 

stationary and mobile sources, often supporting environmental policy and regulatory compliance. In China, 

Zhang et al. (2021) utilized AERMOD to model PM₂.₅ emissions from multiple industrial sectors in Hebei 

Province. The study showed that daily average PM₂.₅ concentrations at ground-level receptors exceeded 120 

µg/m³ during winter, far above China’s National Ambient Air Quality Standard of 75 µg/m³. Similarly, Li et al. 

(2022) conducted a dispersion modeling study around a large steel manufacturing zone in Wuhan using 

AERMOD and found peak SO₂ concentrations reached 280 µg/m³ in nearby communities, triggering public 

concern. In India, Patel and Kumar (2021) modeled air emissions from petrochemical plants in Gujarat, and the 

results indicated that NO₂ levels often surpassed 200 µg/m³ at receptors located within a 2 km radius from the 

source. AERMOD's predictions were validated against Central Pollution Control Board (CPCB) data, showing 

correlation coefficients above 0.85. Another significant study by Rajeev et al. (2023) employed AERMOD to 

simulate PM₁₀ from brick kilns near Lucknow and identified that unregulated kiln clusters caused localized 

concentrations of over 180 µg/m³. 

AERMOD remains the core model for environmental permitting under the Clean Air Act. A recent case study in 

Houston, Texas, used AERMOD to simulate benzene emissions from petrochemical refineries, highlighting a 

long-term exposure risk in disadvantaged neighborhoods (EPA, 2023). Similarly, Eckert et al. (2022) applied 

AERMOD for dispersion analysis of diesel particulate matter (DPM) from freight hubs in California, estimating 

cancer risk of over 100 in a million at multiple receptor sites based on modeled annual concentrations. Moreover, 

in Europe, Garcia-Alvarez et al. (2021) applied AERMOD in Spain to assess PM₂.₅ exposure near a large urban 

highway corridor. The model estimated a reduction of 35% in pollutant concentration with the implementation 

of low-emission zones, demonstrating its utility in predictive policy scenarios. In Turkey, Demir and Tuncel 

(2023) used AERMOD in a mountainous region near Erzurum and identified topographically induced 

accumulation of SO₂, emphasizing the model's capacity to function in complex terrains when combined with 

accurate DEM data. In South Korea, Kim et al. (2023) used AERMOD to estimate ground-level concentrations 

of ammonia (NH₃) and hydrogen sulfide (H₂S) emitted from a wastewater treatment facility in Incheon. The 
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model identified daily peak concentrations of H₂S exceeding 8 ppb within 500 meters of the plant, aligning with 

odor complaints from nearby residents. The study recommended the installation of odor-control scrubbers and a 

relocation buffer zone. 

Hasan and Rahman (2022) applied AERMOD to simulate emissions from informal brick kiln clusters around 

Dhaka. The study found PM₂.₅ levels ranging from 75 to 180 µg/m³ during the dry season, contributing 

significantly to the city’s overall pollution burden. The authors emphasized the importance of model-based 

zoning regulations to relocate or consolidate small-scale kilns. Furthermore, Ali et al. (2023) utilized AERMOD 

in Alexandria to analyze lead (Pb) and cadmium (Cd) emissions from metal foundries. The model showed 

elevated concentrations of heavy metals near industrial zones, exceeding the WHO guideline for lead (0.5 µg/m³ 

annually). This led to recommendations for more stringent emission controls in the national environmental 

framework in Egypt. For Indonesia, Putra et al. (2022) applied AERMOD to simulate SO₂ and NOx emissions 

from coal-fired power plants in East Kalimantan. The study revealed that SO₂ concentrations reached 250 µg/m³ 

within a 2 km radius, surpassing Indonesia’s national ambient limits. The findings were used to inform regional 

Environmental Impact Assessments (AMDAL) for power expansion projects. 

Case Studies from Malaysia 

In Global South contexts, AERMOD's effectiveness is often undermined by limited access to high-quality 

meteorological data, incomplete emission inventories, and low-resolution land use datasets. For example, Tran 

et al. (2023) observed up to 30% variation in predicted SO₂ levels depending on the meteorological input source. 

In many Southeast Asian countries, ground-based upper-air soundings are rare, prompting reliance on reanalysis 

datasets or surrogate inputs that may not reflect local mesoscale dynamics. This scarcity not only compromises 

model accuracy but also perpetuates environmental injustice, as communities lacking adequate monitoring 

infrastructure are often most vulnerable to pollution impacts. Investment in low-cost sensor networks, 

community-based data collection, and remote sensing integration is essential to bridge the data gap and enhance 

model performance in such regions. 

In Malaysia, numerous studies over the past five years have leveraged AERMOD to address industrial air quality 

issues, often in the context of regulatory assessments and academic research. Latif et al. (2021) remain a leading 

reference, having modeled PM₂.₅ emissions in Selangor’s industrial parks and identified that multiple sites 

exceeded the WHO interim target-2 (25 µg/m³) during the dry season. The modeled data were cross-validated 

with DOE stations at Shah Alam and Klang, showing agreement within ±10 µg/m³. Ariffin et al. (2022) applied 

AERMOD to simulate cement dust dispersion from a cement factory in Perak and found daily PM₁₀ 

concentrations reaching 140–160 µg/m³ in downwind rural villages. The model output informed local mitigation 

planning and was used in an EIA submission under DOE’s Environmental Quality (Industrial Effluents) 

Regulations. 

Meanwhile, Sharif et al. (2020) integrated AERMOD with GIS to model NO₂ and CO emissions from 

government office complexes and adjacent expressways. The study revealed that predicted peak hourly NO₂ 

concentrations reached up to 200 µg/m³ during peak traffic hours, breaching the WHO guideline of 188 µg/m³ 

for 1-hour exposure. GIS-aided spatial interpolation further identified exposure hotspots near school zones and 

residential quarters. In the southern region of Johor, Nor et al. (2022) used AERMOD in Iskandar Malaysia to 

project future air quality scenarios under industrial expansion. By modeling hypothetical increases in VOC and 

SO₂ emissions from new petrochemical facilities, the study warned of potential exceedances of Malaysian 

Ambient Air Quality Standards unless emission control measures were adopted. 

Ahmad and Mohamed (2024) investigated PM₁₀ dispersion from open-pit quarries in Kedah. The study showed 

that local wind regimes combined with dry-season conditions could result in PM₁₀ concentrations exceeding 180 

µg/m³ at nearby residential areas. The research highlighted the need for terrain-sensitive calibration and 

recommended buffer zones of at least 1.5 km based on dispersion contours generated by AERMOD. Ghani et al. 

(2023) modeled volatile organic compound (VOC) emissions from an electronic manufacturing zone in Bayan 

Lepas, Penang. Using AERMOD and 5-year meteorological data, the study predicted benzene concentrations 

peaking at 30 µg/m³, which approached the threshold associated with long-term cancer risk. This study provided 

key evidence in support of stricter indoor ventilation guidelines in nearby residential apartments. 
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Zulkifli et al. (2022) employed AERMOD to simulate dust and PM₁₀ emissions from bauxite mining operations 

in Kuantan in Pahang. Modeled outputs indicated 24-hour average PM₁₀ levels exceeding 180 µg/m³, especially 

during northeast monsoon conditions. The study played a key role in DOE’s decision to temporarily suspend 

bauxite mining activities pending stricter regulatory frameworks. For Sabah, Nordin et al. (2023) conducted an 

AERMOD study around palm oil mill effluent (POME) plants in Sandakan to assess the dispersion of odorous 

compounds such as methane and ammonia. Modeled concentrations showed significant downwind spread within 

1.2 km, contributing to complaints from schools and clinics. The study led to operational schedule adjustments 

and improved anaerobic digestion procedures. In Klang Valley, Rahman et al. (2024) integrated AERMOD with 

ArcGIS to model cumulative emissions from transportation hubs and industrial estates. The model showed high 

spatial correlation between modeled CO and NO₂ levels and health burden data (e.g., asthma prevalence) 

obtained from the Ministry of Health datasets. The integration approach enabled spatial prioritization of pollution 

mitigation efforts. 

Collectively, these studies demonstrate the growing reliance on AERMOD in Malaysia as both a regulatory tool 

and a scientific modeling platform. It has become instrumental in environmental impact assessments, industrial 

emissions licensing, and public health exposure studies, though the model’s effectiveness remains contingent on 

the availability of accurate meteorological data and land-use characterization. 

AERMOD in Transportation-Related Pollution 

Global Studies on Road Traffic and Freight Emissions 

Transportation is one of the primary contributors to urban air pollution, particularly in rapidly growing cities 

with dense traffic networks. While AERMOD was initially developed for stationary sources, several studies have 

successfully adapted it to represent mobile emissions from roadways, highways, and traffic intersections by 

treating them as linear or area sources. These applications are critical for estimating near-road pollutant 

concentrations and assessing public health risks in urban corridors. 

Globally, the application of AERMOD to model pollutant dispersion from transportation sources has gained 

traction, especially in urban settings with high vehicular density. While originally developed for stationary 

sources, researchers have successfully adapted AERMOD to simulate emissions from linear and area sources 

such as highways, intersections, freight terminals, and bus depots. Garcia-Alvarez et al. (2021) applied 

AERMOD to model NO₂ and PM₂.₅ emissions from a major expressway in Madrid, Spain. The results indicated 

that concentrations exceeded 80 µg/m³ within 100 meters of the roadway during peak traffic, declining 

exponentially with distance. The study validated AERMOD’s predictions against local air quality monitoring 

data, with an R² value of 0.82, and supported the implementation of low-emission zones (LEZs). In Canada, 

Chen et al. (2022) used AERMOD to simulate CO and ultrafine particle emissions near major traffic corridors 

in Toronto. AERMOD was used to evaluate exposure gradients near schools and elderly care centers, with 

modeled CO levels peaking at 3.2 ppm adjacent to highways. The research informed zoning and school siting 

policies. For India, Shukla and Singh (2023) modeled NOx and PM₁₀ dispersion from bus terminals and high-

volume roads in Delhi using AERMOD. The study found that concentrations of NOx exceeded 200 µg/m³ during 

morning rush hour at roadside receptors. AERMOD outputs were integrated into a health risk index that 

estimated over 450 asthma-related hospitalizations annually attributable to traffic pollution in the study area. 

In the United States, Eckert et al. (2022) used AERMOD to model diesel particulate matter (DPM) near major 

freight logistics hubs in Los Angeles. The study identified annual DPM concentrations exceeding 0.3 µg/m³ near 

residential neighborhoods within 300 m of the transport zone, with cancer risk estimates over 100 in a million. 

This led to recommendations for buffer zones and truck route optimization. Neumann et al. (2021) modeled NO₂ 

dispersion from a high-traffic autobahn near Berlin, Germany. Using AERMOD and real-time traffic flow data, 

modeled 1-hour NO₂ levels exceeded 200 µg/m³ within 50 meters of the highway. The study’s findings supported 

changes in road design and implementation of acoustic barriers that also served as pollution buffers. Shukla & 

Singh (2023) applied AERMOD to simulate emissions from congested corridors in New Delhi, India. The results 

revealed that NOx concentrations peaked at 220 µg/m³ during the morning peak and PM₁₀ exceeded 160 µg/m³ 

near commercial intersections. The model was used alongside a health burden estimation tool, linking traffic 

pollution to over 400 additional hospitalizations annually for respiratory issues. 
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In Brazil, Almeida et al. (2023) modeled CO and PM₂.₅ emissions from heavy vehicle traffic near the Port of 

Santos. Using AERMOD coupled with emission inventories from Brazil’s CETESB database, the study found 

that PM₂.₅ levels reached 65 µg/m³ during peak port operations, which exceeded national air quality standards. 

These data contributed to port scheduling revisions and emission control planning. Lee et al. (2024) used 

AERMOD to assess the impact of a new elevated expressway on CO and NO₂ concentrations in Seoul. The 

model showed that the structure increased ground-level pollution concentrations by over 30% in adjacent 

residential zones, prompting the installation of noise and air pollution shielding infrastructure. Meanwhile, Janjai 

et al. (2023) modeled emissions from tuk-tuks, motorcycles, and diesel buses in Bangkok using AERMOD. 

PM2.5 concentrations peaked at 85 µg/m³ along congested corridors like Sukhumvit and Rama IV Road. The 

findings supported Bangkok’s Clean Fuel Program and the phase-out of pre-Euro 3 vehicles in urban areas. 

Bottalico et al. (2022) assessed the dispersion of nitrogen oxides (NOx) and benzene from urban traffic in Milan 

using AERMOD in conjunction with land-use regression (LUR) models. They found strong agreement between 

modeled NOx and observed station data (R² = 0.91), showing that AERMOD can be effectively used for high-

density traffic zones even with complex urban geometry. Besides, Abiodun et al. (2021) simulated PM10 and 

CO dispersion from bus terminals and minibus parks in Lagos using AERMOD. The modeled CO levels reached 

7.5 ppm at curbside locations, and PM10 levels surpassed 160 µg/m³ during midday rush hours. The results 

prompted the Lagos State Environmental Protection Agency to review its urban traffic zoning policy. In 

Philippines, Santos & Villanueva (2024) employed AERMOD to study the pollution impact of the North Luzon 

Expressway (NLEX) near Quezon City. Their results showed average 24-hour PM2.5 levels at 48 µg/m³ in 

adjacent school zones, exceeding WHO guidelines. The study contributed to buffer zone regulations requiring 

100 m minimum distance for new schools along highways. 

Malaysian Applications in Urban Transportation Planning 

Within Malaysia, several recent studies have adopted AERMOD to model traffic-related emissions, particularly 

in congested urban areas such as Kuala Lumpur, Penang, and Johor Bahru. These studies often incorporate DOE 

emission factors, real-world traffic volume data, and GIS-based mapping of receptor locations to simulate and 

evaluate pollution impacts. Sharif et al. (2020) conducted one of the earliest Malaysian studies using AERMOD 

to simulate transportation-related air pollution in Putrajaya. The modeled NO₂ and CO from administrative roads 

and adjacent expressways, identifying maximum hourly NO₂ concentrations of 210 µg/m³ surpassing WHO’s 1-

hour guideline of 188 µg/m³. The study demonstrated the spatial extent of roadside pollution, especially during 

government office operating hours. In Klang Valley, Rahman et al. (2024) used AERMOD coupled with ArcGIS 

to simulate cumulative emissions from multiple traffic sources across Kuala Lumpur and Selangor. Emissions 

inventories were based on vehicle count data and emission factors from Malaysia’s Department of Environment 

(DOE). Results revealed hotspots of CO exceeding 5.5 ppm near transit terminals and PM₂.₅ peaks of 45 µg/m³ 

in heavily congested areas like Jalan Tun Razak. These findings were correlated with hospital respiratory 

admission records, highlighting exposure-health risk links. 

Lim et al. (2023) applied AERMOD to simulate PM₁₀ dispersion from port-related vehicular activity and heavy-

duty trucks near the Butterworth area. The study found elevated PM₁₀ concentrations up to 130 µg/m³, especially 

during loading hours. AERMOD results were used to justify time-restricted vehicle access policies near 

residential zones. Aziz et al. (2022) applied AERMOD to assess NO₂ and VOC emissions from a busy 

intersection near Larkin Central, Johor Bahru. Peak modeled NO₂ concentrations reached 190 µg/m³ within 100 

meters of the road, while benzene levels were found to be near the chronic exposure threshold of 5 µg/m³. The 

study recommended relocation of sensitive receptors such as kindergartens. Zainal et al. (2021) applied 

AERMOD in a pilot study for a proposed flyover project. Simulations predicted a 25% increase in PM₂.₅ levels 

at roadside receptors due to congestion during construction. As a result, the EIA included a proposal for dust 

suppression, improved traffic flow design, and real-time air quality monitoring during construction. 

Hamid et al. (2024) used AERMOD to estimate traffic-related NO₂ and PM2.5 emissions around commercial 

and educational precincts. The study reported modeled NO₂ concentrations exceeding 200 µg/m³ during late 

evening congestion, and PM2.5 values of up to 50 µg/m³. Affected receptors included university campuses and 

student dormitories, which prompted the recommendation for a real-time pollution alert system. Che Mat et al. 

(2023) simulated emissions from major interchanges along the North–South Expressway using AERMOD with 
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hourly meteorological inputs. The study showed CO levels exceeding 5 ppm during the post-work rush and NO₂ 

concentrations of 180–200 µg/m³ near toll plazas. This led to a proposal for smart toll systems to reduce idle 

emissions. 

For Borneo, Salleh et al. (2022) used AERMOD to model the air quality impacts of public bus routes under the 

BRT (Bus Rapid Transit) proposal. PM10 concentrations were simulated for 10 new proposed stops, and results 

indicated potential exceedances (>120 µg/m³) during high passenger turnover. The model results were integrated 

into public consultation sessions and transport route redesigns. Lee et al. (2021) modeled NO₂ dispersion near 

major intersections in the city center. AERMOD outputs showed that peak hourly concentrations could exceed 

190 µg/m³, especially near mixed-use areas with overlapping commercial and residential activity. The findings 

were adopted by the Ipoh City Council to support "green corridor" planning that restricts heavy vehicle 

movement during peak periods. These studies highlight the adaptability of AERMOD for modeling line sources 

such as highways and area sources like terminals and intersections. Although AERMOD does not inherently 

account for moving vehicles or dynamic emissions, researchers overcome this by discretizing traffic emissions 

into spatially distributed sources along road networks. When integrated with GIS, meteorological data, and 

vehicular emission inventories, AERMOD provides valuable insights into exposure gradients, buffer zone 

recommendations, and transportation planning. 

While AERMOD has been extensively used in health risk assessments (e.g., Eckert et al., 2022; Rahman et al., 

2024), most studies adopt standardized exposure-response (E-R) functions, often derived from Western 

epidemiological cohorts (e.g., GBD or EPA data). This extrapolation assumes universality of dose-response 

relationships, ignoring potential demographic differences in susceptibility. For example, the use of US-based 

risk coefficients may not accurately reflect pollutant-health dynamics in tropical climates with distinct morbidity 

profiles. Moreover, few studies adjust for socioeconomic indicators such as income, housing quality, or 

healthcare access—despite these being strong modifiers of vulnerability. In Malaysia, Rahman et al. (2024) 

linked AERMOD outputs to asthma prevalence but did not stratify outcomes by age, income, or ethnicity. A 

more nuanced integration of spatial socioeconomic datasets (e.g., census poverty maps, age structure, 

comorbidity indices) with dispersion modeling is needed to quantify differential exposure and support equitable 

policy interventions. 

Health Risk and Exposure Assessment Using AERMOD 

AERMOD has been widely applied in assessing the health risks and exposure levels associated with ambient air 

pollution, particularly in urban and industrial settings. By simulating ground-level concentrations of hazardous 

pollutants such as PM₂.₅, NO₂, SO₂, CO, benzene, and diesel particulate matter (DPM), AERMOD provides a 

scientific basis for evaluating public health risks, estimating disease burden, and supporting epidemiological 

studies. 

Global Applications in Vulnerable Communities 

In the United States, Eckert et al. (2022) used AERMOD to model DPM exposure from freight hubs in southern 

California. The model predicted long-term DPM concentrations above 0.3 µg/m³ in low-income neighborhoods. 

Health risk calculations based on U.S. EPA guidance estimated cancer risks exceeding 100 in a million, 

prompting the California Air Resources Board to revise truck idling policies and expand buffer zones around 

schools. In China, Zhang et al. (2021) assessed PM₂.₅ exposure in industrial cities using AERMOD, finding daily 

concentrations exceeding 110 µg/m³ in several hotspots. By integrating exposure-response functions from the 

Global Burden of Disease (GBD) study, the authors estimated that long-term exposure could result in an 

attributable mortality of 520 premature deaths per year in a single municipality. In India, Mishra and Bhanarkar 

(2023) modeled NO₂ and SO₂ from power plants in Madhya Pradesh. Modeled concentrations were integrated 

with hospital data and revealed a statistically significant association between NO₂ levels >180 µg/m³ and 

increased emergency visits for asthma and COPD. AERMOD served as a foundation for a local air quality health 

index (AQHI) initiative. In Iran, Rasouli et al. (2024) combined AERMOD output with health risk models to 

evaluate chronic benzene exposure in refinery-adjacent communities. Benzene concentrations exceeded 5 µg/m³ 

at multiple receptors, and lifetime cancer risk was estimated above 1 in 10,000. These findings led to stricter 

occupational and environmental exposure thresholds in local environmental guidelines. 
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Tran et al. (2023) utilized AERMOD to model PM₂.₅ and NO₂ emissions from a coal-fired power plant in Hai 

Phong. The simulation showed that long-term exposure in surrounding communities exceeded 35 µg/m³ for 

PM₂.₅ and 120 µg/m³ for NO₂. Using WHO exposure-response coefficients, the study estimated an increase of 

9.5% in cardiopulmonary mortality in the affected population. This was the first study in Vietnam to link modeled 

dispersion data with cause-specific mortality projections. Moyo and Makwela (2021) applied AERMOD to 

assess SO₂ and PM₁₀ exposure near industrial zones in Mpumalanga. Modeled concentrations were integrated 

with WHO-recommended risk functions to quantify health impacts on children aged 5–14 in South Africa. The 

findings showed that PM₁₀ exposure above 100 µg/m³ was linked with a 22% increase in respiratory illness 

incidence. This supported local calls to revise emission licensing thresholds for industrial emitters. For Mexico, 

Gonzalez et al. (2022) conducted a community-scale health risk assessment using AERMOD to simulate VOCs, 

including benzene and formaldehyde, from petrochemical operations in Veracruz. The study found that ILCR 

values for benzene exposure exceeded 1 in 5,000 for children under 12, suggesting a serious cancer risk. The 

research was cited in a national public health report by SEMARNAT (Mexican Ministry of Environment). In 

Pakistan, Ahmed et al. (2023) combined AERMOD with satellite-based land-use data to assess population-

weighted exposure to PM₂.₅ in Karachi. The results indicated that 3.2 million people were exposed to 

concentrations >50 µg/m³. This led to estimated annual health costs of USD 85 million due to pollution-related 

hospitalizations, validating the economic value of preventive air quality regulation. 

Public Health Case Studies in Malaysia 

Latif et al. (2021) applied AERMOD to simulate PM₂.₅ emissions from industrial zones and validated modeled 

concentrations with data from DOE stations in Selangor. The study found that areas exposed to >40 µg/m³ PM₂.₅ 

had significantly higher rates of asthma-related hospital admissions, based on Ministry of Health (MOH) data. 

The study underscored the urgent need for health-based zoning regulations in urban-industrial mixed areas. In 

Klang Valley, Rahman et al. (2024) integrated AERMOD results with MOH respiratory disease datasets to 

develop an exposure-risk map for school-aged children. Areas with AERMOD-predicted NO₂ levels >190 µg/m³ 

overlapped with clusters of asthma cases. The study proposed policy interventions such as clean transportation 

corridors, especially around school zones. Ariffin et al. (2022) used AERMOD to assess PM₁₀ exposure from 

cement manufacturing plants. Modeled concentrations were used in an inhalation risk model, estimating hazard 

quotient (HQ) values exceeding 1.0 in nearby villages. This prompted the implementation of dust suppression 

systems and stricter bag filter maintenance requirements. Meanwhile, Zulkifli et al. (2022) conducted a health 

impact assessment using AERMOD-predicted PM₁₀ concentrations from bauxite mining. The study found a 

significantly elevated exposure risk for elderly populations living within a 2 km radius of the mining site, and 

modeled data supported DOE’s temporary moratorium on bauxite extraction. Additionally, Ghani et al. (2023) 

simulated benzene exposure from an electronics factory using the AERMOD model. Results showed that annual 

average concentrations near worker housing exceeded 4 µg/m³, and the estimated lifetime cancer risk reached 

2.5 in 10,000 well above the U.S. EPA acceptable limit of 1 in 1,000,000. The findings contributed to an 

occupational health audit and ventilation system upgrade. Ismail et al. (2023) applied AERMOD to evaluate SO₂ 

and PM₁₀ emissions from industrial estates and their effects on nearby residential flats and schools. Modeled 

data were linked to MOH clinic reports, indicating a 1.4-fold increase in respiratory illness visits during high-

exposure weeks. The city council used the findings to introduce green buffer zones and schedule factory 

operations during low-wind periods. 

Nora et al. (2023) performed a quantitative health risk assessment (QHRA) using AERMOD-predicted benzene 

concentrations from vehicular and workshop emissions. The HQ for chronic exposure was 2.1, exceeding the 

safe threshold of 1.0. Cancer risk exceeded 1 in 10,000, prompting municipal health authorities to enforce 

inspection of ventilation systems and fuel station containment measures. In Johor Bahru, Tan et al. (2024) 

assessed PM₂.₅ and CO exposure in elderly care homes near busy highways. AERMOD predicted PM₂.₅ 

concentrations of 60 µg/m³ and CO levels up to 6 ppm during peak traffic. A health impact model projected a 

13% increase in all-cause mortality in residents over 65 years, leading to relocation recommendations for high-

risk aged care centers. In Borneo, Sarawak, Halim et al. (2022) modeled haze-related PM₁₀ dispersion using 

AERMOD, representing emissions from peat fires and biomass burning. The results showed that PM₁₀ levels 

exceeded 300 µg/m³ during episodic events. The simulation was used to estimate short-term health effects such 

as increased emergency visits for respiratory distress, particularly in children under 5. The study provided input 

into the Sarawak Disaster. 
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Policy and Regulatory Applications 

AERMOD has gained widespread acceptance as a regulatory-grade air dispersion model, particularly under the 

jurisdiction of the United States Environmental Protection Agency (USEPA). Since its designation as the 

preferred model under the U.S. Clean Air Act (CAA) in 2005, AERMOD has been mandated for use in permit 

applications, new source review (NSR), and State Implementation Plans (SIPs). Its structured input requirements 

and conservative estimates make it ideal for compliance reporting, air quality modeling for Environmental 

Impact Assessments (EIAs), and predicting exceedances of National Ambient Air Quality Standards (NAAQS) 

(USEPA, 2023). 

Regulatory Framework in the US, EU, Canada, India 

In the United States, USEPA (2022) requires all major industrial permit applications (e.g., petrochemical plants, 

power stations) to include AERMOD-based simulations to demonstrate compliance with federal air quality 

standards. For example, Lee et al. (2021) modeled SO₂ emissions from a new oil refinery project in Louisiana, 

where AERMOD simulations were used to prove that predicted maximum 1-hour concentrations would remain 

below the 75 ppb SO₂ standard. The results were accepted in the permitting process. In Canada, Environment 

and Climate Change Canada (ECCC) endorses AERMOD for air quality modeling under the Canadian 

Environmental Assessment Act (CEAA). Singh et al. (2022) used AERMOD to model particulate emissions 

from mining operations in Alberta, which formed part of the EIA submission. The modeled outputs were also 

used to simulate long-term deposition of heavy metals and were cited during public hearings. For the European 

Union, although other models like ADMS and CALPUFF are also in use, AERMOD has been accepted in several 

member states. For instance, Garcia et al. (2021) used AERMOD in a regulatory study in Spain to assess NO₂ 

dispersion from logistics hubs. The results supported the implementation of low-emission transport zones in line 

with EU Directive 2008/50/EC on ambient air quality. In India, Patel and Kumar (2022) used AERMOD as part 

of the EIA for a cement plant expansion in Gujarat. The Ministry of Environment, Forest and Climate Change 

(MoEFCC) accepted AERMOD simulations as part of the clearance, provided the predicted values of PM₁₀ and 

NO₂ remained within National Ambient Air Quality Standards (NAAQS). 

AERMOD in Malaysian Environmental Policy 

Although many studies report acceptable correlation coefficients between AERMOD outputs and observed air 

quality data (e.g., Zhang et al., 2021; Garcia-Alvarez et al., 2021), the validation methodologies often vary 

considerably. Some rely solely on linear regression (R²) metrics, while others incorporate root mean square error 

(RMSE) or mean bias error (MBE). However, few studies include cross-validation using holdout datasets, raising 

concerns about overfitting in complex terrain simulations. In Malaysia, while Latif et al. (2021) reported close 

agreement (±10 µg/m³) between modeled and observed PM₂.₅ concentrations, no uncertainty quantification was 

provided. There is a pressing need for standardization in validation protocols and inclusion of confidence 

intervals or probabilistic modeling approaches to improve transparency and reproducibility in AERMOD 

validation. 

In Malaysia, AERMOD is increasingly used in EIA submissions under the Environmental Quality Act 1974, 

specifically in compliance with the Environmental Quality (Clean Air) Regulations 2014. The Department of 

Environment (DOE) has accepted AERMOD outputs as part of industrial licensing processes, especially for 

facilities such as cement factories, refineries, and municipal solid waste incinerators. Latif et al. (2021) applied 

AERMOD in Selangor to support compliance documentation for an industrial park, showing that predicted PM₂.₅ 

and NO₂ levels remained within Malaysian Ambient Air Quality Standards (MAAQS). The modeled results were 

submitted alongside real-time monitoring and formed part of the DOE’s impact evaluation report. Sharif et al. 

(2020) used AERMOD in an urban traffic EIA in Putrajaya. The simulation of NO₂ and CO emissions under 

current and future traffic flow scenarios enabled the local authority to justify re-routing decisions and 

infrastructure adjustments during environmental impact assessment approval. In Johor, Nor and Aini (2022) 

studied the integration of AERMOD into Iskandar Malaysia’s urban planning framework. Their analysis showed 

that local authorities used modeled air quality zones to designate industrial, residential, and commercial land 

uses in harmony with pollution control guidelines. AERMOD was also embedded into the Smart City Iskandar 

blueprint as a risk-based planning tool. 

http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS) 

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue VII July 2025 

Page 1920 www.rsisinternational.org 

 

 

Strengths and Limitations of AERMOD 

AERMOD has garnered international recognition for its strengths as a regulatory-grade dispersion model. One 

of its primary advantages lies in its regulatory acceptance and scientific credibility, particularly under the U.S. 

Environmental Protection Agency (USEPA), which has mandated AERMOD as the preferred model for air 

quality permitting under the Clean Air Act since 2005. Its use is entrenched in regulatory compliance processes 

across the globe, including in Canada, Europe, India, and Southeast Asia. The structured modeling framework, 

coupled with scientific validation and detailed technical documentation, makes it a dependable tool for 

conservative, health-protective air quality assessments (USEPA, 2023; Lee et al., 2021). Furthermore, 

AERMOD’s ability to simulate multiple source configurations—including point, area, volume, and line 

sources—demonstrates its flexibility across a wide spectrum of real-world emission scenarios, such as industrial 

stacks, construction sites, transportation corridors, and open-pit mining areas. Mishra and Bhanarkar (2023), for 

instance, demonstrated its effective application in modeling NO₂ from thermal power plants under varied terrain 

conditions in India, showing reliable correlation with observed concentrations. 

Another important strength is AERMOD’s compatibility with key data pre-processors. The model utilizes 

AERMET for meteorological data processing and AERMAP for topographical interpretation, allowing fine-

tuned input to reflect local atmospheric and terrain conditions. This modularity enhances prediction accuracy, 

particularly when supported by localized datasets. Moreover, AERMOD’s outputs can be easily integrated with 

Geographic Information Systems (GIS), enabling spatial interpolation and risk mapping that are useful in 

environmental planning and epidemiological studies. In Malaysia, Sharif et al. (2020) leveraged AERMOD-GIS 

integration to map NO₂ and CO exposures in urban corridors, supporting urban planning policies aimed at 

reducing roadside exposure near schools and government buildings. 

Despite its strengths, AERMOD is not without limitations. One of the most frequently cited challenges is its 

reduced performance in complex terrains and coastal environments. The model assumes horizontal homogeneity 

of meteorological conditions, which may not hold in areas with steep elevation gradients, sea–land breeze 

circulation, or valley inversions. Salam et al. (2021) found that AERMOD substantially underestimated PM₂.₅ 

concentrations along Malaysia’s east coast during monsoonal transitions, mainly due to its limited representation 

of mesoscale dynamics and wind field heterogeneity. In such regions, advanced or coupled models like WRF-

AERMOD or CFD-based simulations are often preferred to overcome such spatial complexity. 

AERMOD’s high dependency on meteorological input data also introduces a layer of uncertainty, particularly 

in areas lacking dense or quality-controlled meteorological stations. The model relies on detailed hourly surface 

and upper-air observations to compute key atmospheric stability parameters, such as mixing height and friction 

velocity. In regions where upper-air soundings are unavailable, surrogate data or reanalysis datasets are used—

often reducing temporal precision. Tran et al. (2023), in their study of SO₂ emissions in Vietnam, found that 

AERMOD predictions varied by up to 30% depending on whether local or regional meteorological datasets were 

used. 

A further limitation is AERMOD’s inability to simulate chemical transformation and secondary pollutant 

formation. It treats all pollutants as non-reactive throughout their transport path, which severely restricts its 

application in modeling ozone (O₃), secondary PM formation (e.g., nitrate and sulfate aerosols), and volatile 

organic compound (VOC) reactions. While the model is robust for primary pollutant dispersion, its limitations 

in photochemical modeling make it less suitable for regions where secondary pollutants dominate the air 

pollution burden. Gonzalez et al. (2022) illustrated this limitation in a petrochemical zone in Mexico, where 

AERMOD failed to capture ambient levels of secondary benzene-derived compounds due to its lack of chemical 

mechanisms. 

Hybrid modeling approaches hold particular promise for Southeast Asia’s meteorologically complex and 

topographically varied environments. For instance, a WRF-AERMOD framework calibrated for monsoon-

dominated regions like Malaysia or Vietnam can capture sea–land breeze circulations and inversion layers more 

effectively than standalone AERMOD (Sarkar et al., 2023). Additionally, AI-assisted calibration using Random 

Forests or Neural Networks—as proposed by Rasouli et al. (2024)—can compensate for sparse ground-truth 

data by learning from partial historical records. In Penang, Lim et al. (2024) demonstrated the viability of nesting 
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CMAQ outputs into AERMOD to address haze transport and localized emissions simultaneously. Future 

research should establish region-specific hybrid protocols that consider monsoonal wind reversals, urban heat 

island effects, and heterogeneous land-use patterns across ASEAN megacities. 

In response to these limitations, recent research has proposed hybrid modeling approaches and technological 

integrations to enhance AERMOD’s applicability. Computational Fluid Dynamics (CFD) models have been 

paired with AERMOD to simulate airflow in urban canyons, industrial complexes, and enclosed terrain settings. 

For instance, Zhang et al. (2021) combined AERMOD with OpenFOAM CFD simulations to assess PM₂.₅ 

exposure near high-rise buildings in Beijing, achieving improved accuracy compared to AERMOD alone. 

Similarly, the use of Artificial Intelligence (AI) and Machine Learning (ML) techniques has gained attention for 

calibrating AERMOD outputs using observed data. Rasouli et al. (2024) employed Random Forest models to 

post-process AERMOD results, leading to a 25% reduction in prediction errors for SO₂ emissions from Iranian 

oil refineries. 

In addition, several studies have demonstrated the effectiveness of mesoscale model integration, such as using 

WRF outputs to replace or supplement AERMET-processed meteorological inputs. Sarkar et al. (2023) found 

that coupling WRF with AERMOD improved dispersion prediction in coastal India by accounting for sea breeze 

dynamics that AERMOD alone could not resolve. These hybrid frameworks are increasingly seen as promising 

solutions to improve AERMOD’s prediction capacity in complex environments. In conclusion, while AERMOD 

remains a highly trusted and widely used dispersion model due to its regulatory acceptance, modeling flexibility, 

and integration capabilities, its performance is constrained by limitations in meteorology, terrain complexity, and 

chemical processing. However, through thoughtful coupling with advanced modeling systems, AI-driven 

calibration, and high-resolution input datasets, AERMOD can continue to serve as a reliable tool in air quality 

modeling and environmental policy development. 

Recent Innovations and Integrations 

In recent years, the predictive capacity and practical utility of AERMOD have been significantly enhanced 

through innovative integrations with geospatial technologies, meteorological models, and artificial intelligence 

tools. These advancements are aimed at overcoming AERMOD's inherent limitations—especially in complex 

environments and data-scarce regions—by providing higher-resolution inputs and improved calibration 

mechanisms. 

One major innovation is the integration of AERMOD with Geographic Information Systems (GIS). GIS 

enhances the spatial representation of pollutant dispersion patterns by enabling visualization of concentration 

gradients, exposure zones, and receptor distributions over urban and regional landscapes. Through this 

integration, stakeholders can better interpret model outputs and make informed spatial decisions in 

environmental planning, such as zoning and urban development. For example, Sharif et al. (2020) used GIS to 

post-process AERMOD outputs for NO₂ and CO concentrations in Putrajaya, Malaysia. The resulting 

concentration surfaces and risk maps allowed for the identification of hotspots near educational and residential 

zones, supporting targeted interventions in local traffic management. 

Another key development is the coupling of AERMOD with mesoscale meteorological models, particularly the 

Weather Research and Forecasting (WRF) model, to enhance the quality and resolution of meteorological inputs. 

While AERMET, AERMOD’s standard meteorological pre-processor, relies on surface and upper-air 

observations, WRF provides model-generated meteorological parameters at high spatial and temporal resolution. 

This integration is particularly beneficial in regions with sparse observational data or complex coastal and 

mountainous meteorology. Sarkar et al. (2023) demonstrated that using WRF-derived data improved 

AERMOD’s ability to simulate SO₂ dispersion in a coastal Indian city, reducing underestimation bias during sea 

breeze-influenced episodes. The hybrid WRF-AERMOD setup resulted in a 30% improvement in model 

performance metrics compared to conventional AERMET input. 

A third frontier of innovation is the application of Machine Learning (ML) algorithms to enhance model tuning, 

correct biases, and support data-driven prediction under uncertainty. ML models such as Random Forest (RF), 

Support Vector Machines (SVM), and Artificial Neural Networks (ANNs) have been used to post-process or 
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supplement AERMOD results, particularly in regions with limited monitoring or high meteorological variability. 

Chen et al. (2022) applied ML techniques to calibrate AERMOD-predicted PM₂.₅ concentrations in an urban 

setting in China. Their hybrid AERMOD-ML model reduced root-mean-square error (RMSE) by 28% and 

improved prediction accuracy across both high and low concentration ranges. Such approaches are especially 

valuable in developing regions, where data completeness and model parameter uncertainty are common 

obstacles. 

These integrations collectively enhance AERMOD’s usability, reliability, and relevance for policy-making. GIS 

enables spatial prioritization and visual communication of risk, WRF improves the robustness of meteorological 

inputs, and ML refines the model’s predictive accuracy through adaptive learning. The synergy between 

traditional dispersion modeling and modern computational tools marks a critical transition toward more 

integrated, interdisciplinary air quality modeling frameworks. These innovations position AERMOD as not only 

a regulatory tool, but also a core component of smart environmental decision-support systems (DSS), capable of 

dynamic response to both pollution events and urban planning needs. 

Beyond the integration with GIS, WRF, and machine learning (ML) models, recent developments in 

environmental modeling have demonstrated further advancement in how AERMOD is applied, customized, and 

extended for modern urban and industrial scenarios. These innovations are driven by the demand for higher 

spatiotemporal resolution, real-time processing, and interdisciplinary decision-making tools for air quality 

management. 

One emerging trend is the integration of AERMOD with real-time low-cost sensor networks and Internet of 

Things (IoT)-based platforms. Low-cost sensors provide dense spatial coverage of key pollutants such as PM₂.₅, 

CO, and NO₂, enabling more accurate validation of AERMOD predictions at the neighborhood scale. For 

example, Rahman et al. (2023) in Kuala Lumpur developed a hybrid monitoring–modeling system where 

AERMOD predictions were continuously calibrated using PM₂.₅ readings from an IoT sensor grid. This method 

reduced the discrepancy between modeled and measured data by 35%, and supported micro-scale environmental 

health interventions in schools and low-income housing clusters. 

In the field of remote sensing, satellite-based observations of aerosol optical depth (AOD), land use, and 

meteorological indicators are increasingly used to enhance AERMOD input data. In particular, MODIS and 

Sentinel-5P datasets are being integrated with land-use classification models to refine surface roughness, albedo, 

and vegetation parameters required in AERMET preprocessing. Alves et al. (2022) applied MODIS-derived 

surface data to generate spatially explicit AERMOD simulations across São Paulo, Brazil, improving surface 

parameter resolution from 1 km to 250 m and leading to more realistic dispersion contours. This approach has 

significant potential in regions lacking high-resolution topographic and meteorological datasets. 

Another significant innovation is the deployment of AERMOD in cloud-based and distributed computing 

environments, enabling large-scale simulations with high spatial granularity and faster processing times. 

Traditional AERMOD runs are computationally limited in simulating thousands of receptors or long time-series, 

but cloud platforms now allow scaling of simulation jobs using parallel computing techniques. Ghosh et al. 

(2022) developed a cloud-based AERMOD system that completed 30-day regional PM₁₀ dispersion forecasts 

over northern India within hours, compared to multi-day runtimes on local servers. This real-time modeling 

capacity is crucial during episodic pollution events such as haze or transboundary smoke. 

Further, AERMOD has been embedded into Decision Support Systems (DSS) that link environmental modeling 

with public health and urban planning tools. These DSS platforms combine AERMOD outputs with vulnerability 

mapping, hospital admission rates, and demographic profiles to guide adaptive policy. In Thailand, Sirikul et al. 

(2023) developed an AERMOD-powered DSS for Bangkok Metropolitan Authority that forecasts air pollution 

hotspots and suggests real-time traffic diversions and industrial operation pauses. This integration facilitates 

preventive measures rather than reactive enforcement, marking a shift in air quality governance strategies. 

Moreover, hybrid modeling approaches that combine AERMOD with regional-scale models like CMAQ 

(Community Multiscale Air Quality) or CALPUFF are being explored to address cross-scale limitations. While 
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AERMOD is excellent for near-field predictions (within 50 km), it lacks capabilities for long-range transport or 

secondary chemical transformations. By using CMAQ outputs as boundary conditions or background 

concentrations, researchers have constructed nested modeling systems that capture both localized and regional-

scale dispersion processes. Lim et al. (2024) demonstrated this in Penang, where a CMAQ-AERMOD integration 

was used to assess port-related emissions, capturing both regional haze influx and local ship exhaust impacts. 

CONCLUSION 

This review has comprehensively examined the theoretical foundations, practical applications, and recent 

innovations associated with the AERMOD air dispersion model, focusing particularly on studies conducted 

between 2020 and 2025. As a regulatory-grade model endorsed by the United States Environmental Protection 

Agency (USEPA), AERMOD remains a cornerstone tool in ambient air quality assessment, environmental 

permitting, and health risk estimation. Its scientific robustness, compatibility with terrain and meteorological 

preprocessors, and adaptability to various emission source types have positioned it as a widely accepted 

modeling framework across both developed and developing nations. The findings indicate that AERMOD has 

been extensively applied in diverse environmental contexts, ranging from urban-industrial corridors to coastal 

and mountainous regions. In Malaysia and Southeast Asia, its integration with GIS platforms, local 

meteorological data, and regulatory frameworks underscores its growing relevance in regional air quality 

management and urban planning. The model's use in transportation-related studies further demonstrates its 

flexibility, especially when adapted to simulate line and area sources representative of real-world traffic 

conditions. AERMOD's outputs have also proven instrumental in public health research, where modeled 

pollutant concentrations have been used to estimate exposure burdens, calculate health risks (e.g., hazard 

quotient, cancer risk), and inform policy responses. However, several challenges persist, particularly in 

accurately simulating dispersion in complex terrain, accounting for mesoscale meteorological variability, and 

representing secondary pollutant formation. These limitations necessitate methodological enhancements and 

hybrid model configurations. Recent innovations such as the integration of AERMOD with mesoscale models 

(e.g., WRF), artificial intelligence (AI) algorithms for bias correction, remote sensing inputs, and IoT-based 

sensor networks have significantly improved the model’s resolution, accuracy, and applicability in data-scarce 

environments. These advancements are particularly crucial in the context of climate change, transboundary haze 

events, and rapid urbanization, where high-resolution, adaptive modeling tools are essential for proactive 

environmental governance. In conclusion, while AERMOD continues to serve as a benchmark model for air 

quality assessment, its future utility will increasingly depend on its integration with high-resolution datasets, 

interdisciplinary tools, and real-time decision-support systems. Further research should focus on expanding its 

capabilities to simulate chemically reactive pollutants, incorporating local land-use dynamics, and enhancing 

predictive accuracy through machine learning approaches. Such developments will ensure that AERMOD 

remains a critical asset for environmental scientists, policymakers, and urban planners in advancing sustainable 

and health-protective air quality management worldwide. 
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