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ABSTRACT 

This study evaluates the technical efficiency and input utilization of rice monoculture farms in the coastal 

region of Vietnam's Mekong Delta during the Winter-Spring crop season. Using the Slack-Based Measure 

Data Envelopment Analysis (SBM-DEA) model, the study analyzes input redundancy and identifies 

inefficiencies in the use of fertilizers, pesticides, herbicides, and irrigation resources. Based on a survey of 342 

farms across five provinces, results reveal that the average technical efficiency score is 0.662, with only 12.9% 

of farms achieving optimal efficiency. Pesticides and irrigation were the most overused inputs, with 

redundancy rates of 21% and 15%, respectively, while seed use showed the lowest inefficiency at 5.95%. 

Determinants of efficiency included gender, farm size, and irrigation systems, with male-headed farms and 

larger plots exhibiting higher efficiency. 

Keywords: Rice monoculture farms, Slack-Based Measure DEA, Technical efficiency, Input redundancy, 

Mekong Delta. 

INTRODUCTION 

Rice production in the coastal regions of the Mekong Delta (MD) faces increasing challenges due to the 

impacts of climate change. According to Nguyen et al. (2020), over 50% of rice farms in coastal areas are now 

subject to frequent salinity intrusion and reducing productivity. Recent studies indicate that rice productivity is 

now approaching its optimal level, with yields averaging 7-8 tons/ha during the Winter-Spring season (CIAT 

2020). However, this trend raises concerns about diminishing returns to input use, as further increases in yield 

may require disproportionately higher resource investments. One of the critical issues in current rice 

production practices in the MD is the inefficiency in input utilization. High levels of fertilizer application and 

suboptimal irrigation management contribute to resource wastage without commensurate increases in 

productivity (Huynh et al., 2019). For instance, Nguyen and Tran (2021) highlighted that up to 30% of 

fertilizer inputs could be reduced without impacting rice yields, suggesting significant room for optimization. 

These inefficiencies underline the urgent need for research on technical efficiency and input redundancy in rice 

production. Understanding the determinants of technical efficiency and identifying strategies to reduce 

excessive input use can provide a suitable solution for achieving higher efficiency levels in rice production, 

particularly in the challenging environments of coastal at the MD. 

The CCR (Charnes, Cooper, and Rhodes, 1978) and the BCC (Banker, Charnes, and Cooper, 1984) models use 

the non-parameter approach in the data envelopment analysis (DEA). Both are used to evaluate the efficiency 

of decision-making units (DMUs), but they differ in their assumptions about returns to scale. The CCR model 

assumes constant returns to scale (CRS). This means that the model assumes that increasing all inputs by a 

certain proportion will lead to an increase in output by the same proportion. The CCR model is suitable for 

analyzing efficiency in cases where the scale of production does not affect efficiency, such as in industries 

with a perfectly competitive market structure. The BCC model assumes variable returns to scale (VRS). The 

BCC model allows efficiency to vary with the scale of production. This means that the model allows efficiency 

to increase or decrease as the scale of production changes. The BCC model is more suitable for agriculture 

sector, where the impact of scale of production on the efficiency of production should be examined. Regarding 
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DEA studies, since its inception, numerous studies in agriculture have been implemented. In Vietnam, many 

studies have applied the DEA method to evaluate economic efficiency in general and allocation efficiency in 

agriculture. These studies indicate that agricultural households generally exhibit high technical efficiency but 

low allocation efficiency due to poor management of labor and fertilizers (Thong, 2012; Tuan & Nhan, 2017; 

Nam & Dung, 2018; Cong & Man, 2019; Nhut, 2007; Nhut & Hiền, 2014; Nhut, 2008, 2009; Nhan & Xe, 

2016; Huynh and Nguyen, 2016; Ha, 2021; Chinh et al., 2022). Regarding the assessment of the inefficiency in 

input use, the Slack-Based Measure DEA model (SBM-DEA) has been a significant extension of the 

traditional DEA model via allowing for a deep evaluation of inefficiencies in resource utilization. Initially 

developed by Charnes, Cooper, and Rhodes (1978), DEA provided a method to measure efficiency by 

comparing decision-making units (DMUs) against an efficient frontier. The SBM model initiated by Tone 

(2001) to explicitly account for input excesses and output shortfalls, referred to as slacks, making it 

particularly valuable for identifying inefficiencies that traditional DEA models might overlook. In agriculture, 

the SBM-DEA model has been instrumental in optimizing resource use. For instance, Wu et al., (2018) used 

SBM-DEA to identify inefficiencies in water and fertilizer use in Chinese farms and highlighted areas for 

significant cost reductions without compromising output. Thirtle et al., (2003) applied the SBM-DEA model to 

rice production in Thailand and Vietnam revealing substantial slack in input use, particularly in water and 

labor. Zhu's (2003, 2014) extended the SBM-DEA framework by integrating nonlinear factors and improving 

computational techniques, making the model more robust for applications in diverse fields, including public 

services and finance. These enhancements are particularly relevant for agricultural settings, where input-output 

relationships can be highly variable and nonlinear. Studies by Huynh and Nguyen (2016) and Bui et al., (2019) 

used SBM-DEA to identify excessive labor and water use among rice farmers in the Mekong Delta, suggesting 

that efficiency gains of up to 20-30% were achievable through resource optimization. Additionally, Chinh et 

al. (2022) found that climate-smart agricultural practices, such as "Three reductions, Three gains" and "One 

must, Five reductions," effectively minimized slack, particularly in fertilizer and irrigation use. In summary, 

the SBM DEA model provides a robust framework for evaluating and improving resource efficiency and 

makes it a valuable tool for guiding sustainable agricultural practices and policy development as well. This 

paper aims to analyze the technical efficiency (TE) of rice production and identify opportunities to minimize 

redundant input usage in order to enhance rice productivity in the coastal provinces of the MD. The paper is 

presented into three sections. The first section describes the theoretical framework of SBM-DEA model 

consisting of its mathematical formulation, slack analyses, sampling, and scope of the study. The second 

section shows the results and discussions of TE and input slack of rice monoculture farms. The third section 

presents the conclusion and recommendation. 

THEORETICAL FRAMEWORK  

Description of SBM-DEA models 

The DEA model is a non-parametric method used to evaluate the efficiency of decision-making units (DMUs). 

Unlike parametric method in Stochastic Frontier Analysis (SFA model), the DEA model does not require any 

assumptions about the form of the production function. Instead, it uses linear programming to construct an 

efficiency frontier based on the most efficient DMUs in the dataset. DMUs on the efficiency frontier are 

considered efficient, while DMUs below the frontier are deemed inefficient. The distance from an inefficient 

DMU to the efficiency frontier is a measure of the DMU's inefficiency. DEA can also identify the sources of 

inefficiency by determining the specific inputs or outputs that the DMU is utilizing inefficiently. The DEA 

model has advantages of not need to explicitly specify the mathematical form of the production function, 

handling multiple inputs and outputs effectively, and analyzing and quantifies the sources of inefficiency for 

each DMU. However, it also has disadvantages of that results are sensitive to the choice of inputs and outputs, 

high efficiency scores may result from actual efficiency or an appropriate combination of inputs/outputs, the 

number of efficient DMUs on the frontier increases with the number of input and output variables, and 

efficiency scores of DMUs can be obtained using non-unique weight combinations on input and/or output 

factors. There are two main DEA models. CCR model (or CRS DEA model) assumes the constant returns to 

scale (CRS) that increasing all inputs by a certain proportion will lead to a proportional increase in outputs. 

The CCR model is suitable for analyzing efficiency in cases where production scale does not affect efficiency. 

Meanwhile, the BCC model (or VRS DEA model) assumes variable returns to scale (VRS) that allows 
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efficiency to vary with production scale. In other words, the BCC model allows efficiency to increase or 

decrease as the production scale changes. Besides, the distinguish between input-oriented model vs. output-

oriented model needs to justified in DEA measures. The measure of TE using the input-oriented model allows 

to answer the question of how much can inputs be proportionally reduced without changing the output 

quantity. On the other hand, in the output-oriented model, the measure of TE is measured by answering that 

how much output(s) can be increased without altering the amount of inputs used. In this paper, the input-

oriented BCC model (or input-oriented VRS DEA model) is chosen because of two reasons that in the MD 

firstly it is more suitable for the rice production conditions, where farms’ scale is quite different and secondly 

rice farms are typically more concerned with efficiently using inputs rather than seeking benefits from the 

output market, which is highly dependent on the uncertainties of domestic and international rice markets. 

Finally, there are one output and seven inputs used in the study; that is, rice yield (kg/ha), land preparation 

costs (thousand VND/ha), irrigation costs (thousand VND/ha), seed quantity (kg/ha), fertilizer quantity 

(kg/ha), labor (person-days/ha), pesticide costs (thousand VND/ha), herbicide costs (thousand VND/ha). 

The SBM-DEA model, introduced by Tone (2001), is an extension of basic DEA model designed to address 

inefficiencies related to input excesses (slack) and output shortfalls (slack). Unlike the basic DEA models, 

which only provide an efficiency score, the SBM-DEA model allows to incorporate slacks directly into the 

efficiency measurement, making it particularly robust for identifying and quantifying inefficiencies in 

decision-making units (DMUs). Given a set of n DMUs, each with m inputs and s outputs, the SBM-DEA 

model evaluates the efficiency of each DMU based on the following optimization: 

Minimize:  ρ = 
1− 

1

𝑚
∑

𝑠𝑖
−

𝑥𝑖0

𝑚
𝑖=1
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Subject to: 

Xλ + 𝑠− = x0,  Yλ - 𝑠+= y0,  λ ≥ 0,  𝑠−  ≥  0,   𝑠+  ≥  0 

where:  

s−: input slack (excess inputs) 

s+: output slack (shortfalls in outputs) 

λ: the intensity variable 

x0, y0: the input and output vectors for the DMU under evaluation. 

According to the model, the slack incorporation allows to integrate slacks directly into the efficiency 

calculation by providing a more detail analysis of inefficiency sources. That is, the efficiency score is invariant 

to the units of measurement so that making it versatile across different datasets. Another advantage is the 

capacity to handle non-proportional adjustments where inefficiencies stem from both proportional and non-

proportional changes in inputs and outputs. In addition, the SBM-DEA model is able to handle multiple inputs 

and outputs studies. It also has effective in distinguishing between efficient and inefficient DMUs. Figure 1 

describes both input slack and output slack in the SBM-DEA model. The input slack presents the gap 

between the actual input level of the inefficient DMU and the efficient input level required to reach the 

efficiency frontier. The output slack shows the gap between the actual output level of the inefficient DMU 

and the output level required to reach the efficiency frontier.  
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Figure 1: Input slack and output slack in the SBM-DEA model 

In this study the rDEA function in the R software is applied to estimate technical efficiency scores, perform 

descriptive statistical analyses and group farms by efficiency levels. 

Scope and sampling 

This study focuses on analyzing the technical efficiency of rice monoculture farms in the Winter-Spring crop 

surveyed in the year 2020 in the MD's coastal provinces. Amongst seven coastal provinces, the study area 

comprises five provinces: Tien Giang, Tra Vinh, Soc Trang, Bac Lieu, and Kien Giang. The reason is that Ben 

Tre has rapidly transitioned to other agricultural activities while Ca Mau predominantly practices rice-shrimp 

farming, which falls outside the scope of this research. Besides, a multi-stage random sampling method was 

employed via the following steps. Firstly, the survey initially identified 57 districts affected by salinity across 

five coastal provinces in the MD. This was based on the 2016 salinity intrusion map by the Southern Institute 

for Water Resources Research and consultations with experts and provincial agricultural departments. 

Secondly, from the identified districts, there were 100 hamlets randomly selected. Thirdly, within each hamlet, 

eight rice-farming households were chosen, resulting in an initial sample of 800 households. Finally, from the 

initial dataset, the study narrowed its focus to 342 households that practiced the Winter-Spring crop in the year 

2020 within the five target provinces. This refined sample forms the basis for evaluating the technical 

efficiency of rice monoculture farms. 

 

(a) Agro-regions in the Mekong Delta (b) Sample selection 

Source: CIAT (2020) 

Figure 2: Study site and sample selection of the study 
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RESULTS AND DISCUSSION  

Description of sample characteristics 

The survey on 342 rice monoculture farms shows that 90% of the household heads are male, with an average 

age of 53 years. Most farmers (80%) belong to the Kinh ethnic group, and the household size mean is 3-4 

persons. About the production conditions of farms, 63% of the farms have access to a complete internal 

irrigation system, and 55% of them have internal saline gates to protect against salinity intrusion. Despite these 

measures, 80% of the farms face salinity intrusion risks, and 53% of surveyed farms are located in salinity-

prone areas. Regarding farming practices, 67% of farms purchase agricultural inputs on credit. The rice area 

mean is approximately 2.3 hectares, with the largest being 38 hectares and the smallest 0.15 hectares. In the 

Winter-Spring crop, the average rice yield is 7.3 tons/ha. Input variables include irrigation, land preparation, 

seed, herbicide, fertilizer, pesticide, and labor costs. For Winter-Spring, the mean irrigation cost is 457 

thousand VND/ha, while land preparation costs reach 1,436 thousand VND/ha. Seed usage is about 150 kg/ha, 

with herbicide and fertilizer costs at 572 and 269 thousand VND/ha, respectively. Pesticide cost is significantly 

higher at 3,869 thousand VND/ha, and the mean labor input is 15 days/ha. 

Table 1: Descriptive Statistics of critical variables in the SBM-DEA model 

Variable Variable Description N Min Max Mean 
Std. 

Dev. 

Yield_dx Yield (kg/ha) 342 2,466 13,200 7,270 1,692 

Irri_ha_dx 
Irrigation cost (thousand 

VND/ha) 
342 0 6,500 457 638 

Land_power 

_ha_dx 

Land preparation cost 

(thousand VND/ha) 
342 0 3,550 1,436 520 

Seed_volume 

_ha_dx 
Seed (kg/ha) 342 37 307 150 38.91 

Herb_ha_dx 
Herbal cost (thousand 

VND) 
342 0 3,701 572 580 

Fert_dx_ha Fertilizer cost (kg/ha) 342 22 835 269 117 

Pest_ha_dx 
Pesticide cost (thousand 

VND/ha) 
342 0 20,000 3,869 3,135 

Labor_ha_dx Labor (days/ha) 342 2 53 15 7 

Labor_ha_ht Labor (days/ha) 342 1 45 13 7 

 

Technical efficiency scores 

Figure 3 shows the VRSTE (Variable Returns to Scale Technical Efficiency) values of farms across provinces 

in the Winter-Spring crop. The VRSTE mean, or the TE, in the Winter-Spring crop is 0.662. Regarding the TE 

of provinces, the results show that in the Winter-Spring crop, Soc Trang, Kien Giang, and Tien Giang 

sequentially have the highest TE scores at 0.695, 0.693, and 0.693, respectively, with Soc Trang having the 

highest VRSTE mean at approximately 0.695, while Bac Lieu has the lowest at approximately 0.536. 
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Figure 3: Technical efficiency measures of rice monoculture farms 

The proportion of farms is grouped by their TE scores. The largest group of farms (22.81%) falls within the 

efficiency range of 0.4 to 0.5, followed by 19.15% of farms with scores between 0.3 and 0.4. Farms scoring 

between 0.5 and 0.6 account for 16.37%, while those in the 0.6 to 0.7 range make up 10.67%. Farms with very 

low efficiency (0.1 to 0.2) are only 0.29%, while farms scoring 0.2 to 0.3 account for 7.60%. On the highest 

TE score of 1.0, 7.46% of farms belong to this group, and 4.09% of farms have scores between 0.9 and 1.0. 

The results indicate that the majority of farms operate below optimal efficiency levels and only a small 

proportion of farms obtain the highest score of 1.0. Table 2 provides a classification of rice monoculture farms 

based on their TE scores in the Winter-Spring crop. Based on the calculation results of technical efficiency 

types CRSTE, VRSTE, and scale efficiency (SE), rice farming households are classified into three types of 

farms to assess differences in production efficiency. In this paper, Type I represents the most efficient farms, 

followed by Type II, and Type III is considered the least efficient type of farms. Conceptually, Type I includes 

farms with CRSTE = 1, VRSTE = 1, and SE = 1; Type II consists of farms with VRSTE = 1, while CRSTE < 1 

and SE < 1. Type III comprises farms with CRSTE < 1, VRSTE < 1, and SE < 1. The results show that in the 

Winter-Spring crop, 12.9% (44 farms) were classified as Type I, while 15.5% (53 farms) belonged to Type II. 

The majority of farms, 71.6% (245 farms), were classified under Type III, indicating that most farms were the 

least efficient ones. 

Table 2: Classification on technical efficiency of rice monoculture farms  

Type of farm N % 

Type I 44 12.9 

Type II 53 15.5 

Type III 245 71.6 

Total 342 100.0 

 

Table 3 describes the proportion of types of farms corresponding to their technical efficiencies in the Winter-

Spring crop. In the Winter-Spring crop, only 12.86% and 16.96% of Type I farms (N=44) and Type II farms 

(N=58) achieved optimal and quasi-optimal efficiencies, respectively. Meanwhile, 70.18% of Type III farms 

(N=240) indicate that the majority of rice monoculture farms in the coastal regions of the MD have not yet 

achieved optimal efficiency in the utilization of inputs in rice production. In the Winter-Spring season, 79.82% 

of Type III farms operate under Increasing Returns to Scale (IRS), suggesting significant potential for 

efficiency improvements through better resource utilization. 
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Table 3: Type of technical efficiency corresponding to the economies of scale 

Type of farm N Mean Number of farms with … 

CRSTE VRSTE SE CRS DRS IRS 

Type I 44 1.000 1.000 1.000       44  0 0 

Type II 58 0.701  1.000  0.701  5                            7 46 

Type III 240 0.462  0.531  0.870  2  56 182 

Total 342       51  63  228  

Note: CRS, DRS, IRS: constant return to scale (super optimal), decreasing return to scale (sub optimal, 

increasing return to scale, respectively. 

CRSTE, VRSTE, SE: constant return to scale technical efficiency, variable return to scale technical efficiency, 

scale efficiency, respectively. 

Figure 4 represents the classification of farms by technical efficiency during the Winter-Spring season. The 

chart divides the farms into three types: Type I, representing 12.9% of the total farms, shown in light blue. 

Type II, comprising 15.5% of the farms, illustrated in orange. Type III, making up the majority with 71.6%, 

depicted in red. The chart highlights that Type III farms dominate in terms of quantity, while Type I and Type 

II are significantly smaller in proportion. 

 

Figure 4: Describes the classification of farms by technical efficiency for the Winter-Spring season 

Input Use Improvement 

Radial and slack analyses in the DEA model provide a more detailed assessment of the efficiency in using 

input factors. Definitively, the total efficiency of a DMU is the sum of radial efficiency and slack movement. 

Table 4 presents the results of the radial and slack analyses of input use for the efficiency farms (Type III) in 

the Winter-Spring crop. In the Winter-Spring crop, radial movements are at approximately 47.72%-51.49% of 

the inputs, indicating significant potential to uniformly reduce input uses. Regarding slack movements, the 

analysis results show that despite different levels of surplus usage, all inputs are being used excessively beyond 

necessary levels from highest to lowest: pesticides, irrigation costs, labor, herbicides, fertilizers, land 

preparation costs, and seeds. Thus, it can be seen that in the Winter-Spring crop, seed, land preparation, and 

fertilizers are the lowest overused inputs, while pesticide and irrigation costs are the highest levels of 

abundance. These analyses suggest the possibility of reducing input uses while maintaining the same level of 

productivity and efficiency. 
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Table 4: Radial and slack analyses of input use for the lowest inefficiency farms (Type III)  

Input Parameter Irri. Land. Prep Seed Pest. Fert. Herb. Labor 

Actual use  848 2,558 3,455 1,223 8,937 6,783 5,254 

Redundancy         

Movement 

(thousand 

VND) 

Radial  437 1,223 1,661 595 4,265 3,356 2,594 

Slack  128 197 205 259 702 898 726 

Total  565 1,420 1,867 854 4,966 4,254 3,320 

Movement 

(%) 

Radial  51.49 47.84 48.11 48.67 47.72 49.48 49.38 

Slack  15.10 7.70 5.95 21.20 7.85 13.24 13.81 

Total  66.59 55.54 54.06 69.87 55.57 62.72 63.19 

 

Figure 5 displays the redundancy rates of different agricultural inputs during the Winter-Spring season. The 

inputs analyzed are Irrigation, Land Preparation, Seeds, Pesticides, and Fertilizers. Each bar is split into two 

components: Radial (shown in blue): Represents inefficiencies that can be reduced by proportional scaling 

down of inputs. Slack (shown in orange): Reflects excess input usage beyond the proportional reduction. Key 

Details: Irrigation has the highest total redundancy rate of about 70%, with most of it coming from radial 

inefficiency. Land Preparation and Seeds exhibit similar redundancy rates, around 60%, with a slightly higher 

proportion of radial inefficiency than slack. Pesticides show the highest slack inefficiency among all inputs, 

contributing significantly to a total redundancy rate of about 70%. Fertilizers have the lowest total redundancy 

rate at approximately 55%, with radial inefficiency being the dominant source. Summary, the chart highlights 

substantial inefficiencies across all input categories, with Pesticides having the most prominent slack 

inefficiency. Efforts to optimize resource use could focus on reducing both radial and slack inefficiencies, 

particularly for pesticides and irrigation. 

 

Figure 5: The chart illustrates input redundancy (Radial and Slack) in the Winter-Spring season 

Input use efficiency of Winter-Spring seasons 

Regarding the rank of overused inputs in rice production, the results show that in the Winter-Spring crop, 

pesticides had the highest redundancy, followed by irrigation and labor. In contrast, seed use has the lowest 

redundancy. For the Summer-Autumn crop, irrigation is the most redundant input and pesticide use is at the 

second position while seed use has the lowest redundancy. Thus, irrigation costs, pesticides and land 

preparation costs, seed are the most and least overused inputs in both crops, respectively. Table 5 presents 

the comparison of the redundant rates of input uses between the Winter-Spring and Summer-Autumn 
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seasons. Firstly, irrigation shows a higher redundancy in Summer-Autumn (30.06%) compared to Winter-

Spring (15.10%), nearly doubling inefficiency. Secondly, land preparation and seed inputs have 

significantly lower redundancy in Summer-Autumn (3.10% vs. 1.77%) compared to Winter-Spring (7.70% 

vs. 5.95%), with difference ratios of 2.48 and 3.36, respectively, reflecting better efficiency in Summer-

Autumn. Thirdly, fertilizer redundancy also decreases in Summer-Autumn (7.85% vs. 16.93%) while 

pesticide input shows a minor improvement (18.28% vs. 21.20%). Finally, herbicides and labor inputs 

remain relatively stable with minor variations between the two seasons. Overall, farms in the Summer-

Autumn have greater efficiency in most inputs, particularly seed, land preparation, and fertilizers though 

irrigation inefficiency remains a challenge. These insights highlight opportunities to further optimize input 

uses across both crops. 

Table 5: Redundant rates of input use of Winter-Spring seasons 

Season Irri. 
Land. 

Prep 
Seed Pest. Fert. Herb. Labor 

Winter-Spring (1) 15.10 7.70 5.95 21.20 16.93 13.24 13.81 

Difference (time) 

(3) = (1)/(2) 
   0.50      2.48      3.36      1.16      2.16       0.91        0.90  

 

Determinants of technical efficiency 

The estimation of ordinal logistic regressions in the Winter-Spring crop shows that gender, plot area, irrigation 

system, change of variety between crops, and location are the determinants of the TE of rice monoculture 

farms in the coastal region of the MD. In the Winter-Spring season, statistically, male-headed farms and farms 

with larger cultivation areas have higher technical efficiency. Besides, farms in Bac Lieu province exhibit 

lower TE compared to Kien Giang province, which has better production resources. Location effects remain 

notable, with Bac Lieu and Tra Vinh provinces showing lower efficiency compared to Kien Giang province, 

indicating persistent location disparities. Table 6 presents the results of the estimation of ordinal logistic 

regressions in the Winter-Spring crop.Table 6: Results of ordinal logistic regression model 

Variable Description of variable Coefficient 

age Head’s age (years) -0.009 

(0.567) 

gender Dummy variable: (1: male, 0: female) 0.495* 

(0.237) 

d_edu Dummy education variable (1: higher 

primary, 0: others) 

0.906 

(0.818) 

number_family_member Household size (persons) -0.061 

(0.093) 

plot_area Rice cultivation area (m²) .0075* 

(0.039) 

number_plot Number of rice plot 0.157 

(0.176) 

trade_credit Dummy variable: Purchase of agricultural 

inputs on credit (1: yes; 0: no) 

-0.007 

(0.216) 

time_living Residence duration at locality (years) 0.009 

(0.012) 
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irri_system Dummy variable: Irrigation system (1: 

complete; 0: incompleted) 

-0.209 

(0.249) 

gate_protection Dummy variable: Internal saline gate (1: yes; 

0: no) 

-0.070 

(0.223) 

d_type_ variety Dummy variable: Rice type (1: specialty; 0: 

high-yield) 

-0.172 

(0.260) 

variety_change Dummy variable: Change of rice variety 

between 2 crops annually (1: yes; 0: no) 

0.126 

(0.216) 

d_TienGiang Dummy province variable (1: Tien Giang, 0: 

others) 

0.217 

(0.392) 

d_TraVinh Dummy province variable (1: Tra Vinh, 0: 

others) 

-0.470 

(0.499) 

d_SocTrang Dummy province variable (1: Soc Trang, 0: 

others) 

0.061 

(0.386) 

d_BacLieu Dummy province variable (1: Bac Lieu, 0: 

others) 

-0.801* 

(0.415) 

Chi square  65587.843*** 

Note:  ***, **, *: statistically significant at 1%, 5%, 10% respectively.  

   Numbers in () are standard errors. 

CONCLUSIONS AND RECOMMENDATIONS 

This study highlights significant inefficiencies in resource uses among rice monoculture farms in the coastal 

provinces of Vietnam’s Mekong Delta. The analysis of the TE using the SBM-DEA model reveals that most 

farms operate below optimal efficiency. In the Winter-Spring season, the TE score mean is 0.662, with only 

12.9% of farms achieving Type I efficiency (CRSTE = 1, VRSTE = 1, SE = 1). The majority of farms belong 

to Type III (71.6% in Winter-Spring), characterized by low efficiency. Input redundancy analysis shows 

significant overuse of key resources. For instance, pesticides, irrigation, and labor exhibited the highest 

inefficiencies in the Winter-Spring crop, with redundancy levels of 21.20%, 15.10%, and 7.70%, respectively. 

Conversely, seed use exhibits the lowest redundancy at 5.95%, indicating better efficiency in this input. 

Determinants of the TE include gender, farm size, and irrigation systems. The results show that male-headed 

farms and those with larger cultivation areas have higher TE. In contrast, farms equipped with complete 

irrigation systems paradoxically exhibit lower TE, possibly due to poor management or high maintenance 

costs. Additionally, location disparity significantly impacts the TE, with farms in Bac Lieu and Tra Vinh 

consistently showing lower efficiency compared to those in Kien Giang. 

To improve the TE of rice monoculture farmers, the following recommendations are proposed. Firstly, cost 

reduction through resource optimization will allow farms to achieve higher TE. As proposed, farmers could 

achieve up to a 21.20% reduction in pesticide use and a reduction in fertilizer use of 7.85% to 16.93% in the 

Winter-Spring crop without affecting TE. Second, enhancement in irrigation management should be 

considered. Investments in efficient irrigation systems and better training for farmers in their operation and 

maintenance are essential. Especially, addressing irrigation inefficiencies, which accounted for redundancy 

rates as high as 15.10% in the Winter-Spring crop, could substantially enhance productivity. Thirdly, 

interventions should promote the use of salt-tolerant rice varieties to improve resilience in salinity-prone areas 

where 80% of farms currently face salinity risks. Lastly, encouraging land consolidation or cooperative 

farming models could capitalize on the positive correlation between larger plots and higher TE. By addressing 
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these inefficiencies, rice production of rice monoculture farms in the coastal region of the MD can achieve 

greater sustainability and resilience against climate change challenges. 
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