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ABSTRACT 

Satellite communication is vital for global services such as internet access, weather forecasting, and military 

operations. However, systems operating above 10 GHz are highly affected by rain-induced signal loss, especially 

in tropical regions. This study introduces a machine learning-based approach to predict rain attenuation using 

linear regression, polynomial regression, and artificial neural networks (ANN). Rain attenuation data was 

generated using the Synthetic Storm Technique (SST) with rainfall measurements from 2019 to 2022 at 

University Technical Malaysia Melaka (UTeM). Model performance was evaluated against the ITU-R P.618-13 

and the Simple Attenuation Model (SAM). The ANN model showed the highest accuracy, achieving an RMSE 

of 0.98 dB and R² of 0.93 at 0.1% and 0.01% exceedance probabilities. The results demonstrate the potential of 

machine learning to improve communication reliability and support climate-resilient infrastructure planning in 

high-rainfall regions. 
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INTRODUCTION 

Reliable communication infrastructure plays a critical role in ensuring digital inclusion, public safety, and 

socioeconomic development—especially in underserved and climate-vulnerable regions. In recent years, 

satellite communication has emerged as a key enabler of global connectivity, bridging digital divides in remote 

and rural communities. However, the effectiveness of satellite-based services in tropical regions is often 

compromised by intense rainfall, which causes signal degradation known as rain attenuation (Tirmizi et al., 

2023). This issue is particularly urgent in equatorial regions, where heavy and frequent rains threaten the 

continuity of essential services such as telemedicine, disaster response, and distance education. Differences in 

raindrop size and intensity across regions greatly affect how much the signal weakens (Suhaimi et al., 2022; 

Yunus et al., 2021). When radio waves travel through rain, they are absorbed, scattered, and refracted (Liao et 

al., 2023). Additionally, rain and clouds can change the direction and polarization of the signal (Christofilakis et 

al., 2020), making it harder for the receiver to detect it accurately. These effects combined reduce the reliability 

of communication, especially during severe weather. 
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To mitigate these effects, accurate prediction models are essential for satellite communication systems (Samad 

et al., 2021). Conventional rain attenuation prediction models, including ITU-R, Moupfouma, and Crane Global, 

are often inadequate in tropical climates, as they fail to adapt to localized weather patterns and high rain 

intensities (Suhaimi et al., 2022; Alozie et al., 2022; Jong et al., 2018). The Synthetic Storm Technique (SST) 

offers improved simulation capabilities but still depends on empirical modelling (Jong et al., 2018). In contrast, 

machine learning (ML) offers a promising alternative by learning complex patterns from local meteorological 

data, enabling more accurate and adaptable predictions. Techniques including regression models, decision trees, 

neural networks, Long Short-Term Memory (LSTM) networks, and Gaussian Process Regression (GPR) have 

demonstrated superior predictive accuracy compared to traditional models (Samad & Choi, 2020; Xu et al., 2023; 

Kumar et al., 2022; Legesse et al., 2024; Yussuff et al., 2023; Jang et al., 2021; Ojo et al., 2022). ML models 

learn directly from historical data, reducing dependency on fixed assumptions, as shown by Samad and Choi 

(2020). Particularly, LSTM and deep learning approaches have yielded promising results in both microwave and 

millimeter-wave frequency bands (Xu et al., 2023; Kumar et al., 2022). 

Despite growing interest in ML for signal loss prediction, most existing models are trained using data from 

temperate regions, limiting their effectiveness in the tropics (Yussuff et al., 2023). This presents a barrier to 

equitable access to resilient communication infrastructure. Addressing this gap is vital to ensuring that satellite 

connectivity remains reliable during extreme weather events, which are increasingly common due to climate 

change (Abolarinwa et al., 2024; Rao et al., 2021; Jang et al., 2021; Ojo et al., 2022). 

This study aims to contribute to social resilience and digital equity by developing machine learning models 

trained on rain attenuation data derived from real rain rate measurements in Malaysia using the Synthetic Storm 

Technique. The assumption is that if machine learning models—when trained on SST-derived data—can closely 

match known reference models, it provides a strong indication of their effectiveness for use in tropical regions. 

Specifically, the study (1) simulates realistic rain attenuation using SST, (2) develops and evaluates ML models 

for prediction, and (3) examines model accuracy under intense rainfall. By offering a cost-effective, data-driven 

solution for rain fade prediction in tropical climates, this work supports the broader goal of strengthening 

communication systems that serve as lifelines during emergencies and gateways to opportunity in remote areas. 

METHODOLOGY 

Rainfall data for this study were collected from an Automatic Weather Station (AWS) installed on the rooftop 

of Block F at UTeM. The station records rainfall data at a one-second resolution, providing high temporal 

accuracy. The dataset spans four years, from 2019 to 2022. In this study, rain rate is used as the input parameter, 

while rain attenuation serves as the output parameter. 

Since direct rain attenuation measurements are unavailable, the values were derived using the Synthetic Storm 

Technique (SST). Previous research by Jong et al. (2018) has validated SST-derived attenuation values, showing 

close agreement with actual measurements. Therefore, SST-derived rain attenuation at the Ku-band is assumed 

to represent actual attenuation in this study. 

The SST estimates attenuation by convolving the time series of rain rate, R(t), with a normalized specific 

attenuation function, γ(R), to simulate the temporal dynamics of rain-induced signal fading. Specific attenuation 

is calculated using the power-law relation γ = kR^α, where k and α are frequency- and polarization-dependent 

coefficients. Additionally, the SST considers storm characteristics such as velocity, vertical structure, and 

horizontal extent of rain cells. The full details of the SST computation are presented in our previous work (Yunus 

et al., 2021). 

Rainfall data from 2019 to 2021 were used for model training, while the 2022 data were reserved for validation 

and testing. A scatter plot was initially used to examine the correlation between rain rate and rain attenuation. 

Outliers were identified by analysing the residuals, and a filtering approach was applied using +25 and –20 

standard deviation thresholds to account for the skewed tails in the rain rate distribution. Approximately 0.7% 

of the dataset was removed, as illustrated in Figure 1. 
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Figure 1. Outliers detection 

Following outlier removal, the dataset was standardized to zero mean and unit variance. Outlier removal 

thresholds of +25 and –20 standard deviations were applied to account for the skewed distribution of rain rate 

data. Although aggressive, this method ensured training stability (Fan et al., 2021). Nevertheless, the exclusion 

of extreme events may limit the model's ability to predict rare but impactful attenuation cases. 

The cleaned dataset was split into training and testing sets in an 80:20 ratios. Other split ratios (70:30 and 75:25) 

were also explored; however, the 80:20 split offered the best trade-off between training accuracy and 

generalization capability. Three machine learning algorithms were proposed to model rain attenuation: linear 

regression, polynomial regression, and an Artificial Neural Network (ANN). Jupyter Lab was used as the 

development platform, and all models were implemented using Python. 

For linear regression, the LinearRegression()command was employed. Polynomial regression was implemented 

by augmenting the input features with polynomial terms. For the ANN, the selected architecture was 1:5:1, 

consisting of one input layer, five hidden layers, and one output layer. Each of the hidden layers had 64 neurons, 

while the input layer had 128 neurons and the output layer had a single neuron as shown in Figure 2. This 

configuration was selected after extensive empirical testing across various architectures with 1 to 5 hidden layers 

and different neuron counts. Shallow networks with a single hidden layer showed underfitting, whereas deeper 

networks with excessive layers led to overfitting. The 1:5:1 structure was found to yield the most favorable 

balance between model complexity and predictive performance. Figure 3 illustrates how RMSE and R-squared 

(R²) values varied across tested architectures, supporting the rationale for the final design. 

 

Figure 2. Layer structure of ANN algorithm 
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Figure 3. ANN architecture vs number of hidden layers 

The ANN model utilized the Adaptive Moment Estimation (Adam) optimizer, which adaptively adjusts learning 

rates for each parameter to improve convergence. Key hyper parameters, including learning rate (0.01), number 

of epochs (1000), and batch size (600); were tuned using grid search to optimize model performance. The number 

of neurons in the hidden layers was also adjusted, though specific values were determined through 

experimentation. If initial results showed low accuracy during testing, hyper parameter tuning was repeated, and 

the model was retrained until satisfactory performance was achieved. EarlyStopping was applied with a patience 

of 10 epochs to prevent overfitting and enhance model generalization. 

Once trained, the model was further validated using the 2022 rainfall data. To illustrate the probability of 

experiencing varying levels of signal degradation, Complementary Cumulative Distribution Functions (CCDF) 

were plotted. Finally, the performance of the proposed models was benchmarked against actual data and 

established models such as the ITU-R P.162-13 [19] and the Simple Attenuation Model (SAM). 

RESULTS AND DISCUSSION 

The performance of the models is assessed using the 2022 dataset after training, as shown in Figure 4. The time 

series plots reveal that all models tend to underestimate rain attenuation at higher rain rates, while predictions 

are more accurate at lower rain rates. This discrepancy occurs because most of the training data comprises lower 

rain rates and corresponding lower rain attenuation, leading to models that are well-calibrated for these 

conditions but struggle with higher rain rates. Consequently, while the models accurately predict lower rain 

attenuation, they face challenges in providing precise estimates for higher rain rates.  

Table 1 depicts the performance of each machine learning model, evaluated using several metrics: Mean 

Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and R-squared (R²). 

The ANN model exhibits the lowest error rates, with reduced MAE, MSE, and RMSE compared to the linear 

and polynomial models. Additionally, the ANN model achieves the highest R² value, demonstrating an accuracy 

of 84.76%. 

 

(a)                                                                                (b) 
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(c) 

Figure 4. Comparison of the actual and predicted rain attenuation for (a) linear regression model, (b) polynomial 

regression model, (c) ANN model 

Table 1. Performance comparison of the machine learning models 

Performance Metrics Linear  Polynomial  ANN 

MAE 0.0196 0.0184 0.0168 

 MSE 0.0776 0.0751 0.0677 

 RMSE 0.2785 0.2740 0.2602 

 R2 0.8304 0.8359 0.8476 

 

According to Luini et al. (2020), a higher rain rate results in greater rain attenuation. This relationship is 

confirmed in Figure 5, which compares the proposed machine learning models with the actual data and the SAM 

model, plotting rain rate against rain attenuation. It is evident from the plot that as the rain rate increases, rain 

attenuation also rises. Both the proposed and existing models tend to underestimate rain attenuation, but the 

predictions from the polynomial and ANN models are closer to the actual rain attenuation compared to the SAM 

and linear models. 

 

Figure 5. Comparison of the machine learning models with actual and SAM model in term of rain rate versus 

rain attenuation 
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Figure 6 illustrates the CCDF plot, which compares the proposed machine learning models with actual data and 

the ITU-R P618-13 and SAM models. The plot highlights the distribution of rain attenuation values based on 

the probability of exceeding those   values. It shows that as the exceedance probability decreases, rain attenuation 

increases, indicating that higher attenuation values are less frequent but more   severe when they do occur. 

Among the models, the ANN model performs the best. For a 0.1%-time exceedance, it provides a value closest 

to the actual measurement of 8.21 dB, with a prediction of 7.45 dB. In contrast, the SAM and ITU-R models 

significantly underestimate the actual value, while the linear and polynomial models offer intermediate accuracy. 

For a 0.01%-time exceedance, the ANN model remains the most accurate, predicting 23.98 dB, which closely 

matches the actual value of 24.56 dB. The SAM model also underestimates the actual value but is closer than 

the ITU-R model, which significantly underestimates the actual data. This 0.01% exceedance level is particularly 

relevant for high-availability systems, as it corresponds to a 99.99% link availability target. Designing systems 

without accurately accounting for such rare but severe attenuation events may result in insufficient link margins, 

leading to QoS degradation or complete service outage during intense rainfall. Hence, the ANN model’s ability 

to closely track actual attenuation at this threshold supports more reliable availability planning and robust 

satellite link design particularly in tropical regions. 

 

Figure 6. Comparison of the machine learning models with actual and SAM, ITU-R P.168-13 model in term of 

CCDF plot 

The error between actual and predicted rain attenuation from the models is quantified using RMSE, as shown in 

Table 2. The results indicate that the ANN model achieves the lowest RMSE of 0.67 at both 0.1% and 0.01%-

time exceedance, outperforming other models. This lower RMSE signifies that the ANN model provides the 

most accurate predictions of rain attenuation, with less deviation from the actual values compared to the SAM, 

ITU-R, linear, and polynomial models. 

Table 2. RMSE comparison of the models with actual data 

Time  

Exceedance (%) 

RMSE 

SAM ITU-R Linear Poly ANN 

0.1 3.20 3.20 0.90 0.89 0.76 

0.01 2.46 7.64 4.54 1.75 0.57 

 

While this study is based on rainfall data from University Technical Malaysia Melaka (UTeM), it is important 

to acknowledge that the results may be region-specific due to local climatic characteristics. Nonetheless, the 

tropical nature of Malaysia shares several meteorological traits with other equatorial regions. Future work should 



INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE(IJRISS) 

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue VI June 2025 

www.rsisinternational.org 
Page 3441 

 

 

   

 

validate the models using data from additional tropical countries to evaluate generalizability and enhance 

applicability across broader geographic zones. 

CONCLUSION 

This study demonstrates the effectiveness of machine learning models, especially Artificial Neural Networks 

(ANN), in predicting rain attenuation for satellite communication in tropical regions. The ANN model 

outperforms linear and polynomial regression by achieving lower error rates and higher prediction accuracy, 

particularly during heavy rainfall events. While all models tend to underestimate attenuation at very high rain 

rates, the ANN provides the most reliable estimates compared to conventional models such as the Simple 

Attenuation Model (SAM) and ITU-R P.618-13, especially at higher exceedance probabilities. These results 

underscore the potential of ANN-based prediction to enhance the reliability and resilience of satellite 

communication systems critical for connectivity in tropical areas. Improved prediction models contribute to more 

stable communication services, supporting social inclusion, emergency response, and economic development in 

regions vulnerable to severe weather. Future work should focus on refining ANN architectures and exploring 

diverse machine learning techniques to better manage extreme weather challenges. 
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