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ABSTRACT 

Ensuring the provision of high-quality and continuous power at an affordable rate stands as the primary 

objective of power systems. To achieve this goal, utilities devise economic dispatch schedules for each quarter-

hour time slot, leveraging stochastic programming methodologies. This becomes imperative due to the inherent 

uncertainty associated with renewable energy sources, heavily reliant on weather and climate conditions. 

Dynamic Programming, Stochastic Dynamic Programming, and Stochastic Dual Dynamic Programming 

techniques are deployed to formulate real-time economic dispatch schedules. Notably, while cost remains a 

pivotal factor, the emphasis shifts towards economic value, particularly water value, during the dispatch 

process. Various methodologies have been introduced to ascertain the optimal economic dispatch schedule, 

considering the dynamic landscape of economic dispatch. This landscape plays a crucial role in the design, 

analysis, planning, and modelling of smart energy systems, facilitating informed decisions for the green 

transformation of energy supply and demand systems towards future smart renewable energy solutions. This 

research paper offers a comprehensive literature review of stochastic programming techniques applied in 

economic dispatch, shedding light on their implications for smart energy systems. 

Keywords: Economic Dispatch, Stochastic, Water Value, Dynamic Programming 

INTRODUCTION 

In the intricate dance of managing a power system, utility operators face the daunting task of orchestrating the 

ideal blend of power plants to meet fluctuating electricity demands. At the heart of their challenge lies the 

short-term optimisation puzzle: how to meticulously schedule generation to minimise total costs while 

adhering to a myriad of constraints. With an eye toward efficiency and sustainability, power system owners 

constantly seek to optimise the balance between constructing new, state-of-the-art power plants and retiring 

older, less efficient ones. 

Responsibility for meeting electricity demand rests squarely on the shoulders of the utility company, 

underscoring the critical importance of ensuring that global generation matches forecasted demands on a 

quarter-hourly basis. Unit Commitment and Economic Dispatch emerge as pivotal factors influencing 

generation costs. Unit Commitment involves the strategic decision-making process of determining when and 

which generating units at each power station to activate or deactivate, while Economic Dispatch entails fine-

tuning individual power outputs to align with scheduled generating unit capacities at each time interval [1][2]. 

At its core, the unit commitment process is driven by the overarching objective of minimising operating costs 

while satisfying all operational and systemic constraints. This intricate ballet of generation scheduling involves 

meticulous planning of startup, shutdown, and power levels for each unit over a defined scheduling horizon. 

The aim is to strike a delicate balance, minimising operational expenses, startup, and shutdown costs while 

ensuring seamless continuity of power supply [3]. 

Delving deeply into the concept, Unit Commitment intricately navigates the optimal scheduling and production 

levels of each generator unit within a power system for a given time frame, meticulously balancing operational 
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constraints and equipment requirements. On one front, it meticulously delineates the commitment status of 

generators—whether they are poised to be activated or remain dormant—during the corresponding period. 

Subsequently, Economic Dispatch steps in to meticulously ascertain production levels within smaller time 

intervals [4][5]. 

Traditionally, Unit Commitment primarily addresses security-based constraints such as line outages and 

transmission line capacities, often overlooking network constraints. Conversely, from the perspective of market 

operators, Unit Commitment seamlessly integrates to minimise costs and maximise the benefits of generation 

targets [6]. 

Economic Dispatch unfolds into deterministic and stochastic realms, navigating uncertainties stemming from 

forecast deviations and equipment reliability issues. Fluctuations in forecasts can trigger load variations, 

compounded by the intermittent and volatile nature of renewable energy generation, leading to forecast errors 

with increasing renewable energy penetration. To minimise generation costs while meeting consumer 

electricity demands, it becomes imperative to strategically determine the output capacities and commitment 

statuses of each power plant, accounting for forecasts and constraints. Subsequently, a secondary dispatch 

round becomes indispensable to reconcile disparities between actual and forecasted demand [7][8]. 

In essence, addressing power system optimisation poses a significant challenge due to its capacity to 

encompass diverse technical, economic intricacies, and uncertainties. Attempting to incorporate all these 

elements into a single problem becomes computationally infeasible. Consequently, a typical approach involves 

considering a hierarchy of problems that tackle various time scales and perspectives. These include short -term 

dispatch (spanning a few days or weeks), mid-term operational planning (covering 1-2 years), and long-term 

operational planning (spanning 3-5 years). The outcomes derived from a long-term model can then be 

integrated into a model with a shorter horizon, but with more detailed considerations in other aspects of 

modelling [9]. 

Dynamic programming (DP) proves to be a potent method for addressing optimisation issues characterised by 

overlapping subproblems and optimal substructure. The enhanced forms of Dynamic Programming, namely 

Differential (or incremental) Dynamic Programming (DDP) and Discrete Differential Dynamic Programming 

(DDDP), contribute to achieving more precise outcomes in problems with overlapping subproblems and 

optimal substructure [10][11]. Various literature sources propose distinct methodologies; however, this 

discussion focuses on several successful and applicable approaches. One of these mathematical techniques 

were employed by a Sri Lankan Engineer, P.J. Perera, in the 1980s to establish a methodology for water 

resources planning [12]. 

P. J. Perera’s model of Dynamic Programming Techniques for Water Resource Planning  

Dynamic Programming (DP) techniques which are based on Bellman’s Principle of Optimality might be 

conveniently used in water resources optimisation due to stage-by-stage applicability. The basic idea of 

Bellman’s Principle states that in a decision policy, whatever the initial states and the initial decisions are, the 

remaining decisions must constitute an optimal policy regarding the states resulting from the initial decision 

[12].  

2Basic derivation for the deterministic case 

𝐶 = 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒 𝑓[𝑅1(𝑆1, 𝑈0), … … … … … … … … . , 𝑅𝑁(𝑆𝑁, 𝑈𝑁−1)] 

Where, 

 𝐶 – Objective function  

 𝑈𝑛 ∈  𝑊𝑛 , 𝑆𝑛  ∈  𝑉𝑛 
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𝑓 – function representing the combined effect of the system transformations  

           succeeding from an initial state vector 𝑆0 to a final state vector 𝑆𝑁 resulting from a 

           series of decision vectors 𝑈𝑜, 𝑈1, … … … … … … . , 𝑈𝑁−1 

𝑅𝑁(𝑆𝑁, 𝑈𝑁−1) – the return at stage 𝑛 with respect to the state vector 𝑆𝑛 and the decision vector 𝑈𝑁−1 

𝑉𝑛, 𝑊𝑛 – The administrative domains for decision vector 𝑈𝑛 

𝑆𝑛  - State vector for stage 𝑛 respectively  

A cost minimisation, additive properties prevail in the function can be expressed as, 

𝑓[𝑅1(𝑆1, 𝑈0), … … … … … … … … . , 𝑅𝑁(𝑆𝑁, 𝑈𝑁−1)] =  ∑ 𝑅𝑛(𝑆𝑛, 𝑈𝑛−1)

𝑁

𝑛=1

 

Where, 

𝑆𝑛  - reservoir storage at stage 𝑛 and  

𝑈𝑁−1 – release of this storage at stage 𝑛 

𝐹𝑁(𝑆𝑁) – Minimum Cost for operating the system from an initial state 𝑆0 to some final state 𝑆𝑁 

𝐹𝑁(𝑆𝑁) = 𝑚𝑖𝑛 ∑ 𝑅𝑛(𝑆𝑛, 𝑈𝑛−1)

𝑁

𝑛=1

 

𝐹𝑁(𝑆𝑁) = 𝑚𝑖𝑛[𝑅𝑁(𝑆𝑁, 𝑈𝑁−1)] + 𝑚𝑖𝑛 [∑ 𝑅𝑛(𝑆𝑛, 𝑈𝑛−1)

𝑁−1

𝑛=1

]  

By the definition, 

𝐹𝑁−1(𝑆𝑁−1) =  𝑚𝑖𝑛 [∑ 𝑅𝑛(𝑆𝑛, 𝑈𝑛−1)

𝑁−1

𝑛=1

] 

∴ 𝐹𝑁(𝑆𝑁) =  𝑚𝑖𝑛[𝑅𝑁(𝑆𝑁, 𝑈𝑁−1) + 𝐹𝑁−1(𝑆𝑁−1)]                           (1) 

Equation (1) represents the Dynamic Programming recursive algorithm, from an initial state vector 𝑆0 , to a 

final state 𝑆𝑁. Depending on whether the initial state or the final state is known, the algorithm could be applied 

in a forward or backward manner. If both states are known, it could be applied either way. Fig. 01 gives a 

graphical representation of the DP operation, when applied to a reservoir control problem.  

 

Fig 01. Dynamic Programming Operation to Control the Reservoir Problem 

http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS) 

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue IV April 2025 

Page 1870 www.rsisinternational.org 

  

 

 

 

Basic derivation for stochastic case 

The stochastic element in reservoir operation is streamflow, and once this effect is introduced, the return 

function becomes dependent upon both storage (𝑆𝑛) and inflow (𝐼𝑛), in addition to the decision variable 𝑈𝑛−1. 

Equation (1) can be revised as, 

𝐹𝑁(𝑆𝑁) = min [∫ 𝑃(𝐼𝑁)𝑅𝑁(𝑆𝑁, 𝐼𝑁, 𝑈𝑁−1) +  𝑃𝑁−1(𝑆𝑁−1)
+∝

−∝

] 

Where, 

 𝑃(𝐼𝑁) – The probability density function of 𝐼𝑁 for a discrete probability distribution of 𝐼𝑁 

𝐹𝑁(𝑆𝑁) = min [∑ 𝑃(𝐼𝑁
1 ). 𝑅𝑁(𝑆𝑁, 𝐼𝑁

1 , 𝑈𝑁−1) +  𝐹𝑁−1(𝑆𝑁−1)

𝐾

𝑖=1

] 

Where, 

 𝐼𝑁
1  - 𝑖𝑡ℎ discretisation of the streamflow at stage 𝑁  

𝑃(𝐼𝑁
1 ) – Probability of occurrence 

𝑘 – Total number of discretisation 

 

Markov Chains and Serial Correlation 

A Markov Chain of the first order is defined as a sequence of events 𝑥0, 𝑥1, 𝑥2, … … … . . , 𝑥𝑛+1  of discrete 

random variables, with the property that the conditional distribution of  𝑥𝑛+1, given 𝑥0, 𝑥1, 𝑥2, … … … . . , 𝑥𝑛 , 

depends only on the value of 𝑥𝑛, but not further 𝑥0, 𝑥1, 𝑥2, … … … . . , 𝑥𝑛−1.  For any state values of ℎ, 𝑗, … … . , 𝑘 

belonging to the discrete state space, 

𝑃𝑟𝑜𝑏. [𝑋𝑛+1 = 𝑘 | 𝑋0 = ℎ, … … … , 𝑋𝑛 = 𝑗] = 𝑃𝑟𝑜𝑏. [𝑋𝑛+1 = 𝑘 | 𝑋𝑛 = 𝑗] 

When a streamflow of a certain month is independently analysed using recorded previous data, a certain 

probability distribution could be derived for its representation. However, this distribution is usually conditional 

upon the actual streamflow of the previous month, as in the case of the occurrence in a first order Markov 

Chain. The basic derivation for the stochastic case with the introduction of this serial correlation is as follows. 

𝐹𝑁(𝑆𝑁, 𝐼𝑁+1
1 ) = 𝑚𝑖𝑛 [∑ 𝑃(𝐼𝑁

1 𝐼𝑁+1
1

𝐾

𝑖=1

). {𝑅𝑁(𝑆𝑁, 𝐼𝑁
1 , 𝑈𝑁−1) + 𝐹𝑁−1(𝑆𝑁−1, 𝐼𝑁

1 )}] 

Where, 

  

𝑃(𝐼𝑁
1 𝐼𝑁+1

1 ) – The conditional probability of streamflow at stage 𝑁 falling into the  

                                   discretisation 𝐼, given 𝐼𝑁+1
1  inflow at stage 𝑁 + 1 

It is evident that no unique optimal trajectory exists when serial correlation is considered. 
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Different Dynamic Programming Techniques 

Differential Dynamic Programming (DDP) 

Differential (or incremental) Dynamic Programming is a successive approximation technique, where the 

optimality of the objective function is considered locally, unlike in the conventional DP technique, where it is 

considered globally. DDP applies the principle of optimality in the neighbourhood of a nominal, possibly non-

optimal trajectory. It is in effect, limiting the admissible domain of 𝑈𝑛 and 𝑆𝑛 to 𝑊𝑛 and 𝑉𝑛 respectively, which 

define the immediate neighborhood of 𝑈𝑛 and 𝑆𝑛. These domains are successively updated in an iterative 

sequence to approach at an optimal solution. 

Discrete Differential Dynamic Programming (DDDP) 

Discrete Differential Dynamic Programming is an extension of DDP, in which the recursive equation of DP is 

used to search for an improved trajectory among discrete states within a neighbourhood (corridor) of a trial 

trajectory instead of the whole domain as in the case of conventional DP. 

Let, 

Δ𝑗𝑆𝑛(𝑘), 𝑗 = 1,2, … … … … … . , 𝐼; 𝑘 = 1,2, … . . , 𝑀; 𝑛 = 1,2, … … . , 𝑁 

be the 𝑗𝑡ℎ increment of the state variable 𝑆𝑛(𝑘) at stage 𝑛 in an 𝑀dimentional vector space with a total of 𝐼 

possible increments. In the DDDP algorithm Δ𝑗𝑆𝑛(𝑘) can take any one value for 𝑗 from 1 to 𝐼, from a set of 

assumed incremental values of the state domain.  

Each of the 𝑀 components of Δ𝑗𝑆𝑛(𝑘) can have 𝐼 values, making the total number of combinations of Δ𝑗𝑆𝑛(𝑘) 

vectors at stage 𝑛 equal to 𝐼. To have an accurate result, Δ𝑗𝑆𝑛(𝑘) must be sufficiently small. If the domains of 

the state variables span up to their entire extent, 𝐼 will be very large, which is the main setback of conventional 

DP. In DDDP, the value of 𝐼 is limited to 3 or 4 only. Defining a subdomain (𝐷̅𝑛) of the main domain such that, 

𝐷̅𝑛 =  𝑆𝑛̅ + Δ̅𝑗𝑆𝑛̅  , 𝑗 = 1,2, … … , 𝐼 

Where, 

 𝑆𝑛̅ – The state vector at stage 𝑛 represents a trial trajectory 

All subdomains 𝐷̅𝑛, 𝑛 = 1,2, … . . , 𝑁 together are called the corridor around the trial trajectory. 

Procedure of DDDP 

1. Select a trial trajectory as close as possible to the optimal trajectory. This may be done with some 

insight into the actual operation of the system. It will ensure convergence on the global optimum rather 

than on a local optimum. 

2. Open corridors on state variables around this trial trajectory. 

3. Obtain the updated trajectory using the conventional DP technique within the corridor. 

4. Repeat steps (2) and (3) successively until the updated trajectory remains the same as the previous 

trajectory. They will be the optimum trajectory for that discretisation of the state variables within the 

corridor. 

5. If added accuracy is required, narrow down the corridor by having the same number of discretisation, 

but with a smaller increment of the state variable. Repeat steps (2), (3) and (4). 

6. If the accuracy is not sufficient, repeat step (5) 

The return function in the problem under study is the thermal operating cost of the system. This is elevated as a 

function of the control variable which is equivalent to the hydro generations from the various plants. It is easily 

seen that the cost functions resulting from these generations are convex. The objective function, which is the 
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sum of these convex functions is also convex, thus eliminating multiple optima. The optimal trajectory, 

therefore, becomes independent of the initial trial trajectory and this will be ensured by DDDP by selecting any 

arbitrary initial trajectory. 

Dynamic Programming with successive approximations (DPSA)  

DPSA can only be used where a unique optimal trajectory exists for the state variables. Since this is the basic 

requirement for DDDP too, both methods can be combined to give a fast-optimal result. In DPSA, the state 

variables are optimised one by one in a cyclic process, and the state variables which are not under optimisation 

at a particular time instant are frozen at their previous semi-optimal values. It can be proven as in DDDP, that 

if the return functions are convex, the result will converge to the global optimum. 

Data Analysis 

 The main component of the stochasticity introduced to the problem is that due to inflows. A certain amount of 

statistical data processing is required to represent the inflows in an acceptable form to be input in the DP 

routine. It has been observed that streamflow patterns confirm to either normal or log-normal distributions with 

a high goodness- of- fit index. The log- normal distribution is useful in representing the skewness of the 

distribution, as is prominent in the case of daily inflow patterns whereas in the monthly patterns this skewness 

is damped to a certain degree. A chi-squared goodness of fit test will determine the suitability of the selected 

distribution. 

When the proper distributions are obtained, discretisation is done with equal probability intervals. Five inflow 

conditions have been used in the study and hence each has a 20% probability of occurrence. Once 

discretisation is done, it is convenient to available the discrete conditional probabilities for the transition 

probabilities (or the transition probabilities) rather than the conditional distribution when treating the flow 

pattern of the year as events of a first order Markov Chain. 

 If 𝐼 is the occurrence of the streamflow in month 𝑛 within the class interval 𝑝, 

𝑃𝑟𝑜𝑏. (𝐼𝑛
𝑝|𝐼𝑛−1

𝑞 ). 𝑚𝑝/𝑚𝑞 

Where, 

 𝑚𝑞 – number of occurrences of the streamflow in month 𝑛 − 1 within the class interval 𝑞 

 𝑚𝑝 – within the set of occurrences of 𝑚𝑞, the subset of occurrences of streamflow in month  

                     𝑛 within the interval 𝑝  

For 𝑘 inflow intervals, the expectation of the inflow 𝐼𝑛 for a certain month 𝑛, given the actual inflow interval 

of the previous month as 𝑞 is, 

𝐼𝑛 =  ∑ 𝐼𝑛
1

𝑘

𝑖=1

. 𝑝𝑟𝑜𝑏(𝐼𝑛
1𝐼𝑛−1

𝑞
) 

Which may be quite different from the unconditional expectation, 

𝐼𝑛
0 =  

1

𝑘
. ∑ 𝐼𝑛

1

𝑘

𝑖=1

 

for equal probability intervals. 

A transition probability matrix can be defined for the streamflow of any two adjoining months 𝑛 and 𝑛 + 1 

such that, 
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𝑀 =  [𝑃𝑖𝑗] , 𝑖 = 1,2, … . . , 𝑘 ; 𝑗 = 1,2, … . . , 𝑘  

Where, 

𝑃𝑖𝑗 = 𝑃𝑟𝑜𝑏(𝐼𝑛+1
𝑗

|𝐼𝑛
𝑖 ) 

The Mid-Term schedule with deterministic inflows 

This is implemented either on a monthly or weekly basis. The inflow regimes at various dam sites are found 

for various hydro-conditions using probability analysis and are classified under various dry-conditions. For 

example, 60%- dry would mean that the inflow will be greater or equal to the corresponding value for 60% of 

the time. It is illustrated by 𝐹 in the inflow- duration curve given in Fig. 02.  

 

Fig 02. Flow Duration Curve 

The input of inflows to the model can be given as a combination of these dry conditions for 12 months. The 

model uses DDDPSA to arrive at the optimal trajectories for the reservoirs. 

Evaluation of the return function 

To obtain the thermal plant costs for each trajectory of the state variables, the load duration curve for that 

month is probabilistically simulated with the corresponding hydro energy included. The hydro components 

groups into the two basins of Mahaweli and Kelani rivers are fitted using Jacoby’s method with zero outages 

are assumed. For thermal plants, forced and scheduled outages are considered, and the plants are 

probabilistically stacked on the load duration curve in the order of their increasing operating cost.  

Irrigation requirements 

Irrigation only exists in the Mahaweli basin, at Polgolla and Minipe. The irrigation requirements off Polgolla 

are specified at three sites of Bowatenna, Elahera and Angammedilla. These requirements are given monthly at 

these sites. If an irrigation deficit is to be affected at Polgolla in an annual basis, there are numerous 
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combinations possible in the adjusted diversions at these sites, and it should be initially investigated as to 

which distribution of the actual diversions are more realistic in actual practice. The DP routine can be made 

sensitive to irrigation diversions by the introduction of a penalty cost in the case of an irrigation deficit.  The 

form of this penalty should incorporate not only the limitation of the total diversion deficits, but also how these 

deficits are distributed within the year.  

For example, a total annual deficit of 100 MCM at Polgolla can give rise to a deficit at Bowatenna of 50 MCM 

in January and 50 MCM in December (leaving aside Elehera and Amgammedilla) or a 25 MCM deficit in 

January and a 75 MCM deficit in December. Since the diversion requirements at Bowatenna are 75 MCM for 

all months, the former case seems more appropriate in a practical sense as the optimising model does not 

consider the diversion storages as state variables. The introduction of a linear irrigation penalty can give rise to 

inappropriate monthly irrigation diversions because the results can exhibit insensitivity to the diversion pattern 

within the year. What is essentially required is the capability of the model to meet the requirements within th e 

constraints imposed by the inflows, such that if there should be any deficits, these to be allocated monthly 

rather than in an annual basis. This is accomplished by introducing an exponential irrigational penalty rather 

than a linear penalty. For the example considered earlier, a linear penalty will give rise to identical irrigation 

penalty costs for the two cases, whereas the introduction of an exponential penalty of the form, 

𝑐𝑜𝑠𝑡 = 𝐸𝑋𝑃(𝑑𝑒𝑓𝑖𝑐𝑖𝑡 𝑒𝑎𝑐ℎ 𝑚𝑜𝑛𝑡ℎ) 

will minimise the penalty for the former case. The following expression illustrates this, 

𝐸𝑋𝑃(50) + 𝐸𝑋𝑃 (50) = 𝐸𝑋𝑃(25) + 𝐸𝑋𝑃(75) 

even though, 

50      +     50   =      25    +     75 

This penalty cost of course will have no physical meaning, but when added to the thermal costs for the various 

reservoir trajectories in the DP exercise, the resulting optimal trajectories will satisfy the irrigation in the most 

appropriate way monthly. This exponential irrigation penalty factor can also be used to enforce the trade-off 

between irrigation and power. A very low penalty will enforce negligible influence on irrigation deficits and in 

effect will optimise for the power only, whereas with a high penalty, the vice-versa will occur. Since 

quantification of actual irrigation losses are quite complex and inaccurate, under normal running the model is 

made to assume a very high penalty factor for irrigation deficits whereby the thermal cost is minimised only 

after meeting the irrigation requirements within the constraints of the inflows. 

The mid-term schedule with stochastic inflows 

A composite basin representation is used in the study due to the excessive number of state variables existent in 

the system. The composite representation agglomerates the reservoirs in each basin into one equivalent energy 

storage entity and an associated generating plant. The composite model is based on a single measure of 

potential energy which is indicative of the system’s generating capability. The one-dam representation of the 

multi-reservoir system in effect receives, stores and releases potential energy when operative in the DP routine. 

The inflows also should be represented by the potential energy input into the system. The dependence between 

the potential energy outflow and the electrical energy generated is given by the generation function of each 

composite basin [4]. 

The composite model is most applicable when the sequence of monthly decisions on the total hydro generation 

is of greater economic significance than the allocation of these among the various hydro plants. The 

decomposition of this total generation to those of the individual plants depends on the initial derivation of the 

generation function. Therefore, it is of basic importance to maintain as far as possible a consistent approach to 

this problem with that applied for achieving the main objective of the study. 
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Generation Functions 

The power generation of a hydro plant as a function of the released water depends on the plant head and the 

overall plant efficiency. This is given by, 

𝑃 = 𝑒. 𝑄. 𝐻                      (2) 

With, 

𝑃 <  𝑃𝑚𝑎𝑥 = 𝑒. 𝑄𝑚𝑎𝑥. 𝑀𝑚𝑎𝑥 

Where, 

 𝑃 – Power generated 

 𝑄 – water flowrate through the turbine 

𝐻 – Plant head 

𝑒 -plant efficiency 

𝑄𝑚𝑎𝑥 is determined by the maximum turbine capacity, and 𝐻𝑚𝑎𝑥 occurs when the reservoir level is at its 

maximum. If 𝑄 >  𝑄𝑚𝑎𝑥, there will be no further contribution to the generation. 

Equation (2) can be considered as the generation function for a single plant in the composite basin. The 

generation function of the composite model is an aggregate of the generation functions and spill characteristics 

of many similar plants. Its characteristics will depend on how the individual plants are operated integrally 

within the basin. 

Operational curves for the generation function 

The generation function for each basin and its inflow energy are obtained by a system simulation in a specific 

set of operational curves. In establishing these curves, it is necessary to consider that the optimisation routine 

within each basin must aim for similar goals as in the final scheduling programme, which is the system cost 

minimisation and serial correlation of the monthly inflows cannot be considered as a unique trajectory, which 

is essential for the simulation of the plants cannot be obtained that way. 

With the above considerations in view, the most appropriate way of obtaining these curves would be a system 

cost minimisation using DDDPSA using the actual inflows of the available inflow regime. The system 

demands of the actual year of interest can be used as being incurring repetitively for every year for the 

available inflow period. 

The short-term model with deterministic inflows 

After the development of the mid-term models, a deterministic short-term model has been developed to operate 

daily. This is in fact an optimal dispatch model, to be used to recommend to the operators the optimal way to 

meet the demand on an hourly basis. Unlike in the mid-term case, the water transport time delays must be 

considered here as well as the true operational characteristics of the hydro and thermal machines. The 

operation of the Kotmale and Mahaweli complex ponds become significant in this case, and they must be 

introduced as state variable along with Ukuwela and Bowatenna. Victoria can be hydraulically decoupled from 

the system as the discharges from Polgolla would not make any significant changes in the Victoria storage 

when operating on an hourly basis. 

The optimisation routine used here is DDDPSA. However, a major modification had to introduced into the 

conventional DDDPSA technique to fit it to the short-term problem. In normal DDDPSA technique to fit it to 

the short-term problem. In normal DDDPSA the state variables which are not under optimisation are frozen at 
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their semi-optimal values. When relating this concept to the actual case under study the following problem 

arises, 

 

Fig 03. Cascadic structure of Laxapana Hydro Complex in Sri Lanka 

Consider the cascade of Castlereigh, Norton and Laxapana reservoirs (Fig. 03). The Wimalasurendra power 

plant has designed for peak operation whereas the Old Laxapana plant is running practically at baseload. When 

using conventional DDDPSA to these two plants, first the Castlereigh reservoir is optimised using the energy 

of the Wimalasurendra power plant while the Norton Pond trajectory is frozen. This means that al the water 

discharged through the Wimalasurendra power plant is forced through the Old Laxapana plant as well, thereby 

disabling the Norton Pond to act as a buffer to accommodate the highly irregular discharges of Wimalasurendra 

plant. Hence the feasible space of trajectories of the Norton Pond is severely curtailed due to the operation of 

the Old Laxapana plant. In the modified DDDPSA technique developed, the plant generations are frozen rather 

than the reservoir storages. In the example considered above when optimisation is done on the Castlereigh 

reservoir. The Old Laxapana generation is frozen, rather than the Norton Pond storage so that limitations on the 

Castlereigh discharge are not imposed by the operation of the Old Laxapana plant. After the optimisation of the 

Castlereigh reservoir, the Norton Pond trajectory is updated with the optimised discharges of the 

Wimalasurendra plant and used in the subsequent optimisation. 

Analysis of METRO Model 

METRO is applied for operations planning of integrated hydro, thermal, irrigation system. This uses the water 

value concept in deriving an operation policy for the power reservoirs of the system and uses optimal reservoir 

balancing factors to balance the reservoir drawdown (maintaining an optimal mix) on simulation of the 

operating policy. Water value is the incremental long-term replacement cost of hydro in storage by thermal and 

is a well proven concept used in medium term operational planning [13] [14] [15].  

METRO can optimise the operation of hydro power resources in the system to minimise thermal operation 

costs and expenses associated with unserved energy in the long and medium term, considering varying 

hydrological conditions. It is used to identify thermal switching curves for the base load operation of thermal 

plants specifically designed for dry hydrological conditions. Moreover, it integrates the complete irrigation 

system in conjunction with the power station. Additionally, it excels in evaluating the opportunity cost of water 

in storage (water value) by assessing incremental thermal costs. Furthermore, it establishes reservoir operating 

policies (rule curves) that delineate reservoir drawdown philosophy based on reservoir storage and time, 

accounting for diverse hydrological conditions, and incorporates maintenance schedules for all hydro and 

thermal plants. Moving forward, METRO can optimise maintenance planning to minimise the impact of 

planned forced outages, treating them as truly random events rather than relying on capacity de-rating 
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methods. It provides daily operational guidelines in the form of recommended generation schedules for all 

plants, projects expected system performance for one year ahead by simulating the past hydrological sequence 

and fuel cost budgeting, conducts quantitative and qualitative analyses of power system reliability, analyses 

irrigation reliability, examines power system and irrigation trade-offs, and incorporates all forthcoming 

expansions of the system through data file updates. 

The precision of the short-term dispatch model is crucial, particularly since short-term economic dispatch can 

extend from 24 to 168 hours. During this timeframe, the variability in water inflow and fuel prices does not 

significantly impact the accuracy of the short-term model's output. However, the accuracy of the model can be 

influenced by factors such as Addition and retirements of power plants, Varied shapes of load duration curves 

and Differing unit prices of thermal power plants. 

Mathematical modelling of Economic Dispatch 

The subsequent notations are employed in the formulation of the dispatch algorithm model.  

𝑡  Time interval (hour) index 

𝑇  Total number of time intervals (scheduling horizon) 

𝐷𝑡  Total Demand (MW) 

𝐷𝑡
𝑇ℎ  Total Thermal Power Supply 

𝐷𝑡
𝐻𝑦

  Total Hydro Power Supply 

𝐼  Number of available thermal plants 

𝑁𝑖   Number of units in ith thermal plant 

𝑀𝑗   Number of units in jth thermal plant 

𝑢𝑖𝑡  Commitment state of ith thermal plant, 

            𝑖𝑓 𝑢𝑖𝑡 = 1 𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑; 𝑢𝑖𝑡 = 0 𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑑  

𝑆𝑛𝑖𝑡  Status of ith thermal plant, nth unit at tth state 

𝑆𝑛𝑖𝑡
𝐷   Discrete status of ith thermal plant, nth unit 

𝑖𝑓 0 < 𝑆𝑛𝑖,𝑡−1 ≤ 1 𝑡ℎ𝑒𝑛 𝑆𝑛𝑖𝑡
𝐷 = 1 

𝑖𝑓         − 1 < 𝑆𝑛𝑖,𝑡−1 ≤ 0 𝑡ℎ𝑒𝑛 𝑆𝑛𝑖𝑡
𝐷 = 0 

𝑀𝑡𝑛𝑖𝑡 Maintenance state of ith thermal plant, nth unit    
           𝑖𝑓 𝑀𝑡𝑛𝑖𝑡 = 1 , 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒; 𝑀𝑡𝑛𝑖𝑡 = 0, 𝑜𝑓𝑓𝑙𝑖𝑛𝑒  

𝑃𝑡𝑛𝑖𝑡 Power output of ith thermal plant, nth unit (MW) 

𝑃ℎ𝑗𝑡   Power output for the reservoir j during the t hour 

𝐶𝑖(. . ) Cost function of ith thermal plant in LKR/hr; a function of 𝑃𝑖𝑡 

𝑃𝑡𝑛𝑖
𝑚𝑎𝑥 Maximum power output of ith thermal plant, nth unit (MW) 

𝑃𝑡𝑛𝑖
𝑚𝑖𝑛 Minimum power output ith thermal plant, nth unit (MW) 
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𝑃ℎ𝑗
𝑚𝑎𝑥  Maximum power output of the hydro unit j 

𝑃ℎ𝑗
𝑚𝑖𝑛  Minimum power output of the hydro unit j 

∆𝑃𝑛𝑖   Ramp rate of ith thermal plant, nth unit (MW/hr) 

𝑇𝑛𝑖
𝑢𝑝

  Minimum up time of ith thermal plant, nth unit (hrs) 

𝑇𝑛𝑖
𝑑𝑛  Minimum down time ith thermal plant, nth unit (hrs) 

𝑇𝑛𝑖
𝑆𝐷  Reserved hours of ith thermal plant, nth unit (hrs) 

𝑆𝑡𝑛𝑖𝑡  Start-up cost of ith thermal plant, nth unit (LKR) 

𝑆𝑑𝑛𝑖   Shutdown cost of ith thermal plant, nth unit (LKR) 

𝐶𝑡(𝑃𝑡𝑛𝑖𝑡) Total Thermal Cost of ith thermal plant, tth hour 

𝐷𝑐1,𝑡
𝑙−1 Total demand when 𝑙 − 1 units are dispatched in tth hour 

𝑅𝑑𝑙+1,𝑡
𝑙  Remaining demand when 𝐼 − (𝑙 + 1) units to be dispatched in tth hour 

𝑥𝑛𝑖𝑡   Consecutive time that ith thermal plant, nth unit has been down at time t 

𝛼  Maximum capacity limit percentage  

Objective function 

The goal of resolving the economic dispatch problem in an electric power system is to ascertain the generation 

levels for all active units that both minimise the overall cost and adhere to a defined set of constraints. 

𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 = 𝑚𝑖𝑛 ∑ {∑ ∑ |𝑆𝑛𝑖𝑡|𝑀𝑡𝑛𝑖𝑡(𝑎𝑖𝑃𝑡𝑛𝑖𝑡 + 𝑐𝑖) + 𝑆𝑡𝑛𝑖𝑡𝑆𝑛𝑖𝑡
𝐷 (1 −  𝑆𝑛𝑖,𝑡−1

𝐷 ) +𝑁𝑖
𝑛=1

𝑙−1
𝑖=0

𝑇
𝑡=0

                          𝑆𝑑𝑛𝑖𝑡𝑆𝑛𝑖,𝑡−1
𝐷 (1 − 𝑆𝑛𝑖𝑡

𝐷 )}   

System Constrains 

Several constraints of the system influence the unit commitment and economic dispatch.  

Demand satisfaction for each hour t 

𝑇𝑜𝑡𝑎𝑙 𝐷𝑒𝑚𝑎𝑛𝑑 = 𝐻𝑦𝑑𝑟𝑜 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 𝐿𝑜𝑠𝑠𝑒𝑠 

𝐷𝑡 =  𝐷𝑡
𝐻𝑦

+  𝐷𝑡
𝑇ℎ + 𝐿𝑜𝑠𝑠𝑒𝑠 

𝐷𝑡 =  ∑ 𝑃ℎ𝑗𝑡 + ∑ ∑|𝑆𝑛𝑖𝑡|𝑀𝑡𝑛𝑖𝑡𝑃𝑡𝑛𝑖𝑡 +  𝐿𝑜𝑠𝑠𝑒𝑠

𝑁𝑖

𝑛=0

𝐼

𝑖=1

𝐽

𝑗=1

 

Technical operation limits of each unit 

𝑃𝑡𝑛𝑖
𝑚𝑖𝑛  <  𝑃𝑡𝑛𝑖𝑡  <  𝑃𝑡𝑛𝑖

𝑚𝑎𝑥    ∀𝑡 ∈  [1, T], ∀i ∈ [1, I], ∀n ∈ [1, Ni] 

𝑃ℎ𝑗
𝑚𝑖𝑛  <  𝑃ℎ𝑗  <  𝑃ℎ𝑗

𝑚𝑎𝑥    ∀𝑡 ∈  [1, T], ∀j ∈ [1, J] 

Startup/ Shutdown Cost 
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𝑆𝑡𝑛𝑖𝑡  = {

𝑆𝑡𝑛𝑖
𝑐                   𝑖𝑓 𝑥𝑛𝑖𝑡 >  𝑡𝑐𝑜𝑙𝑑

𝑆𝑡𝑛𝑖
𝑤      𝑖𝑓 𝑡ℎ𝑜𝑡 < 𝑥𝑛𝑖𝑡 <   𝑡𝑐𝑜𝑙𝑑

𝑆𝑡𝑛𝑖
ℎ                  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         

 

𝑠𝑡𝑎𝑟𝑡𝑢𝑝 𝑐𝑜𝑠𝑡 =  𝑆𝑡𝑛𝑖𝑡𝑆𝑛𝑖𝑡
𝐷 (1 −  𝑆𝑛𝑖,𝑡−1

𝐷 ) 

𝑠ℎ𝑢𝑡𝑑𝑜𝑤𝑛 𝑐𝑜𝑠𝑡 =  𝑆𝑑𝑛𝑖𝑡𝑆𝑛𝑖𝑡
𝐷 (1 −  𝑆𝑛𝑖,𝑡−1

𝐷 ) 

Spinning reserve requirement 

𝑆𝑝𝑖𝑛𝑖𝑛𝑔 𝑟𝑒𝑠𝑒𝑟𝑣𝑒
= 𝑇𝑜𝑡𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑓𝑟𝑜𝑚 𝑎𝑙𝑙 𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑢𝑛𝑜𝑢𝑠 𝑢𝑛𝑖𝑡𝑠
− (𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑙𝑜𝑎𝑑𝑠 + 𝑙𝑜𝑠𝑠𝑒𝑠) 

 

∑ ∑|𝑆𝑛𝑖𝑡|(𝑃𝑡𝑛𝑖
𝑚𝑎𝑥 −  𝑃𝑡𝑛𝑖𝑡) +  ∑(𝑃ℎ𝑗

𝑚𝑎𝑥 −  𝑃ℎ𝑗𝑡 ) ≥  𝛽𝑡

𝐽

𝑗=1

𝑁𝑖

𝑛=0

𝐼

𝑖=1

 

For Sri Lankan context, 𝛽 =  0 

Every hydropower system exhibits distinctive hydraulic limitations, primarily dictated by geographical and 

hydrological factors. Occasionally, the release of water from one reservoir can impact the availability of water 

in another reservoir, referring to them as hydraulically coupled units. 

Minimum uptime and downtime 

Combined cycle power plants, coal power plants, and nuclear power plants exhibit variable minimum up times, 

contingent on the duration of the plant shutdown. In contrast, other thermal plants have distinct minimum up 

and down times. 

Minimum startup time of a thermal power plant: 

𝑖𝑓 (𝑆𝑛𝑖,𝑡−1 = 0 𝑎𝑛𝑑 𝑆𝑛𝑖𝑡 > 0) 𝑡ℎ𝑒𝑛 𝑆𝑛𝑖,𝑡+𝜏 = 1 ;  𝜏 ≤  𝑇𝑛𝑖
𝑢𝑝

 

𝑇𝑛𝑖
𝑢𝑝

=  {

𝑇𝑛𝑖
𝑢𝑝𝐶

                        𝑖𝑓 𝑥𝑛𝑖𝑡 >  𝑡𝑐𝑜𝑙𝑑

𝑇𝑛𝑖
𝑢𝑝𝑊

      𝑖𝑓 𝑡𝑤𝑎𝑟𝑚 <  𝑥𝑛𝑖𝑡 <  𝑡𝑐𝑜𝑙𝑑

𝑇𝑛𝑖
𝑢𝑝𝐻

                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Minimum downtime of a thermal power plant: 

𝑖𝑓 (𝑆𝑛𝑖,𝑡−1 = 1 𝑎𝑛𝑑 𝑆𝑛𝑖𝑡 < 0 )𝑡ℎ𝑒𝑛 𝑆𝑛𝑖,𝑡+𝜏 = 0 ;  𝜏 ≤  𝑇𝑛𝑖
𝑑𝑛  

𝑃𝑡𝑛𝑖𝑡 =  {
𝑚𝜏 + 𝐾    𝑖𝑓 (𝜏 < 𝑇𝑛𝑖

𝑢𝑝
)

𝑃𝑡𝑛𝑖𝑡             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Hydropower plants are characterised by rapid startup and shutdown capabilities. Therefore, the minimum 

startup and shutdown times are not constraints for hydropower plants. 

 

 

Ramp rate 
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∆𝑃𝑖𝑛 = |𝑃𝑡𝑛𝑖𝑡 −  𝑃𝑡𝑛𝑖,𝑡+1| 

It is assumed that rate of decrease in power is same as the rate of increase in power. 

Status of the thermal plant 

𝑆𝑛𝑖𝑡 =  {

𝑃𝑡𝑛𝑖𝑡

𝑃𝑡𝑛𝑖
𝑚𝑖𝑛   𝑖𝑓 (𝜏 <  𝑇𝑛𝑖

𝑢𝑝
)

1            𝑖𝑓 (𝜏 ≥  𝑇𝑛𝑖
𝑢𝑝

)

 

𝑆𝑛𝑖𝑡 =  {
−

𝑃𝑡𝑛𝑖𝑡

𝑃𝑡𝑛𝑖
𝑚𝑖𝑛   𝑖𝑓 (𝜏 <  𝑇𝑛𝑖

𝑑𝑛)

  0              𝑖𝑓 (𝜏 ≥  𝑇𝑛𝑖
𝑑𝑛)

 

Maximum Capacity Unit 

𝛼𝐷𝑡  ≥  𝑃𝑡𝑛𝑖𝑡  𝑎𝑛𝑑 𝛼𝐷𝑡  ≥  𝑃ℎ𝑛𝑖𝑡;  𝛼 = 0.2 

Thermal Plant Cost Function 

𝐶𝑡(𝑃𝑡𝑛𝑖𝑡) =  𝑎𝑃𝑡𝑛𝑖𝑡 +  𝑏𝑃𝑡𝑛𝑖𝑡
2 + 𝑐 

Sri Lankan system does not contain with second order of cost function. 

∴  𝐶𝑡(𝑃𝑡𝑛𝑖𝑡) =  𝑎𝑃𝑡𝑛𝑖𝑡 +  𝑐 

Algorithm of Metro for economic dispatch of Thermal Power plants 

Input 

 Half an hour demand curve of thermal and total demand 

 Available plants and cost details 

 Maintenance schedule 

 Initial status of the plants (ON/OFF, Number of Units running, Number of hours stopped) 

Step 1 

 Generate initial schedule. 

 Sort the power plants ascending order to unit cost. 

o Combined cycle power plant consists of no-load cost per hour. Therefore, the average cost of 

the plant is taken as 
𝑎𝑃𝑡𝑛𝑖

𝑚𝑎𝑥−𝐶

𝑃𝑡𝑛𝑖
𝑚𝑎𝑥  

Step 2 

 Generate option for the next schedule (Number of Options = 2𝐼) 

 Remove infeasible options by considering total minimum load and total maximum load (total 

minimum load < Load < total maximum load) 

∑ ∑ 𝑢𝑖𝑡𝑀𝑡𝑛𝑖𝑡𝑃𝑡𝑛𝑖
𝑚𝑖𝑛 <  𝐷𝑡

𝑇ℎ <  ∑ ∑ 𝑢𝑖𝑡𝑀𝑡𝑛𝑖𝑡𝑃𝑡𝑛𝑖
𝑚𝑎𝑥

𝑁𝑖

𝑛=1

𝐼

𝑖=1

𝑁𝑖

𝑛=1

𝐼

𝑖=1

 

 

 

Step 3 
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 Options are generated for the plants but not for the plants’ units. Therefore, if a plant is committed 

that does not mean that all the available units are up running. But if a plant is reserved no units will 

be running. 

 Even though it is a merit order list (MOL) all the committed power plant of an option should be 

dispatched regardless of the cost. Therefore, at least its operational minimum power will be 

dispatched. 

 𝑃𝑙𝑎𝑛𝑡 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ≤ (𝐷𝑒𝑚𝑎𝑛𝑑 − 𝐷𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝑒𝑑 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 −
                                    𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑝𝑜𝑤𝑒𝑟 𝑝𝑙𝑎𝑛𝑡𝑠)   

 𝐷𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝑒𝑑 𝐶𝑎𝑝𝑎𝑡𝑖𝑐𝑦 =  ∑ ∑ |𝑆𝑛𝑖𝑡|𝑀𝑡𝑛𝑖𝑡𝑃𝑡𝑛𝑖𝑡
𝑁𝑖
𝑛=1

𝑙−1
𝑖=1  

 𝑇𝑜𝑡𝑎𝑙 𝑚𝑖𝑚𝑖𝑚𝑢𝑛 𝑙𝑜𝑎𝑑 𝑜𝑓 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑝𝑙𝑎𝑛𝑡𝑠 =  ∑ ∑ |𝑆𝑛𝑖𝑡|𝑀𝑡𝑛𝑖𝑡
𝑁𝑖
𝑛=1

𝐼
𝑖=1+1 𝑃𝑡𝑛𝑖

𝑚𝑖𝑛  

 ∑ |𝑆𝑛𝑖𝑡|𝑀𝑡𝑛𝑖𝑡𝑃𝑡𝑛𝑖𝑡 ≤ (𝐷𝑡
𝑇ℎ −  ∑ ∑ |𝑆𝑛𝑖𝑡|𝑀𝑡𝑛𝑖𝑡𝑃𝑡𝑛𝑖𝑡

𝑁𝑖
𝑛=1

𝑙−1
𝑖=1 −  𝑁𝑖

𝑛=1 ∑ ∑ |𝑆𝑛𝑖𝑡|𝑀𝑡𝑛𝑖𝑡
𝑁𝑖
𝑛=1

𝐼
𝑖=1+1 𝑃𝑡𝑛𝑖

𝑚𝑖𝑛) 

 Four transitions can occur in a step change.  

o Transition 1 

 𝑖𝑓  𝑢𝑖,𝑡−1 = 0 𝑎𝑛𝑑 𝑆𝑛𝑖,𝑡−1 = 0 𝑡ℎ𝑒𝑛 

  𝑖𝑓 𝑢𝑖𝑡 = 1 𝑡ℎ𝑒𝑛  

o 𝑖𝑓 (𝑃𝑡𝑛𝑖𝑡 ≤ (𝐷𝑡
𝑇ℎ − 𝐷𝑐0,𝑡

𝑙−1 − 𝑅𝑑𝑙+1,𝑡
𝐼 )) 𝑡ℎ𝑒𝑛 

 𝑖𝑓 (𝜏 < 𝑇𝑛𝑖
𝑢𝑝)𝑡ℎ𝑒𝑛, 0 <  𝑆𝑛𝑖𝑡  < 1 

 𝑖𝑓 (𝜏 ≥  𝑇𝑛𝑖
𝑢𝑝)𝑡ℎ𝑒𝑛, 𝑆𝑛𝑖𝑡 = 1 

o 𝑖𝑓 (𝑃𝑡𝑛𝑖𝑡 >   (𝐷𝑡
𝑇ℎ − 𝐷𝑐0,𝑡

𝑙−1 − 𝑅𝑑𝑙+1,𝑡
𝐼 )) 𝑡ℎ𝑒𝑛 

 𝑆𝑛𝑖𝑡 = 0 

 𝑖𝑓 𝑢𝑖𝑡 = 0, 𝑡ℎ𝑒𝑛 𝑆𝑛𝑖𝑡 = 0 

 

o Transition 2 

 𝑖𝑓  𝑢𝑖,𝑡−1 = 1 𝑎𝑛𝑑 𝑆𝑛𝑖,𝑡−1 = 1 𝑡ℎ𝑒𝑛 

  𝑖𝑓 𝑢𝑖𝑡 = 1 𝑡ℎ𝑒𝑛  

o 𝑖𝑓 (𝑃𝑡𝑛𝑖𝑡 ≤ (𝐷𝑡
𝑇ℎ − 𝐷𝑐0,𝑡

𝑙−1 − 𝑅𝑑𝑙+1,𝑡
𝐼 )) 𝑡ℎ𝑒𝑛, 𝑆𝑛𝑖𝑡 = 1 

o 𝑖𝑓 (𝑃𝑡𝑛𝑖𝑡 > (𝐷𝑡
𝑇ℎ − 𝐷𝑐0,𝑡

𝑙−1 − 𝑅𝑑𝑙+1,𝑡
𝐼 )) 𝑡ℎ𝑒𝑛 

 𝑖𝑓 (𝜏 < 𝑇𝑛𝑖
𝑑𝑛)𝑡ℎ𝑒𝑛, −1 <  𝑆𝑛𝑖𝑡  < 0 

 𝑖𝑓 (𝜏 ≥  𝑇𝑛𝑖
𝑑𝑛)𝑡ℎ𝑒𝑛, 𝑆𝑛𝑖𝑡 = 0 

 𝑖𝑓 𝑢𝑖𝑡 = 0, 𝑡ℎ𝑒𝑛  

 𝑖𝑓 (𝜏 < 𝑇𝑛𝑖
𝑑𝑛)𝑡ℎ𝑒𝑛, −1 <  𝑆𝑛𝑖𝑡  < 0 

 𝑖𝑓 (𝜏 ≥  𝑇𝑛𝑖
𝑑𝑛)𝑡ℎ𝑒𝑛, 𝑆𝑛𝑖𝑡 = 0 

o Transition 3 

 𝑖𝑓 𝑢𝑖,𝑡−1 = 1 𝑎𝑛𝑑 0 <  𝑆𝑛𝑖,𝑡−1 < 1 𝑡ℎ𝑒𝑛 𝑢𝑛𝑖𝑡  ≠ 1 

 𝑖𝑓 𝑢𝑛𝑖𝑡 = 1 𝑡ℎ𝑒𝑛, 

o 𝑖𝑓 (𝜏 <  𝑇𝑛𝑖
𝑢𝑝) 𝑡ℎ𝑒𝑛, 0 < 𝑆𝑛𝑖𝑡 < 1 

o 𝑖𝑓 (𝜏 ≥  𝑇𝑛𝑖
𝑢𝑝) 𝑡ℎ𝑒𝑛 𝑆𝑛𝑖𝑡 = 1 

o Transition 4 

 𝑖𝑓 𝑢𝑖,𝑡−1 = 0 𝑎𝑛𝑑 − 1 < 𝑆𝑛𝑖,𝑡−1 < 0 𝑡ℎ𝑒𝑛 𝑢𝑛𝑖𝑡  ≠ 1 

 𝑖𝑓 𝑢𝑛𝑖𝑡 =  0 𝑡ℎ𝑒𝑛 

o 𝑖𝑓 (𝜏 <  𝑇𝑛𝑖
𝑑𝑛)      𝑡ℎ𝑒𝑛 − 1 < 𝑆𝑛𝑖𝑡 < 0 

o 𝑖𝑓 (𝜏 ≥  𝑇𝑛𝑖
𝑑𝑛)    𝑡ℎ𝑒𝑛, 𝑆𝑛𝑖𝑡 = 0 

 Total cost of one option consists of energy cost and transition cost. 

𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 𝑓𝑜𝑟 ℎ𝑜𝑢𝑟 = 𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑠𝑡 + 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 

𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 =  𝑆𝑡𝑛𝑖𝑡𝑆𝑛𝑖𝑡
𝐷 (1 − 𝑆𝑛𝑖,𝑡−1

𝐷 ) +  𝑆𝑑𝑛𝑖𝑡𝑆𝑛𝑖,𝑡−1
𝐷 (1 −  𝑆𝑛𝑖𝑡

𝐷 ) 

𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑠𝑡 =  ∑ ∑ |𝑆𝑛𝑖𝑡|𝑀𝑡𝑛𝑖𝑡(𝑎𝑖𝑃𝑡𝑛𝑖𝑡 +  𝑐𝑖)

𝑁𝑖

𝑛=1

𝑙−1

𝑖=0
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∴  𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 𝑓𝑜𝑟 ℎ𝑜𝑢𝑟

=  ∑ ∑ |𝑆𝑛𝑖𝑡|𝑀𝑡𝑛𝑖𝑡(𝑎𝑖𝑃𝑡𝑛𝑖𝑡 +  𝑐𝑖)

𝑁𝑖

𝑛=1

𝑙−1

𝑖=0

+ 𝑆𝑡𝑛𝑖𝑡𝑆𝑛𝑖𝑡
𝐷 (1 − 𝑆𝑛𝑖,𝑡−1

𝐷 ) +  𝑆𝑑𝑛𝑖𝑡𝑆𝑛𝑖,𝑡−1
𝐷 (1

−  𝑆𝑛𝑖𝑡
𝐷 ) 

 After completion of scheduling one option, 

𝐹𝑢𝑙𝑙 𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 = 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 + 𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 𝑓𝑜𝑟 ℎ𝑜𝑢𝑟 

Short term power system planning  

There are several methods of short-term forecasting including, 

Classical time series and regression method 

Time series models 

Artificial intelligence and computational intelligence methods 

Hybrid approaches 

Absolute mean percentage error (MAPE) is used to measure the performance of these models.  

𝑀𝐴𝑃𝐸 =  
100

𝑇
∑

𝑦𝑡 − 𝑓𝑡

𝑦𝑡

 (%)

𝑇

𝑡=1

 

Where, 

𝑦𝑡 = real value at time t 

𝑓𝑡 = forecast at time t of period T 

Water value models 

Cost of fuel is the main component that is deciding the operation cost of a thermal power plant.  

∴ 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑝𝑙𝑎𝑛𝑡𝑠 𝑎𝑟𝑒 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑖𝑛𝑔 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 ∶  𝑐𝑗  (
$

𝑀𝑊ℎ
) 

Where, 𝑗 = 1,2, … … . , 𝑛 

Generation Limits, 

𝑔𝑡(𝑗) ≤ 𝐺(𝑗) 

Where, 

𝑔𝑡(𝑗)= energy production of plant j in stage t (MWh) 

𝐺(𝑗) = maximum generation capacity of plant j 

 

 

Determining the power plant combination to achieve the required load with minimising the fuel cost   
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𝑧𝑡 = 𝑚𝑖𝑛 ∑ 𝑐𝑗𝑔𝑡(𝑗)

𝐽

𝑗=1

 

∑ 𝑔𝑡

𝐽

𝑗=1

(𝑡) =  𝑑𝑡 

Where, 

𝑧(𝑡) – the system operating cost in stage t 

𝑐 – unit operation costs 

𝑑(𝑡) – system load 

𝑔(𝑡) – Power production 

𝑔 – generation capacities  

Immediate Cost Function (ICF) and Future Cost Function (FCF)  

Hydropower plants utilise their stored water resources to avoid the fuel expenses of thermal power plant units. 

The availability of hydropower plants depends on the water storage of reservoirs. The main decision to be 

made at the scheduling stage is to release the required amount of water by evaluating immediate financial gain 

and the expected value of water in the future. The expected value of the water in the future is represented by a 

function of inflow, reservoir level, and time. The ICF (Inflow, Cost, Function) has a relationship with the cost 

of thermal energy at the t stage. When the final storage is gradually increasing, only a small amount of water is 

available for electricity generation at the same stage. As a result, more thermal energy is required, leading to an 

increase in cost. By the way, the FCF (Future Cash Flow) associated with predicted thermal expenses from 

(t+1) to the ending point of the period will decrease due to the availability of more water for future energy 

production, as shown in Fig. 04 [16] [17]. 

 

Fig. 04 Immediate and Future Costs Versus Final Storage 

Optimisation Algorithm  
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𝑝𝑘(𝑘 + 1) =  𝛼𝑝(𝑘)𝑝𝑛(𝑘) + 𝜖(𝑘) 

Where, 

𝑝𝑘  – average short price in the week 

𝑝𝑛(𝑘) – normalised value of 𝑝𝑘  

𝛼𝑝(𝑘) – auto correction coefficient determined from the future function 

𝜖(𝑘) – normal random variable  

Principle of mass production Theory 

When the utilised capacity is increasing, fixed cost is declined and increasing the variable. 

𝑡𝑐 =  
𝐹𝐶

𝑥
+ 𝑣𝑐 

𝑡𝑐 – total average cost 

𝐹𝐶 – total fixed cost 

𝑋 – production quantity 

𝑣𝑐 – total variable cost 

To obtain the variable cost of a thermal power plant, specific heat rate curve is used. Specific heat curve 

provides information on the necessary heat energy required for generating one unit of electrical energy 

𝐻(𝑃) 

𝐻(𝑃) =  
𝛼

𝑝
+  𝛽 + 𝛾𝑃           [

𝑘𝐽

𝑘𝑊ℎ
] 

𝐹(𝑃) = 𝑃 ∗ 𝐻(𝑃)                    [
𝑀𝐽

ℎ
] 

𝐶(𝑃) = 𝑘 ∗ 𝐹(𝑃) = 𝑎 + 𝑏𝑃 + 𝑐𝑃2          [
$

ℎ
] 

𝑃 – Thermo power plant production 

𝛼, 𝛽, 𝛾 – coefficient 

𝐹(𝑃) – input – output curve 

𝐶(𝑃) – fuel cost function 

𝑘 – fuel cost coefficient  

Water value deterministic function 

𝑓𝑐(𝑃) {

𝑅𝑙(𝑡) =  𝑅𝑝𝑙(𝑡), 𝑓𝑐(𝑃) = 0

𝑅𝑙(𝑡) <  𝑅𝑝𝑙(𝑡), 𝑓𝑐(𝑃) = 𝐴

𝑅𝑙 (𝑡) >  𝑅𝑝𝑙(𝑡), 𝑓𝑐(𝑃) = 𝐵

 

𝑓𝑐(𝑃) – function cost curve for water value 
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𝑃 – power needed in system 

𝑅𝑙  – reservoir level 

𝑅𝑝𝑙  – planned reservoir level  

System production optimisation [6] 

𝑚𝑖𝑛 ∑ 𝑐(𝑗)𝑔𝑡(𝑗) +  ∑ 𝜌(𝑘, 𝑣𝑡+1)𝛼𝑡+1(𝑘)𝑣𝑡+1(𝑘) ±  𝐸𝑖 

Where, 

𝑚𝑖𝑛 ∑ 𝑐(𝑗)𝑔𝑡(𝑗) - immediate cost of thermal power plants Operating cost in stage t 

∑ 𝜌(𝑘, 𝑣𝑡+1)𝛼𝑡+1(𝑘)𝑣𝑡+1(𝑘)  - future cost of hydro power plant 

𝜌(𝑘, 𝑣𝑡+1) – production coefficient of reservoir k 

𝛼𝑡+1(𝑘) – water value function of the reservoir 

𝑣𝑡+1(𝑘) – reservoir volume at the end stage t 

𝐸𝑖 – power exchange 

For the easiness of understanding, the function can be modified as:  

min 𝐹 =  ∑ 𝑐𝑖(𝑇𝑃𝑃) + ∑ 𝑐𝑖(𝐻𝑃𝑃)

6

𝑖=1

5

𝑖=1

 ± 𝑐(𝑃𝐸𝑋) 

Where, 

𝑐𝑖(𝑇𝑃𝑃) – cost of thermal power plant 𝑖 

𝑐𝑖(𝐻𝑃𝑃) - cost of hydro power plant 𝑖 

𝑐(𝑃𝐸𝑋) – energy sold or brought on power exchange  

𝑐𝑖(𝐻𝑃𝑃) =  𝜌𝑖 ≈  𝑉𝑡+1 

Summation of power production and energy exchange has to be equal with the planned load for each period.  

∑ 𝑐𝑖(𝑇𝑃𝑃) ∗ 𝑃𝑖 +  ∑ 𝐶𝑖(𝐻𝑃𝑃) ∗  𝑃𝑖  ± 𝑐(𝑃𝐸𝑋) ∗ 𝑃 = 𝐿

6

𝑖=1

5

𝑖=1

 

To achieve the maximum financial benefits, 

𝐶𝑖(𝐻𝑃𝑃) +  𝐶𝑖(𝑇𝑃𝑃)  ≤ min[𝑐(𝐸𝑃𝐸𝑋), 𝑐𝑖(𝑇𝑃𝑃)] 

CONCLUSION AND DISCUSSION 

Cost accounting serves as a multifaceted method encompassing the accumulation, classification, 

summarisation, and interpretation of information crucial for operational planning, control, and strategic 

decision-making [18]. A primary aim of cost accounting lies in determining optimal selling prices. Beyond 

this, its objectives extend to enhancing control efficiency, facilitating financial statement preparations, and 
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laying the groundwork for operational policies, such as delineating cost-volume-profit relationships and 

evaluating the feasibility of outsourcing from external suppliers. In the realm of electricity generation, these 

objectives align with tasks like tariff formulation, strategic decisions regarding the establishment of pump 

storage power plants, importing power from neighbouring countries via tie-lines, and electrification initiatives 

[19]. Broadly defined, cost signifies the expenditure associated with production, calculated either through 

actual or notional values. For power plants, unit cost considerations encompass operational and maintenance 

expenses, fuel costs, and depreciation. However, the valuation of energy units extends beyond these factors to 

include opportunity costs, reflecting the value in terms of the unit cost of the next best alternative [19] 

[20][21].  

The primary objective of optimising the operational schedule of a hydrothermal system is to define efficient 

operational strategies for each planning stage and corresponding system states to achieve targeted power 

generation from each power plant. These strategies aim to minimise operational costs over time, including fuel 

expenses and penalties for load supply failures, while considering constraints such as stored water resources. 

The dynamic nature of water resource availability, influenced by present and future variations in value, 

underscores the importance of effectively managing reservoir levels [22][23]. This management involves 

linking operational decisions at each stage with their future implications, particularly regarding the depletion 

of hydroelectric energy and the potential need to resort to more costly thermal energy resources during periods 

of low inflow [24] [25]. Conversely, when reservoir levels reach capacity due to high inflow rates, it is 

economically advantageous to prioritise the use of inexpensive hydro sources over thermal sources. The 

inherent uncertainty of future inflow forecasts, owing to the stochastic nature of the problem, complicates 

decision-making. Moreover, the optimisation challenge is further compounded by the presence of multiple 

interconnected reservoirs and the need for multi-duration optimisation.  

This research paper discusses two methodologies: one introduced by P.J. Perera and the other known as 

METRO. Both methodologies are employed to address practical problems, specifically in the realm of 

hydrothermal dispatching. In these systems, reservoirs of stored water are utilised. However, generators 

encounter an inventory problem. They seek to optimise the release of water from reservoirs to maximize 

profits using stochastic processes. Yet, this optimisation process is constrained by the unpredictability of future 

reservoir inflows. 

While a substantial body of literature on economic dispatch focuses on enhancing mathematical computation 

methods to efficiently solve formulated objective functions, it has been noted that economic dispatch problems 

can be simplified by improving the quality of modelling. 
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