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ABSTRACT 

To overcome the limitations of existing intrusion detection systems, particularly in the areas of encrypted traffic 

analysis, cross-domain adaptation, and small-sample learning scenarios, this study proposes the TTL-IDS model, 

which integrates the Transformer architecture with transfer learning techniques. The model incorporates a multi-

head self-attention mechanism with position encoding to effectively capture long-range dependencies in network 

traffic, a critical capability for identifying subtle and complex attack patterns. Furthermore, a hierarchical feature 

transfer framework is introduced, leveraging domain adversarial training to facilitate robust knowledge transfer 

from the source domain to the target domain. Experimental results validate the effectiveness of TTL-IDS in 

enhancing detection accuracy and domain generalization. This research not only demonstrates the model’s 

practical advantages but also offers novel insights and methodologies for strengthening security in dynamic and 

heterogeneous network environments. 
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INTRODUCTION 

The rapid proliferation of digital technology has triggered an unprecedented surge in data generation and 

connectivity, fundamentally transforming how individuals and organizations operate (Aslam, 2024). This 

acceleration, further intensified by global disruptions such as the COVID-19 pandemic, has also reshaped the 

landscape of criminal activity. Traditional crimes are increasingly migrating into cyberspace, fueling a new wave 

of cyber threats (Malick et al., 2024). Consequently, the cybersecurity environment has become more complex 

and perilous, with organizations facing a growing frequency and sophistication of attacks. 

Traditional security measures, often reliant on static rules and signature-based detection are struggling to keep 

pace. Such approaches tend to be reactive and prove ineffective against rapidly evolving threats (Anderson, 

2022). According to the 2025 Verizon Data Breach Investigation Report, global enterprises experience network 

attacks in 44% of cases on average, while the occurrence of zero-day exploits has risen by 34% compared to the 

previous year (Verizon, 2025). 

As adversarial tactics evolve, signature-based intrusion detection systems (IDS) such as Snort and Suricata, 

which depend heavily on predefined rules and signature libraries, are losing effectiveness (Naayini, 2025). The 

widespread adoption of encrypted communication protocols, particularly TLS 1.3 has made over 80% of network 

traffic inaccessible to deep packet inspection (DPI), severely constraining traditional detection capabilities 

(Sharma & Lashkari, 2025). Moreover, advanced persistent threats (APTs) often exhibit prolonged latency 

periods; for example, the SolarWinds breach went undetected for up to 178 days, rendering conventional 

statistical models that rely on short-term patterns far less effective (Cimpanu, 2020). 

The challenge is further compounded by the dynamic nature of modern networks and the heterogeneity of 

connected devices, especially within Internet of Things (IoT) ecosystems. These factors contribute to feature 

distribution drift, which degrades detection performance. For instance, the UNSW-NB15 dataset reports a 31.7% 
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drop in cross-device detection accuracy under such conditions (Moustafa & Slay, 2015). 

In response to these limitations, researchers have turned to deep learning-based approaches as alternatives to 

traditional IDS. Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks have 

shown potential in extracting spatial and temporal features, respectively. However, these models are not without 

shortcomings. Bi-directional LSTM (BiLSTM) networks, for example, suffer from gradient vanishing issues 

when modeling long sequences, resulting in a reported 22% reduction in F1 scores for sessions exceeding 1,000 

time steps (Laghrissi et al., 2021). Furthermore, their generalization capability remains limited in low-resource 

scenarios; when labelled data in the target domain is scarce, fewer than 1,000 annotated samples, the recall rate 

of the ResNet-1D model drops to 68% (Althiyabi et al., 2024). 

LITERATURE REVIEW 

Recent advancements in intrusion detection research have primarily progressed along two promising directions 

aimed at overcoming the limitations of traditional systems: Transformer-based architectures and cross-domain 

transfer learning. 

The first direction leverages Transformers, originally introduced by Vaswani et al. (2017) which employ a self-

attention mechanism to effectively capture long-range dependencies in sequential data, thereby eliminating the 

fixed-length constraints of earlier models. This architecture has demonstrated strong potential in cybersecurity 

applications; for example, Transformer-based approaches have achieved an accuracy of 95.3% on the VirusTotal 

dataset for malware detection. However, many such models overlook the semantic information embedded within 

network protocols, which can be crucial for precise threat identification. Addressing this limitation, Rahali and 

Akhloufi (2021) proposed a Transformer-based malware detection framework built on Bidirectional Encoder 

Representations from Transformers (BERT). Their approach conducted static analysis on Android application 

source code and used preprocessed features to classify malware samples into known categories, underscoring 

the value of pretrained language models in security contexts. 

The second major direction focuses on cross-domain transfer learning, which seeks to improve model 

generalization across diverse network environments. Xue et al. (2022), for instance, utilized adversarial 

generative networks (GANs) to facilitate feature transfer across IoT devices; however, their model exhibited a 

high false positive rate when detecting DDoS attacks on the CIC-IDS2017 dataset. More recently, Rezaabad et 

al. (2022) demonstrated that combining domain adaptation with contrastive learning can enhance detection 

accuracy by 19.8% in low-resource scenarios. Despite these gains, the approach significantly increased 

computational costs, tripling training complexity and limiting its practicality for real-time applications. 

Nonetheless, a critical challenge remains unresolved: effectively balancing a model’s ability to capture long-

range dependencies with the need for efficient and stable generalization across domains. Current methods face 

notable constraints. For example, the use of absolute positional encoding in flow-based models introduces high 

phase sensitivity, leading to a 12.4% increase in prediction error. Likewise, gradient conflicts in domain 

adversarial training often result in unstable convergence, with observed performance fluctuations of up to ±8.7%. 

To address these challenges, this study proposes Transformer-based Transfer Learning Intrusion Detection 

System (TTL-IDS), a novel framework designed to enhance both scalability and cross-domain robustness. TTL-

IDS incorporates a sparse attention mechanism, reducing computational complexity from O(n²) to O(n log n) 

and making it more suitable for large-scale traffic analysis. In addition, the model employs a dual-path domain 

adversarial neural network (Dual-Path DANN) that disentangles domain-invariant and domain-specific 

components within traffic features. To improve training stability, the framework integrates the Dynamic Weight 

Averaging (DWA) algorithm, which dynamically balances loss contributions between source and target domains, 

thereby enhancing performance in heterogeneous environments. 

Beyond transfer learning and attention mechanisms, recent advances in deep learning-based intrusion detection 

have increasingly focused on automatic feature extraction and sequence modeling. For example, Qazi et al. 

(2022) proposed a 1D-CNN model that achieved 89.2% accuracy on the KDD99 dataset by scanning network 

traffic byte sequences using convolutional kernels. However, the fixed-size nature of these kernels limits the 
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model’s ability to capture global dependencies, particularly in variable-length sessions. 

Parallel developments in transfer learning have sought to mitigate data scarcity in target domains. Xu et al. (2020) 

introduced a meta-learning-based framework that treats the comparison of network traffic pairs (normal vs. 

malicious) as a core learning task. Trained and tested across multiple datasets, their model achieved an average 

detection rate of 99.62%, demonstrating strong generalization to previously unseen attacks in few-shot learning 

scenarios. 

Despite these advances, there remains a critical need for a unified framework that combines efficient sequence 

modeling, semantically rich feature extraction, and robust cross-domain generalization. TTL-IDS addresses this 

gap by integrating the strengths of Transformer architectures and transfer learning into a cohesive, scalable 

intrusion detection solution tailored for dynamic, real-world network environments. 

Research Method 

The TTL-IDS model comprises four key components: a multi-modal embedding layer that integrates protocol 

fields, payload bytes, and timing features; a position-aware Transformer encoder designed to capture long-range 

dependencies; a dual-channel domain adaptation network that separates domain-invariant and domain-specific 

features; and a dynamic classifier that enhances prediction confidence in low-sample scenarios. 

Multimodal embedding layer 

The multimodal embedding layer is designed to integrate heterogeneous network traffic features, namely 

protocol-specific information, payload content, and temporal characteristics, into a unified representation space 

suitable for downstream intrusion detection tasks. This layer comprises three key components. 

First, protocol field embedding transforms categorical protocol types (e.g., TCP, UDP, HTTP) into fixed-

dimensional vector representations. Pre-trained word embedding models such as Word2Vec or BERT can be 

employed to capture semantic relationships among different protocol types, enabling the model to leverage 

contextual similarities in network communications. 

Second, payload byte embedding processes the raw payload data contained in network packets. CNNs are used 

to extract meaningful patterns from byte-level sequences, encoding both structural and content-based 

characteristics into dense vector formats. 

Third, temporal feature encoding captures time-dependent patterns by transforming attributes such as inter-

arrival times and session durations into numerical representations suitable for sequence modeling. 

The resulting feature vectors, representing protocol semantics, payload content, and temporal dynamics are 

concatenated to produce a comprehensive multimodal embedding vector, as defined in Equation (1): 

𝐸 = [𝐸𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙; 𝐸𝑝𝑎𝑦𝑙𝑜𝑎𝑑; 𝐸𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙] (1) 

In this expression, Eprotocol ，E payload   and Etemporal denote the embedding vectors derived from protocol 

fields, payload bytes, and temporal features, respectively. 

Position aware Transformer encoder 

The position-aware Transformer encoder is designed to effectively model long-range dependencies in network 

traffic sequences by combining a learnable position encoding scheme with a multi-head self-attention 

mechanism. This design allows the model to better capture the sequential nature of traffic flows, which is 

essential for detecting subtle patterns in both benign and malicious activities. 

To incorporate positional information, a learnable relative position encoding matrix P is used. This matrix has 

dimensions dmodel × dmodel, where dmodel denotes the dimensionality of the model's hidden layers. Unlike 
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fixed or sinusoidal encodings, learnable relative encodings allow the model to adaptively learn the significance 

of relative positions between tokens, enhancing its generalization across sessions of varying lengths. 

The core of the encoder is the multi-head self-attention mechanism, which enables the model to capture 

dependencies across different positions in the sequence by attending to multiple subspaces in parallel. Each 

attention head computes its own set of queries (Q), key (K), and value (V) vectors, and the attention output is 

computed using the standard scaled dot-product attention formula: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑸, 𝑲, 𝑹) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉 (2) 

where dk  is the dimensionality of the key vectors. This allows the model to learn complex interactions and 

contextual relationships across the sequence, which are crucial for accurately detecting anomalies or attacks. 

To address the high computational cost typically associated with full self-attention, a sparse attention mechanism 

is incorporated. This technique reduces the computational complexity from O(n2) to O(n log n), where n is the 

sequence length, by limiting attention calculations to a subset of relevant positions. This makes the encoder 

scalable to large-scale network traffic data.  

Dual channel domain countermeasure network 

The dual-channel domain adversarial network is designed to enhance the model’s ability to generalize across 

domains by explicitly separating domain-invariant and domain-specific components within the learned traffic 

feature representations. This is achieved through a domain adversarial training strategy, which encourages the 

shared encoder to learn features that are discriminative for classification while remaining indistinguishable 

across domains. By minimizing the discrepancy between the source and target domain feature distributions, this 

approach improves the cross-domain adaptability of the IDS. 

In this framework, a domain classifier is introduced with the objective of identifying whether a given feature 

representation originates from the source or target domain. The input to the domain classifier is the high-level 

feature representation H, produced by the Transformer encoder. The classifier outputs a domain label  𝑦𝑑𝑜𝑚𝑎𝑖𝑛, 

indicating the predicted domain (i.e., source or target). During training, this classifier is updated to improve its 

ability to distinguish between domains, while the encoder is trained to fool the domain classifier, thereby 

promoting the extraction of domain-invariant features. 

To achieve this adversarial dynamic, the model employs a domain adversarial loss function that guides the 

training process. Specifically, the loss is defined as: 

𝑙𝑑𝑜𝑚𝑎𝑖𝑛 = −𝐸𝐻~𝐷𝑠𝑜𝑢𝑟𝑐𝑒
𝑙𝑜𝑔 𝑦𝑑𝑜𝑚𝑎𝑖𝑛(𝐻) − 𝐸𝐻~𝐷𝑡𝑎𝑟𝑔𝑒𝑡

𝑙𝑜𝑔( 1 − 𝑦𝑑𝑜𝑚𝑎𝑖𝑛(𝐻)) (3) 

In this formulation, 𝐷𝑠𝑜𝑢𝑟𝑐𝑒 and 𝐷𝑡𝑎𝑟𝑔𝑒𝑡 represent the data distributions of the source and target domains, 

respectively, and H denotes the extracted features from the Transformer encoder. This loss encourages the 

encoder to produce representations that are indistinguishable with respect to domain, thereby reducing domain 

shift and improving performance in cross-domain intrusion detection tasks. 

Dynamic classifier 

The dynamic classifier is designed to improve prediction performance in cross-domain scenarios, particularly 

when the target domain suffers from data scarcity. To achieve this, the model employs the DWA algorithm, which 

dynamically balances the loss contributions from the source and target domains. By adaptively adjusting the loss 

function weights during training, the classifier can optimize its learning process and maintain robust prediction 

confidence, even in small-sample settings. 

The DWA algorithm computes domain-specific loss weights based on the exponential moving average of recent 

loss values for the source and target domains. This mechanism ensures that more attention is given to the domain 
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with higher training difficulty (i.e., larger loss), allowing the model to adaptively shift focus as needed. The 

weights for the source and target domains at time t are calculated as: 

𝛼𝑡 =
𝑒𝑥𝑝(𝜆 ∙ 𝑙𝑠𝑜𝑢𝑟𝑐𝑒(𝑡))

𝑒𝑥𝑝(𝜆 ∙ 𝑙𝑠𝑜𝑢𝑟𝑐𝑒(𝑡)) + 𝑒𝑥𝑝 (𝜆 ∙ 𝑙𝑡𝑎𝑟𝑔𝑒𝑡(𝑡))
 (4) 

𝛽𝑡 =
𝑒𝑥𝑝 (𝜆 ∙ 𝑙𝑡𝑎𝑟𝑔𝑒𝑡(𝑡))

𝑒𝑥𝑝(𝜆 ∙ 𝑙𝑠𝑜𝑢𝑟𝑐𝑒(𝑡)) + 𝑒𝑥𝑝 (𝜆 ∙ 𝑙𝑡𝑎𝑟𝑔𝑒𝑡(𝑡))
 (5) 

Here, 𝛼𝑡 and 𝛽𝑡 represent the dynamically computed weights for the source and target domain losses, 

respectively, 𝜆 is a temperature parameter that controls the sensitivity of the weighting mechanism and, 𝑙𝑠𝑜𝑢𝑟𝑐𝑒(𝑡) 

and 𝑙𝑡𝑎𝑟𝑔𝑒𝑡(𝑡) denote the classification losses at time t for the source and target domains. 

The classifier loss function then integrates these weights to form a composite loss that guides model optimization. 

It is defined as: 

𝑙𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 = 𝛼𝑡 ∙ 𝑙𝑠𝑜𝑢𝑟𝑐𝑒 + 𝛽𝑡 ∙ 𝑙𝑡𝑎𝑟𝑔𝑒𝑡 (6) 

This dynamic loss formulation allows the model to adaptively balance the influence of both domains during 

training, which is particularly beneficial in few-shot or imbalanced domain settings.  

Experiments and analysis 

Experimental setup 

To evaluate the effectiveness of the proposed intrusion detection framework, experiments were conducted using 

the CIC-IDS2017 dataset (Ring et al., 2019), a widely used benchmark in network security research. Developed 

by the Communications Security Establishment (CSE) and the Canadian Institute for Cybersecurity (CIC), this 

dataset closely resembles real-world traffic data captured in PCAP format. It includes a diverse set of seven attack 

types, such as DDoS, Botnet, and Brute Force, among others. The dataset contains approximately 2.8 million 

samples and features 78 dimensions, covering protocol headers, statistical traffic patterns, and temporal attributes. 

This comprehensive feature set enables the training and evaluation of models in detecting anomalous behaviors 

and identifying potential security threats. For the purpose of experimentation, the dataset was partitioned into 60% 

for training, 20% for validation, and 20% for testing, ensuring balanced performance assessment and model tuning. 

To benchmark performance, a selection of representative algorithms was used for comparison. These include 

Random Forest (RF) as a traditional machine learning baseline; 1D-CNN and BiLSTM as foundational deep 

learning models; BERT-Flow as a Transformer-based variant; and DANN as a domain-adaptive model 

employing transfer learning. These models were selected to assess the proposed framework against both 

conventional and state-of-the-art approaches across multiple paradigms. 

Model performance was assessed using a set of both accuracy-focused and efficiency-focused evaluation metrics. 

The main performance indicators include Accuracy, Weighted F1 Score (F1), and ROC-AUC. To evaluate 

computational efficiency, the training time in hours was recorded. Additionally, to assess the model’s ability to 

generalize across domains, a Target Adaptation Rate (TAR) was used, calculated as the ratio of the F1 score in 

the target domain to that in the source domain (TAR = F1target /F1source). 

All experiments were conducted using a NVIDIA A100 GPU with 40GB of memory. The models were trained 

using the AdamW optimizer, with an initial learning rate of 3e-4 and a weight decay factor of 0.01. The maximum 

number of training epochs was set to 100, with an early stopping policy applied when validation performance 

failed to improve over 10 consecutive epochs. This setup ensures a fair and efficient evaluation of the proposed 

method against strong baselines. 
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RESULTS AND ANALYSIS 

Performance comparison experiment 

According to the selected typical model algorithms, performance comparison experiments were conducted on 

the CIC-ISDS2017 dataset. The experimental results are shown in Table 1. 

Table 1. Performance comparison of models’ algorithm on the CIC-IDS2017 dataset (%) 

Model   Accuracy F1   ROC-AUC         Training time (h) 

Random Forest 89.2 88.3 0.912 0.5 

1D-CNN 92.7 91.8 0.934 3.2 

BiLSTM 93.1 92.5 0.941 5.8 

BERT-Flow 94.5 93.9 0.962 8.1 

DANN 95.2 94.3 0.971 9.5 

TTL-IDS (our) 96.7 96.2 0.983 6.3 

 

Table 1  presents a comparative analysis of the performance of algorithms on the CIC-  IDS2017 dataset. The 

conclusions obtained can be summarized as follows: 

The F1 score of TTL-IDS surpasses the optimal baseline (DANN) by 1.9%, validating the synergistic benefits 

of combining Transformer with transfer learning. The inference latency stands at 8.2ms (in contrast to 15.7ms 

for BERT-Flow), fulfilling the requirements for real-time detection. Although the training time is 8.6% longer 

compared to BiLSTM, the AUC has seen a 4.2% improvement, indicating a superior balance between 

efficiency and accuracy. 

Cross domain detection experiment 

Source domain: CIC-ISDS2017 (fully marked); Target field: UNSW-NB15 (only 1% labeled data), evaluation 

index: target field F1 value TAR. The performance comparison of cross domain detection is shown in Table 2. 

Table 2. Cross domain detection performance comparison (%) 

Model F1 (Target Domain) TAR 

DANN 76.5 81.1 

Meta-IDS 78.2 83.0 

TCN-LSTM 72.8 77.3 

TTL-IDS(our) 85.1 90.2 

 

From the experimental data results in Table 2, the following conclusions can be drawn: 

The experimental results demonstrate that the proposed dual-channel domain adversarial network significantly 

improves cross-domain intrusion detection performance. Specifically, it achieves an 8.6% increase in F1 score 

on the target domain compared to the baseline DANN model, while attaining a TAR of 90.2%. These results 

indicate that the model is capable of effectively transferring knowledge from the source domain to the target 

domain, even under conditions of data scarcity or distributional shift. Furthermore, analysis of the learned feature 

representations reveals that the shared feature space in TTL-IDS is more discriminative and compact, with 

within-class distances reduced by 37%, suggesting improved clustering of semantically similar traffic samples 

across domains. 
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Overall, the proposed TTL-IDS framework outperforms all benchmark models across multiple evaluation 

metrics, underscoring its effectiveness in both accuracy and generalization. These findings validate the 

robustness of the algorithm and highlight its potential as a practical solution for intrusion detection in dynamic 

and heterogeneous network environments. Moreover, the integration of Transformer-based modeling, domain 

adversarial learning, and dynamic loss balancing introduces a novel architectural paradigm for cybersecurity 

applications, offering both theoretical contributions and real-world applicability in modern threat detection 

systems. 

CONCLUSION 

The proposed TTL-IDS model effectively addresses several key limitations of existing IDS, particularly in 

handling encrypted traffic, achieving cross-domain adaptability, and maintaining reliable performance in small-

sample scenarios. By integrating Transformer-based architectures with transfer learning techniques, TTL-IDS 

learns rich, transferable representations that generalize effectively across heterogeneous network environments. 

Its architecture combines multimodal embedding layers for fusing diverse traffic features, position-aware 

Transformer encoders for capturing long-range dependencies, dual-channel domain adversarial networks for 

disentangling domain-invariant and domain-specific features, and dynamic classifiers that adaptively balance 

domain losses to improve generalization under data scarcity. 

Experimental results confirm that TTL-IDS delivers strong detection accuracy and robust cross-domain 

performance, outperforming both traditional and deep learning-based baselines. Moreover, the model achieves a 

favourable efficiency–accuracy trade-off, maintaining low inference latency and reasonable training time, thus 

meeting the practical requirements of real-time intrusion detection. 

From a real-world integration perspective, TTL-IDS is designed with compatibility in mind. Its modular 

architecture allows seamless deployment alongside existing Security Information and Event Management 

(SIEM) platforms, enabling security analysts to incorporate its outputs into centralized monitoring workflows. 

Furthermore, its lightweight inference mode supports containerization and cloud-based deployment, facilitating 

scalability across distributed or hybrid infrastructures. These characteristics make TTL-IDS well-suited for both 

enterprise networks and resource-constrained environments, such as IoT or edge devices. 

Nonetheless, certain limitations remain. While the sparse attention mechanism improves scalability, deploying 

TTL-IDS in high-throughput, real-time environments may still pose computational challenges, particularly when 

processing large-scale encrypted traffic. In addition, the dual-path adversarial learning framework, though 

effective, increases training complexity and may require hardware acceleration for large-scale deployments. 

Future research will focus on further optimizing the model for live production environments, including reducing 

computational overhead, enhancing scalability for distributed systems, and developing lightweight variants for 

edge-based detection. Another promising direction involves integrating continual learning strategies to adapt to 

evolving attack patterns without extensive retraining, ensuring sustained effectiveness in dynamic and rapidly 

changing network contexts. 
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