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ABSTRACT 

This paper examines the quarterly corn production dynamics in the Philippines between 2010 and 2025 

through a Hidden Markov Model (HMM) approach to determine hidden regimes of volatility. Through the 

modeling of production as a process driven by hidden states, the estimation delivers an evident switch 

between low- and high-volatility regimes, each with different mean levels and residual variances. 

Stationarity testing upheld the applicability of the time series to regime modeling, and model comparison 

with AIC, BIC, and log-likelihood statistics highly preferred the 2-state HMM to a reduced 1-state model. 

Transition probability estimates reflected almost deterministic switching behavior between regimes and 

demonstrated the cyclical pattern of agricultural production, presumably caused by seasonal, climatic, or 

policy-based factors. The results highlight the usefulness of regime-switching models in identifying latent 

structural change in farm-level data and facilitate their use in prediction, risk management, and policy 

formulation towards improved food security, aiding the achievement of UN Sustainable Development Goal 2 

(Zero Hunger). 

Keywords: Hidden Markov Model, Corn Production, Regime Switching, Agricultural Volatility, Food 

Security 

INTRODUCTION 

Agriculture continues to be a foundational pillar of the Philippine economy, supporting livelihoods, 

providing food, and serving as a major source of raw materials for local industries. According to Briones 

(2021), the sector employs a large portion of the national workforce and remains a critical driver of rural 

development, especially in regions where poverty is widespread and employment opportunities are limited. 

Beyond its labor contributions, agriculture also plays a strategic role in national food security and economic 

planning. As noted by Tracio (2020), corn stands as the second most important crop in the country after rice, 

both in terms of land area cultivated and overall production volume. This crop is essential not only as a 

staple food in upland communities but also as a key input in livestock feed and agro-industrial processing. 

The research of Parreño (2023) emphasizes the need for ongoing improvement in forecasting methods to 

ensure sustainable agricultural development. Rice and corn are crucial to the Philippines' food security and 

economy, but their production faces challenges from climate change, land limitations, and rising import 

needs. This study used quarterly data (1987–2023) to compare forecasting models and found that the Holt-

Winters model outperformed SARIMA in predicting rice and corn production. Accurate forecasts help 

policymakers manage imports, stabilize supply, and support food sufficiency. 

Climate variability and economic pressures have long driven instability in Philippine corn production. In 

particular, weather phenomena such as El Niño and La Niña frequently result in either prolonged droughts or 

excessive rainfall, both of which severely disrupt planting schedules and reduce yields, especially in rain-fed 

agricultural areas. According to Gomez (2024), these climatic disruptions often result in severe yield 

reductions that undermine food availability and contribute to heightened levels of rural poverty. Similarly, 
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Hu et al. (2024) emphasized that climate extremes not only interfere with seasonal crop cycles but also 

threaten long-term agricultural sustainability by exacerbating soil degradation and reducing crop resilience. 

Since the mid-1980s, the Department of Science and Technology - Philippine Atmospheric, Geophysical and 

Astronomical Services Administration (DOST-PAGASA) (2025) has regularly published the Climate Impact 

Assessment for Philippine Agriculture. This report provides monthly evaluations of weather and climate 

conditions that may influence rice and corn production, along with farming activities across various regions. 

It is intended to assist farmers, policymakers, and agricultural advisers—such as extension workers and 

technicians, in identifying potential threats from extreme events like droughts, intense rainfall, or tropical 

cyclones. The report also serves as a basis for developing timely and effective adaptation strategies.  

On the economic side, Mayo and Villarta (2023) argued that erratic fluctuations in the prices of essential 

inputs such as fertilizers, pesticides, and hybrid seeds have made it difficult for farmers to plan and sustain 

consistent production. They further pointed out that trade liberalization and the influx of cheaper imported 

corn have exposed local farmers to volatile price competition, resulting in shrinking profit margins. These 

combined environmental and economic pressures compel farmers to make reactive, short-term planting 

decisions, leading to erratic production outputs. Such fluctuations represent transitions between productive 

and underproductive states, which are characteristic of regime shifts. These shifts are not merely isolated 

disruptions but form long-term structural barriers that hinder the agricultural sector’s ability to achieve 

consistent growth and food security. This dual vulnerability underscores the urgent need for predictive 

systems capable of capturing and anticipating these regime transitions. Similarly, in the study of Lim (2023) 

in the rice sector, rice self-sufficiency remains a central pillar of national food security. The findings showed 

that cultivated area and irrigation costs are significant drivers of rice production, while fertilizer costs, 

despite statistical significance, had little influence on price levels. Furthermore, consumption was found to 

Granger-cause changes in self-sufficiency, and together with pricing, these variables influenced production 

behavior. These insights from both rice and corn production sectors underscore the urgency of adopting 

predictive systems that integrate economic and environmental factors to effectively manage regime 

transitions and improve agricultural resilience in the Philippines. 

Government agricultural interventions, while aimed at stabilizing the corn production sector, have often 

yielded inconsistent results. Measures such as input subsidies and minimum support prices are designed to 

reduce costs and guarantee income for farmers, but in practice, these policies are frequently weakened by 

bureaucratic delays, uneven implementation, and political turnover. According to Amaglobeli et al. (2024), 

while certain policy initiatives led to short-term improvements in productivity, they failed to resolve 

fundamental structural problems, particularly those related to insufficient rural infrastructure and 

underfunded extension services. These shortcomings limit the ability of such interventions to deliver 

sustained impact. Separately, Poonon (2023) observed that earlier corn development programs encountered 

difficulties in scaling due to fragmented coordination among national and local agencies. This lack of 

continuity undermined momentum and caused policy benefits to be short-lived. As a result, government 

efforts often produce brief gains followed by stagnation or decline, making long-term agricultural 

development unpredictable. These cycles reflect policy-induced regime shifts and highlight the need for 

data-driven modeling tools to identify hidden patterns and evaluate policy effectiveness more rigorously. 

Strengthening institutional capacity and using analytical frameworks that capture these shifts are critical to 

designing reforms that are resilient and adaptive over time. 

Department of Agriculture (2023) emphasized that improving corn productivity is central to poverty 

reduction and rural development. Moreover, it is also stated that stable corn production contributes to food 

security and economic resilience, especially for rural communities that depend heavily on agricultural 

income. When production is erratic, the effects ripple throughout the food supply chain, disrupting pricing, 

availability, and household nutrition. Understanding these macroeconomic linkages underscores the strategic 

role of corn in national development and reinforces the value of models that can forecast shifts in supply 

dynamics. Meanwhile, Valdez (2022) stated that corn contributes significantly to the stability of food prices 

and rural incomes, given its diverse applications and widespread cultivation. Despite its central importance, 
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the sector continues to face deep-rooted structural and environmental challenges that threaten production 

consistency. Addressing these issues through empirical investigation and robust modeling is vital for 

supporting policy formulation and long-term agricultural sustainability. Corn's economic significance 

extends beyond its role as a staple food. Moreover, the same author reported that roughly 70 percent of 

livestock feed in the country relies on corn, linking its output directly to meat, egg supply, and food prices.  

As traditional forecasting models fall short in detecting abrupt changes in agricultural outputs, researchers 

have turned to more flexible tools like Hidden Markov Models (HMMs). Wang et al. (2020) pointed out that 

traditional trend analyses assume consistency, which is unsuitable for volatile systems like Philippine 

agriculture. In contrast, HMMs can identify sudden regime shifts by modeling transitions between high- and 

low-output states. Abhijeet et al. (2023) further recommended integrating these models with 

multidimensional evaluation frameworks, including environmental, economic, and social indicators, to 

inform more inclusive and effective planning. These models are not only statistically robust but also 

adaptable to the complexities of agricultural environments. Integrating such modeling tools with policy 

frameworks can transform how governments respond to threats and opportunities in the sector. The global 

application of Hidden Markov Models (HMMs) in agriculture has offered significant insights into 

identifying regime shifts that traditional time series models often overlook. Mihrete (2025) noted that 

diversification not only reduces the risks of monoculture systems but also contributes to more stable farm 

incomes. Integrating robust analytical tools like HMMs with ecologically sound farming practices such as 

diversification presents a dual approach to building resilient agricultural systems, particularly in vulnerable 

regions like the Philippines. 

For instance, Ferreira et al. (2021) demonstrated the model's ability to detect transitions between drought and 

recovery phases, or from low- to high-yield regimes, thus enhancing early warning capabilities and 

supporting informed decision-making. These models have proven effective in monitoring rainfall, livestock 

markets, and crop yields, offering probabilistic clarity that guides resource allocation and risk management. 

Alongside predictive modeling, crop diversification has gained attention as a sustainable strategy to buffer 

against climate variability, pest outbreaks, and market volatility. By adopting spatial, temporal, genetic, or 

intercropping methods, farmers can enhance soil health, suppress pest populations, and increase adaptability 

to changing environmental conditions. In the Philippine context, Ortiz and Torres (2019) stressed that 

diversification practices, particularly intercropping corn with legumes and vegetables, have helped 

smallholder farmers increase productivity while improving soil fertility and reducing pest pressure. These 

locally adapted strategies are essential for building resilience in vulnerable agricultural communities facing 

the compounded threats of climate change and economic uncertainty. 

The main goal of this research is to simulate and analyze the structural dynamics of quarterly Philippine corn 

production during the period 2010–2025 using a Hidden Markov Model (HMM) framework. By modeling 

the probabilistic switching between high- and low-volatility regimes, this study aims to better understand 

production trends and inform policy decisions related to risk mitigation, food security, and agricultural 

sustainability. This research supports the United Nations Sustainable Development Goal 2: Zero Hunger, by 

addressing the need for resilience and innovation in agricultural systems through improved forecasting and 

regime modeling. As the Philippine agricultural landscape continues to evolve, tools that offer both 

interpretability and forecasting power will be essential to steering it toward sustainability and inclusive 

growth. 

THEORETICAL FRAMEWORK OF THE STUDY 

The research utilizes a regime-switching framework based on a Hidden Markov Model (HMM) to examine 

quarterly Philippines' corn production between 2010 and 2025. The theoretical underpinning of such a 

framework relies on Time Series Regime Theory (Douc et al., 2014), which holds that economic or 

agricultural systems (Lebrini et al., 2020) may switch from one distinct state (or regime) to another as a 

result of structural changes (Scott et. al., 2005), shocks (Maheu & Yang, 2016), or seasonality (Sansom & 

https://rsisinternational.org/journals/ijriss
https://rsisinternational.org/journals/ijriss
http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS) 

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue XV August 2025 | Special Issue on Economics  

Page 1061 

www.rsisinternational.org 

 

 

Thomson, 2007). Within agricultural production, these regimes tend to exhibit alternating regimes of high 

and low volatility caused by climatic uncertainty (Pozzi et al., 2017), the cycle of planting and harvesting, 

market forces (Shibata, 2019), and policy changes. The basic assumption is that the observed data, i.e., crop 

yield, result from latent (hidden) processes whose dynamics change over time through probabilistic 

transitions (Bernemann et al., 2022). The theory's core postulate, the Markov property, argues that the 

present regime is a function of the previous state alone, and not of the sequence of states leading up to it. 

The Theory of Stochastic Processes also forms the methodological basis of this research. It enables time-

dependent crop data to be modeled as random processes where the outcomes develop in accordance with a 

probability structure (Cox, 2017). The Hidden Markov Model is one of the stochastic models, and it 

facilitates the identification of regime-dependent behavior without observing the states themselves 

(Kouemou & Dymarski, 2011). It is especially applicable to agricultural production data where underlying 

conditions—e.g., stress due to weather, pest epidemics, or policy measures—are not necessarily directly 

measurable but affect patterns of production (Chandi et al., 2021). By taking a probabilistic modeling 

approach, this research embodies the complexity and variability in agricultural systems, providing greater 

insight into production volatility and its sources of structure (Gikhman & Skorokhod, 2004). 

In addition, the application of Bayesian Learning Theory supplements the regime-switching approach by 

adding prior information regarding the parameters and refining this with observable data (Jacobs & 

Kruschke, 2011). This is particularly applicable in situations involving limited data or when expert opinion 

can be highly valuable. The Bayesian view not only improves interpretability and reliability but also 

replicates the decision-making process in agricultural policy, where prior beliefs are constantly revised in 

light of new information (Afrabandpey et al., 2020). This combination of regime-switching theory, stochastic 

processes, and Bayesian inference offers a rich and theoretically well-established framework for examining 

the dynamic nature (Petetin et al., 2021) of corn production in the Philippines. 

METHOD 

The research utilized a probabilistic time series modeling strategy using a Hidden Markov Model (HMM) 

framework for tracing regime-switching patterns (Zheng et al., 2021) in Philippine corn production. The aim 

was to segment quarterly production data into distinct states of volatility and test the dynamics of these state 

transitions. A 1-state and 2-state HMM were estimated and compared to gauge whether regime segmentation 

offered statistically and practically significant gains in modeling performance. Modeling was done via 

maximum likelihood estimation techniques, augmented by Bayesian analysis for the purpose of testing prior 

assumptions and model plausibility (Scott, 2011). 

Data Description 

The data sample includes 61 quarterly observations of corn production in the Philippines, covering the period 

from the first quarter of 2010 to the first quarter of 2025, based on national agricultural production records 

(Rice and Corn: Monthly Total Stocks Inventory by Sector-PX-Web, 2017). The series shows evident 

cyclical and seasonal changes, which imply the potential for structural breaks or regimes of volatility. 

Descriptive statistics provide an average of 634,881 metric tons and a standard deviation of 178,995, with a 

minimum of 270,668.3 and a maximum of 967,727 metric tons. These descriptive features hint at moderate 

variation and regime-based clustering of production levels. 

Stationarity Testing 

Before estimating the model, the time series was tested for stationarity using the Augmented Dickey-Fuller 

(ADF) test to check if the model was appropriate. The outcome of the ADF test revealed that the initial series 

was trend-stationary, and therefore, no differencing was used. Stationarity retention is very essential for the 

validity of HMM hypotheses, especially those concerning regime transition dynamics as well as the 

ergodicity of the underlying Markov chain. 
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Model Specification 

Two HMMs were defined: a 1-state model, which applies constant statistical characteristics over time (no 

regime changes), and a 2-state model, in which the data are free to switch between two regimes, recognized 

as low volatility and high volatility states. Each state was represented by its own intercept and residual 

variance. Transition probabilities were designed as a Markov chain, enabling the probability of a switch 

between regimes to be learnt from the data. 

The Hidden Markov Model (HMM) in this study assumes that the Philippine corn production over time can 

be explained by a latent (hidden) state process that switches between unobserved regimes: Regime 1 (low 

volatility) and Regime 2 (high volatility). In each regime, the observed data follow a distinct distribution 

with its own parameters, specifically the mean and variance. The switching between regimes is governed by 

a first-order Markov chain, meaning the probability of being in a particular regime at time  depends only on 

the regime at time . This allows the model to capture abrupt shifts in production patterns due to seasonal 

effects, weather shocks, or policy shifts. The general form of the HMM in this context is expressed as: 

𝛾𝑡  ǀ 𝑆𝑡 = 𝑗 ~ ℵ (𝜇𝑗 , 𝜎𝑗
2),     𝑗 𝜖 {1, 2} 

𝑃 ((𝑆𝑡 = 𝑗 ǀ 𝑆𝑡−1 = 𝑖) =  𝑝𝑖𝑗 

Where: 

𝑦𝑡 is the observed corn production at time 𝑡. 

𝑆𝑡 is the unobserved (hidden) state at time 𝑡, which can be either 1 (low volatility) or 2 (high volatility).  

𝜇𝑗 and 𝜎𝑗
2 are the regime-specific mean and variance parameters. 

𝑝𝑖𝑗  is the transition probability from regime 𝑖 at time 𝑡 − 1 to regime 𝑗 at time 𝑡, forming a 2x2 transition 

matrix. 

The transition matrix is defined as: 

𝑃 =  [
𝑃(𝑆𝑡 = 1 ǀ 𝑆𝑡−1 = 1)  𝑃(𝑆𝑡 = 2  ǀ 𝑆𝑡 = 1 )

𝑃(𝑆𝑡 = 1 ǀ 𝑆𝑡−2 = 2) 𝑃(𝑆𝑡 = 2  ǀ 𝑆𝑡−1 = 2 )
] =  [

𝑝11 𝑝12

𝑝21 𝑝22
] 

Given that the transition probabilities in this study were approximately 𝑝11  ≈ 0, 𝑝12  ≈ 1, 𝑝21  ≈ 1, and 

𝑝22  ≈ 0, the system exhibits a near-deterministic back-and-forth switching between two regimes. The HMM 

used herein represents corn production as being produced by two switching normal processes, each with 

different intercept and volatility structure, driven by a regime process that follows Markovian dynamics. This 

allows for the detection and identification of regime shifts in the data that are not observable. 

Given that the transition probabilities in this study were approximately and the system exhibits a near-

deterministic back-and-forth switching between two regimes. The HMM used herein represents corn 

production as being produced by two switching normal processes, each with different intercept and volatility 

structure, driven by a regime process that follows Markovian dynamics. This allows for the detection and 

identification of regime shifts in the data that are not observable. 

Prior Distribution 

Within the Bayesian approach used for interpretation and validation, non-informative priors were assigned to 

the mean (μ) and standard deviation (σ), with a symmetric normal prior for μ with a mean of 0 and a right-

skewed inverse-gamma-like prior for σ. This design allowed testing of how well observed data matched or 

diverged from expectations based on prior knowledge, especially considering variability in production. 
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Estimation Procedure 

Estimation was done with the Expectation-Maximization (EM) algorithm to optimize the log-likelihood 

function. The 1-state HMM converged at iteration 1 with log-likelihood -846.4626, and the 2-state HMM 

converged at iteration 18 with much better log-likelihood -785.7497. Transition probabilities, regime-

dependent parameters, and smoothed probabilities were calculated after estimation to predict each 

observation as one of the two regimes and to plot regime dynamics over time. 

Model Diagnostics 

Model diagnostics involved checking residual standard errors, R² values, and transition probability matrices. 

The residual standard error was significantly smaller in the low-volatility regime (~65,126) than in the high-

volatility regime (~213,140), which reflects an evident distinction in state behavior. The transition matrix 

showed a virtually deterministic switching pattern with almost 100% chance of moving to the other regime 

every time step, prompting concerns about potential overfitting or overly simplistic model assumptions. 

Model Comparison 

Model choice was informed by information criteria and log-likelihoods. The 2-state HMM performed better 

than the 1-state model, with a smaller AIC (1575.499 vs. 1696.925) and BIC (1587.877 vs. 1701.114), and a 

larger approximate log-marginal likelihood (-800.080 vs. -850.557). These findings affirm the presence of 

structural regime changes in the corn production series and warrant the use of a 2-state HMM as a better 

description of the underlying dynamics. 

RESULTS AND DISCUSSIONS 

This study aims to examine and model how Philippine corn production changes over time. It looks at data 

from 2010 to 2025, broken down by quarters. The research uses a Bayesian Markov Switching approach to 

analyze price swings. The goal is to spot different patterns in price changes and how long these patterns last. 

It also tries to figure out how likely it is for prices to shift from one pattern to another. By using Bayesian 

methods, the study adds to what was already known. This helps present a better understanding of how the 

market works. In the end, this research aims to shape farm policies, assess market risks, and plan strategies 

for people involved in corn farming. 

Table 1 shows descriptive statistics of quarterly corn production in the Philippines from the first quarter of 

2010 to the first quarter of 2025 based on 61 observations. The period average production is about 634,881 

metric tons, with a median of 642,805.17, indicating a relatively symmetric distribution, as also evident by 

the low skewness value of -0.136. The standard deviation of 178,995.28 indicates moderate variability in 

quarterly production, with the range covering a wide 697,058.7 metric tons, from a low of 270,668.3 to a 

high of 967,727 metric tons. The negative value of the kurtosis measure, -0.774, means the distribution is 

slightly flatter than would be expected under a normal distribution, with fewer extreme production values. 

The total production over the 15 years is 38.73 million metric tons, and the sample variance also attests to 

high dispersion in the data. These statistics indicate that although the production of corn is overall fairly 

consistent over time, it does have significant quarterly variation on what is presumably seasonal, climatic, or 

policy-driven effects. 

Table 1. Descriptive Statistics on the Quarterly Corn Production in the Philippines, 2010 to 2025 

Corn Production   

Mean 634881.4 

Standard Error 22918 

Median 642805.2 

Standard Deviation 178995.3 

https://rsisinternational.org/journals/ijriss
https://rsisinternational.org/journals/ijriss
http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS) 

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue XV August 2025 | Special Issue on Economics  

Page 1064 

www.rsisinternational.org 

 

 

Sample Variance 3.2E+10 

Kurtosis -0.7744 

Skewness -0.13635 

Range 697058.7 

Minimum 270668.3 

Maximum 967727 

Sum 38727768 

Count 61 

The line graph tracks quarterly corn output in the Philippines between 2010 and 2025 and shows the seasonal 

ebb and flow each twelve-month cycle brings. Across the period, recorded harvests vary widely, falling 

somewhere between 300,000 metric tons on the low end and exceeding 1,000,000 metric tons in the 

strongest quarter. Such steady oscillation points to deep-rooted seasonality, almost certainly tied to planting 

winds and monsoon rains that guide Philippine farm calendars. Although the data as a whole does not drift 

visibly upward or downward over the longer stretch, short-term wobbles reveal farmers' sensitivity to 

weather, fertilizer prices, import rules, or other outside changes. Certain quarters still account for sharper 

plummets or sudden surges, pointing to one-off storms, supply shortages, or unexpected policy moves 

disrupting the expected rhythm. 

 

Figure 1. Quarterly Corn Production in the Philippines, 2010 to 2025 

The figure above shows two prior distributions from a Bayesian analysis of quarterly corn production in the 

Philippines. It focuses on the mean (μ) and standard deviation (σ). The left panel displays a symmetric prior 

distribution for the mean, centered at zero. The sample mean is shown by a red dashed line, which is far from 

the peak. This indicates a significant difference between prior belief and observed data. The right panel 

presents a right-skewed prior for the standard deviation. It peaks close to zero and declines as σ increases. 

Here, the red dashed line marks the sample standard deviation. It is positioned much further to the right of 

the mode, suggesting that the observed variability is higher than what the prior assumed. Overall, this visual 

comparison highlights the potential conflict between prior assumptions and actual data. Such conflicts could 

significantly affect posterior estimates if the priors carry a lot of weight. 
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Figure 2. Prior Distribution for Mean and Standard Deviation 

Key model selection metrics for the 2-state Hidden Markov Model (HMM) applied to corn production data 

are shown in Table 2. The model's Bayesian Information Criterion (BIC) of 1587.877 and Akaike 

Information Criterion (AIC) of 1575.499 both show a reasonably good balance between complexity and 

model fit. The model's ability to capture the underlying data structure is indicated by the log-likelihood value 

of -785.7497. The 2-state HMM was chosen as the preferred specification because it offers a better 

explanation of regime dynamics in corn production without causing undue overfitting, as evidenced by lower 

AIC and BIC values when compared to simpler models. 

Table 2. Model Selection Criteria for the 2-State HMM 

Metric Value 

AIC 1575.499 

BIC 1587.877 

Log-Likelihood -785.7497 

Table 3 shows the regression coefficients for a two-regime Markov Switching Model applied to corn 

production data in the Philippines. It distinguishes between low and high volatility periods. In Regime 1, 

which is marked by low volatility, the model estimates an intercept of -283,061 with a residual standard error 

of 65,125.95. In Regime 2, linked to high volatility, the intercept changes to 283,325 with a much larger 

residual standard error of 213,139.60. Both regimes have an R² of 0, meaning the intercept-only model does 

not explain any of the variation in the data. The absence of standard errors, t-values, and p-values (NaNs) 

indicates that the coefficients are not being tested for significance. This might be due to limits in model 

estimation or a focus on classifying regimes rather than drawing inferences. The clear difference in residual 

variability between the two regimes shows that the Markov Switching framework captures distinct phases of 

volatility, even if the model's explanatory power is minimal. 

Table 3. Regression Coefficients 

Regime 1 (Low Volatility) 

Coefficient Estimate Std. Error t-value p-value 

(Intercept) -283,061 

NaN NaN NaN Residual Std. Error 65,125.95 

R² 0 
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Regime 2 (High Volatility) 

Coefficient Estimate Std. Error t-value p-value 

(Intercept) 283,325 

NaN NaN NaN Residual Std. Error 213,139.60 

R² 0 

The transition probability in Table 4 shows a very high chance of switching between the two states in the 

Markov Switching Model for corn production. If the process is in Regime 1 (low volatility), there is almost a 

0% chance of staying there (2.95 × 10¹⁵) and nearly a 100% chance of moving to Regime 2 (high volatility). 

On the other hand, when in Regime 2, the chance of remaining there is also almost zero (2.88 × 10⁻¹⁹), with a 

100% chance of returning to Regime 1. This back-and-forth behavior suggests a clear and sudden switching 

pattern between the regimes, which is unusual and might point to a flaw in the model or overfitting. In 

reality, such strict transitions do not represent true random dynamics. It may be necessary to refine the model 

or reassess how the regimes are identified. 

Table 4. Transition Probabilities 

From → To Regime 1 Regime 2 

Regime 1 2.95 × 10⁻¹⁵ (≈0%) 100% 

Regime 2 100% 2.88 × 10⁻¹⁹ (≈0%) 

Table 5 compares the performance of a 1-state and a 2-state Hidden Markov Model (HMM) used with corn 

production data. The 2-state HMM shows a much higher log-likelihood (-785.75 compared to -846.46) and 

has lower AIC and BIC values. This suggests it fits the data better, even though it is more complex. The 

approximate log marginal likelihood also supports the 2-state model (-800.080 compared to -850.557), 

highlighting its ability to capture underlying regime dynamics. These findings indicate that there are 

structural changes or regime shifts, like transitions between low and high volatility periods, in the corn 

production process. The simpler 1-state model does not account for these changes. 

Table 5. Model Comparison of Hidden Markov Models for Corn Production 

Model LogLik AIC BIC Approx. Log Marginal 

1-state HMM -846.4626 1696.925 1701.114 -850.557 

2-state HMM -785.7497 1585.499 1600.16 -800.08 

Figure 4 shows the posterior density and trace plots for the parameters μ (mean) and σ (standard deviation) 

from a Bayesian Markov Switching Model applied to Philippine corn price data. The top row concerns the 

parameter μ. The left plot presents a symmetric bell-shaped density centered near zero, suggesting that the 

posterior mean behaves well and aligns with a weakly informative prior. The trace plot on the right indicates 

good mixing and stationarity, which means there is convergence across MCMC iterations. The bottom row 

illustrates the posterior for σ. Here, the density plot is right-skewed and centered around 300,000, reflecting 

the model's inference of notable volatility in the data. The corresponding trace plot shows stable sampling 

behavior, further supporting convergence. Together, these plots confirm that the Bayesian sampler 

effectively explored the parameter space, and the priors were loose enough for the data to guide the 

inference. 
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Figure 4. Posterior Distributions and Trace Plots for Mean (μ) and Standard Deviation (σ) in a Bayesian 

Markov Switching Model 

In Figure 5, a regime timeline visualization produced by a Hidden Markov Model (HMM) that divides corn 

production values into two separate regimes over 61 time points is shown in the above figure. Higher 

production values are represented by Regime 2 (orange dots), whereas periods of lower or negative 

deviations are represented by Regime 1 (blue dots). The grey lines that connect the observed values create a 

zigzag pattern that emphasizes the two regimes' alternation. With frequent transitions indicating that the corn 

production system rapidly switches between low and high volatility states, the model successfully depicts the 

cyclical changes in volatility. The deterministic character of regime switching deduced from the data is 

confirmed by this visualization, which also validates previous conclusions drawn from the regime transition 

probabilities. 

 

Figure 5. Regime Classification Over Time Based on HMM Analysis 

The study's outcomes shed light on how quarterly corn production in the Philippines changes over time. This 

research draws on Time Series Regime Theory and Stochastic Process Theory. It shows that corn output 

switches between periods of low and high instability (Mendoza & Nabua, 2018). The 2-state Hidden Markov 

Model fits the data much better than the 1-state model. In this, it has a lower AIC, BIC, and higher log-

likelihood. This proves that the production process goes through big shifts. The timeline of regime changes 

and the odds of switching from one state to another back this up. They show a clear pattern of change, with 

output moving back and forth between two states. This might happen because of seasons, weather changes, 

volatility in the market, or policy changes. These results support the idea that hidden changing processes 

https://rsisinternational.org/journals/ijriss
https://rsisinternational.org/journals/ijriss
http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS) 

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue XV August 2025 | Special Issue on Economics  

Page 1068 

www.rsisinternational.org 

 

 

shape farm output (Montano, 2024). It captures these processes well with models that account for regime 

changes. This gives useful information to predict trends, gauge risks, and plan policies for farming. 

CONCLUSION 

Corn production in the Philippines continues to face significant structural challenges due to its exposure to 

both environmental and economic pressures. As highlighted in the introduction, climatic events such as El 

Niño and La Niña, volatile market forces, policy inconsistencies, and weak infrastructure contribute to the 

erratic nature of agricultural output. These disruptive factors often cause regime shifts, or sudden changes in 

production patterns, which traditional linear models fail to effectively capture. This study sought to address 

this analytical gap by applying a Hidden Markov Model (HMM) to quarterly corn production data from 2010 

to 2025, with the goal of detecting and understanding underlying volatility regimes. 

The application of a two-state HMM successfully classified the production periods into low- and high-

volatility regimes, uncovering hidden structural patterns within the data. The findings revealed a near-

deterministic switching behavior between the two regimes, which suggests that Philippine corn production 

follows a consistent cyclical structure, rather than a random or steadily evolving pattern. These insights 

confirm that corn output is influenced by unobserved but recurring processes, such as seasonal trends and 

policy cycles, which significantly affect farmers’ decision-making and national food supply planning. 

Statistical comparisons between the one-regime and two-regime models clearly demonstrated the superiority 

of the regime-switching approach. The lower AIC and BIC values and improved log-likelihood scores of the 

two-state model validated its ability to represent the volatility structure in corn production more accurately. 

These results provide empirical support for adopting HMMs as a forecasting and planning tool in Philippine 

agriculture. Moreover, the use of Bayesian inference to enhance the robustness and interpretability of the 

model allowed for a more nuanced understanding of production uncertainty, highlighting the compatibility of 

advanced stochastic processes with real-world agricultural data. 

Given the importance of corn as the second most vital crop in the Philippines—used for food, feed, and 

industry—the implications of this study extend to national development goals. The ability to model and 

predict regime shifts equips policymakers with the foresight needed to implement better-timed agricultural 

programs, mitigate production risks, and protect smallholder farmers from adverse market and environmental 

shocks. The insights generated also contribute to achieving Sustainable Development Goal 2 (Zero Hunger) 

by promoting a resilient and data-informed agricultural sector. 

In summary, this research demonstrates that Hidden Markov Models are a powerful tool for detecting hidden 

regime shifts in Philippine corn production. By identifying patterns that traditional models often overlook, 

this study provides a foundation for more informed agricultural policy, risk management strategies, and long-

term planning. Future studies may build on these findings by incorporating explanatory variables such as 

rainfall, global corn prices, and input costs, or by applying the model to other crops and regions. Such 

expansions will further enhance the capacity of data-driven approaches to transform the way agricultural 

volatility is understood and addressed in the Philippines. 

RECOMMENDATIONS 

Based on the research findings, the researchers present the following recommendations to inform decision-

making. 

It is recommended that the Department of Agriculture integrate regime-switching models, particularly the 

Hidden Markov Model (HMM), into its agricultural monitoring and forecasting systems. These models can 

help identify periods of heightened volatility in corn production and provide signals for preemptive policy 

intervention. The department should establish a specialized analytics team or collaborate with academic 
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institutions to regularly update and interpret regime classifications. These classifications can then be used as 

a guide for seasonal planning and distribution of farming inputs. 

In addition, the DA should consider aligning its policy mechanisms, such as the timing of fertilizer subsidies, 

post-harvest support, and crop insurance rollout, with the regime patterns detected in the data. Since the 

study revealed that switching behavior occurs with near certainty between volatility states, policies must be 

implemented in anticipation of these shifts rather than as reactions. Developing a risk management 

framework based on regime cycles would strengthen the department’s ability to respond to structural 

fluctuations in production and help reduce the likelihood of major disruptions in the corn supply. 

Farmers are advised to incorporate awareness of production volatility patterns into their planning and 

operational strategies. It is recommended that training sessions and informational bulletins be developed to 

help farmers understand and apply regime-based forecasts. These forecasts can assist in deciding when to 

increase or reduce planting, adjust input usage, or consider alternative crops, depending on the expected 

production volatility for a given quarter. 

Moreover, farmers should also coordinate with local cooperatives and municipal agricultural offices to gain 

access to localized and timely regime forecasts. These updates, which can be derived from the findings of 

this study, will provide practical guidance for adjusting farming calendars and risk management efforts. It is 

also recommended that farmers use regime insights to inform decisions on post-harvest storage and 

marketing, particularly during quarters with expected high volatility. This approach will support more stable 

income and improved decision-making in a changing production environment. 

Future researchers are encouraged to refine and build upon the two-regime Hidden Markov Model 

framework applied in this study. One recommended direction is to incorporate additional explanatory 

variables, such as climate data, pest occurrences, input prices, or policy interventions. These factors may 

help reveal the underlying causes of regime transitions and improve the model’s ability to predict future 

shifts with greater accuracy and clarity. 

It is also suggested that future studies examine regional or provincial-level corn production data to determine 

whether different areas experience distinct volatility regimes. Conducting this type of disaggregated analysis 

may uncover localized dynamics that are not visible in national models. Lastly, researchers are advised to 

explore the development of digital tools or forecasting platforms that present regime data in user-friendly 

formats. These tools could support decision-making not only for researchers and policymakers but also for 

farmers and agribusiness stakeholders who rely on timely and accurate production insights. 

REFERENCES 

1. Abhijeet,. Sahu, K., Bardhan, A., & Chouhan, N. (2023). A Comprehensive Review on Role of 

Agricultural Extension Services in the Sustainable Development of Global Agriculture. Retrieved 

from 

https://www.researchgate.net/publication/374012723_A_Comprehensive_Review_on_Role_of_Agric

ultural_Extension_Services_in_the_Sustainable_Development_of_Global_Agriculture 

2. Afrabandpey, H., Peltola, T., Piironen, J., Vehtari, A., & Kaski, S. (2020). A decision-theoretic 

approach for model interpretability in Bayesian framework. Machine learning, 109(9), 1855-1876. 

https://doi.org/10.1007/s10994-020-05901-8 

3. Amaglobeli, D., Benson, T., & Mogues, T. (2024). Agricultural Producer Subsidies: Navigating 

Challenges and Policy Considerations. Retrieved from 

https://www.elibrary.imf.org/view/journals/068/2024/002/article-A001-en.xml 

4. Bernemann, R., König, B., Schaffeld, M., & Weis, T. (2022). Probabilistic systems with hidden state 

and unobservable transitions. arXiv preprint arXiv:2205.13871. 

https://doi.org/10.48550/arXiv.2205.13871 

https://rsisinternational.org/journals/ijriss
https://rsisinternational.org/journals/ijriss
http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS) 

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue XV August 2025 | Special Issue on Economics  

Page 1070 

www.rsisinternational.org 

 

 

5. Briones, R. (2021). Philippine agriculture: Current state, challenges, and ways forward. Retrieved 

from https://pidswebs.pids.gov.ph/CDN/PUBLICATIONS/pidspn2112.pdf 

6. Tracio, H. (2020). BT CORN TOWARDS FOOD SECURITY. Retrieved from 

https://edgedavao.net/agri-trends/2020/01/bt-corn-towards-food-security/ 

7. Chandi, R. S., Kaur, A., Biwalkar, N., & Sharma, S. (2021). Forecasting of insect pest population in 

brinjal crop based on Markov chain model. Journal of Agrometeorology, 23(1), 132-136. 

8. Cox, D. R. (2017). The theory of stochastic processes. Routledge. 

9. Department of Science and Technology - Philippine Atmospheric, Geophysical and Astronomical 

Services Administration (DOST-PAGASA). (2025). Climate Impact Assessment for Philippine 

Agriculture. Retrieved from https://www.pagasa.dost.gov.ph/agri-weather/impact-assessment-for-

agriculture 

10. Douc, R., Moulines, E., & Stoffer, D. (2014). Nonlinear time series: Theory, methods and applications 

with R examples. CRC press. 

11. Ferreira, J., Ferreira, A., & Perez, N. (2021). A HIDDEN MARKOV CHAIN APPROACH TO CROP 

YIELD FORECASTING. Retrieved from 

https://www.researchgate.net/publication/348848111_A_HIDDEN_MARKOV_CHAIN_APPROAC

H_TO_CROP_YIELD_FORECASTING 

12. Gikhman, I. I., & Skorokhod, A. V. (2004). The theory of stochastic processes II. Springer Science & 

Business Media. 

13. Gomez, C. (2024). The Devastating Impact of El Niño on Philippine Agriculture. Retrieved from 

https://ispweb.pcaarrd.dost.gov.ph/the-devastating-impact-of-el-nino-on-philippine-agriculture/ 

14. Hu, T., Zhang, X., Khanal., S., Wilson, R., Leng, G., Toman, E., Wang, X., Li, Y., & Zhang, K. 

(2024). Climate change impacts on crop yields: A review of empirical findings, statistical crop 

models, and machine learning methods. Retrieved from 

https://www.sciencedirect.com/science/article/abs/pii/S1364815224001804 

15. Jacobs, R. A., & Kruschke, J. K. (2011). Bayesian learning theory applied to human cognition. Wiley 

Interdisciplinary Reviews: Cognitive Science, 2(1), 8-21. https://doi.org/10.1002/wcs.80 

16. Kouemou, G. L., & Dymarski, D. P. (2011). History and theoretical basics of hidden Markov 

models. Hidden Markov models, theory and applications, 1. 

17. Lebrini, Y., Boudhar, A., Htitiou, A., Hadria, R., Lionboui, H., Bounoua, L., & Benabdelouahab, T. 

(2020). Remote monitoring of agricultural systems using NDVI time series and machine learning 

methods: a tool for an adaptive agricultural policy. Arabian Journal of Geosciences, 13(16), 796. 

18. Lim, C. (2023). Empirical Analysis of Rice Prices, Production, and Consumption in the Philippines: 

Implications for Self-Sufficiency Policy. Retrieved from 

https://www.researchgate.net/publication/374194906_Empirical_Analysis_of_Rice_Prices_Production

_and_Consumption_in_the_Philippines_Implications_for_Self-Sufficiency_Policy 

19. Maheu, J. M., & Yang, Q. (2016). An infinite hidden Markov model for short-term interest 

rates. Journal of Empirical Finance, 38, 202-220. https://doi.org/10.1016/j.jempfin.2016.06.006 

20. Mayo, R., & Villarta, L. (2023). Obstacle in Corn Production and the Livelihood Activities of 

Smallholder Farmers in South Central Philippines. Retrieved from 

https://www.researchgate.net/publication/375098621_Obstacle_in_Corn_Production_and_the_Livelih

ood_Activities_of_Smallholder_Farmers_in_South_Central_Philippines 

21. Mihrete, T. (2025). Crop Diversification for Ensuring Sustainable Agriculture, Risk Management and 

Food Security. Retrieved from 

https://onlinelibrary.wiley.com/doi/full/10.1002/gch2.202400267?msockid=2b18187b89f2640c34980

b4b88e665b5 

22. Mendoza, A. J. A., & Nabua, W. C. (2018). TIME SERIES ANALYSIS OF RICE AND CORN 

PRODUCTION AND ITS IMPLICATION TO FOOD SECURITY IN THE PHILIPPINES. Journal 

of Higher Education Research Disciplines, 3(1). 

23. Montano, V. E. (2024). Is there Price Distortion in the Philippine Rice Market: A Bayesian Discrete 

Wavelet Transform Analysis. International Journal of Research and Innovation in Social 

Science, 8(15), 275-287. 

https://rsisinternational.org/journals/ijriss
https://rsisinternational.org/journals/ijriss
http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS) 

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue XV August 2025 | Special Issue on Economics  

Page 1071 

www.rsisinternational.org 

 

 

24. Ortiz, A., & Torres, R. (2029). Assessing the impacts of agriculture and its trade on Philippine 

biodiversity. Retrieved from 

https://www.researchgate.net/publication/337726195_Assessing_the_impacts_of_agriculture_and_its_

trade_on_Philippine_biodiversity 

25. Parreño, S. (2023). Forecasting quarterly rice and corn production in the Philippines: A comparative 

study of seasonal ARIMA and Holt-Winters models. Retrieved from 

https://www.researchgate.net/publication/375115562_Forecasting_quarterly_rice_and_corn_productio

n_in_the_Philippines_A_comparative_study_of_seasonal_ARIMA_and_Holt-Winters_models 

26. Petetin, Y., Janati, Y., & Desbouvries, F. (2021). Structured variational Bayesian inference for 

Gaussian state-space models with regime switching. IEEE Signal Processing Letters, 28, 1953-1957. 

https://ieeexplore.ieee.org/document/9540246 

27. Poonon, S. (2023). Situationer and forecast of corn production in the Philippines: A time series 

approach. Retrieved from https://innspub.net/wp-content/uploads/2024/01/JBES-V23-No4-p59-77.pdf 

28. Pozzi, M., Memarzadeh, M., & Klima, K. (2017). Hidden-model processes for adaptive management 

under uncertain climate change. Journal of Infrastructure Systems, 23(4), 04017022. 

https://doi.org/10.1061/(ASCE)IS.1943-555X.0000376 

29. Rice and Corn: Monthly Total Stocks Inventory by Sector-PX-Web. (2017). PX-Web. 

https://openstat.psa.gov.ph/PXWeb/pxweb/en/DB/DB__2E__CS/0032E4ECNV0.px/?rxid=bdf9d8da- 

30. Sansom, J., & Thomson, P. (2007). On rainfall seasonality using a hidden semi‐Markov 

model. Journal of Geophysical Research: Atmospheres, 112(D15). 

https://doi.org/10.1029/2006JD008342 

31. Scott, S. L. (2011). Data augmentation, frequentist estimation, and the Bayesian analysis of 

multinomial logit models. Statistical Papers, 52(1), 87-109. https://doi.org/10.1007/s00362-009-0205-

0 

32. Scott, S. L., James, G. M., & Sugar, C. A. (2005). Hidden Markov models for longitudinal 

comparisons. Journal of the American Statistical Association, 100(470), 359-369. 

https://doi.org/10.1198/016214504000001592 

33. Shibata, M. I. (2019). Labor Market Dynamics: A Hidden Markov Approach. International Monetary 

Fund. 

34. The Department of Agriculture. (2023). GUIDELINES IN THE IMPLEMENTATION OF CORN 

35. PRODUCTION ENHANCEMENT PROJECT (CPEP). Retrieved from https://www.da.gov.ph/wp-

content/uploads/2023/01/mo06_s2023.pdf 

36. Valdez, L. (2022). ECONOMICS AND MARKETING OF CORNMARKETING OF CORN 

PRODUCTION. Retrieved from https://www.scribd.com/presentation/565668983/Economics-of-

Corn-Farming-Final 

37. Wang, M., Lin, L., & Milkhelson, I. (2020). Regime-Switching Factor Investing with Hidden Markov 

Models. Retrieved from https://www.mdpi.com/1911-8074/13/12/311 

38. Zheng, K., Li, Y., & Xu, W. (2021). Regime switching model estimation: spectral clustering hidden 

Markov model. Annals of Operations Research, 303, 297-319. https://doi.org/10.1007/s10479-019-

03140-2 

https://rsisinternational.org/journals/ijriss
https://rsisinternational.org/journals/ijriss
http://www.rsisinternational.org/

	ABSTRACT
	INTRODUCTION
	THEORETICAL FRAMEWORK OF THE STUDY
	METHOD
	RESULTS AND DISCUSSIONS
	CONCLUSION
	RECOMMENDATIONS
	REFERENCES

