
INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

Page 3668 www.rsisinternational.org

Improvement QoE-Driven Application Deployment and Energy

Module Arrangement in Fog Environments with Offloading

Low Choon Keat, Chew Zheng Hing, Ng Yen Phing and Tew Yiqi

Tunku Abdul Rahman University Management and Technologies, Malaysia

DOI: https://dx.doi.org/10.47772/IJRISS.2025.9010293

Received: 13 January 2025; Accepted: 17 January 2025; Published: 20 February 2025

ABSTRACT

The Internet of Things (IoT) and other rapidly evolving technologies have profoundly affected daily life and

created an exponential rise in the amount of data generated and processed. By extending cloud capabilities to

the network edge, fog computing lowers latency and boosts the effectiveness of data processing. But it also

brings with it new difficulties, especially regarding resource management and energy usage. This study starts

with a thorough analysis of the current state of fog computing systems, pointing out weaknesses and areas for

improvement. We suggest enhancing current QoE-Aware application allocation algorithm, energy-aware

module allocation methods, and task-offloading approaches to maximize resource efficiency in light of our

research. Experiments in simulated fog computing environments are used to assess these methods, with an

emphasis on performance measures including energy-aware module allocation metrics, QoE-aware application

allocation enhancement, and offloading applications developing.

Keywords: Edge Computing, Fog Computing, Internet-of-Things, Internet-of-Things, Quality-of-Experience,

Energy Comsumption

INTRODUCTION

Over the past few decades, technology has evolved at an unprecedented rate, reshaping the way we live and

work. One of the most transformative advancements is the Internet of Things (IoT), which has become an

essential part of our daily lives. “Thing” in IoT can refer to any item that possesses the necessary processing

power, Internet connectivity, and network collection and transmission capabilities without aid or manual

intervention. For example, the automobile equipped with sensors that can transmit a real-time alert about any

malfunction, a human with an implanted health monitor, an animal farm with transponders in every animal, or

anything in the world with an IP address and the capacity to transfer data over the internet can all be

considered "things" in the context of the Internet of Things and all these devices equipped with advanced

processors and ample memory which can help in handle multiple tasks efficiently. However, in order to

provide the efficiency and stability that IoT promise, cloud computing plays a vital role. It can be shown the

cloud computing are able to offer a robust infrastructure that supports the massive amounts of data generated

by IoT devices and it provides us the scalable storage solutions and computational power, which are essential

to help in processing and analyzing data in real-time. Thus, this capability ensures that IoT applications can

function smoothly without the need for extensive on-premises hardware.

Despite these advantages, cloud computing is not without its limitations, particularly in the context of Industry

4.0. According to Potu et al. (2022), issues such as unstable internet connections and limited bandwidth pose

significant obstacles to efficient data transmission, real-time processing, and analysis. Additionally, industrial

sensors and controllers often require more computing power than cloud systems can directly support, and

security and privacy concerns add further complications.

To address these challenges, fog computing has emerged as a viable solution, bridging the gap between cloud

servers and IoT devices. As noted by Rahimikhanghah et al., (2021), fog computing introduces an intermediate

layer that brings computing and storage resources closer to the end users. This proximity helps alleviate

network congestion and reduce latency, providing more efficient data processing. However, fog computing is

http://www.rsisinternational.org/
https://dx.doi.org/10.47772/IJRISS.2025.9010293
https://dx.doi.org/10.47772/IJRISS.2025.9010293

Page 3669 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

not without its own challenges. For example, the process of managing a large number of fog nodes can be

complex, and issues related to Quality of Experience (QoE), energy consumption, and task offloading need

careful consideration for a lot of reasons.

It can be demonstrated that a low Quality of Experience (QoE) will significantly contribute to user

dissatisfaction. Therefore, the QoE-driven application deployment are aims to enhance the overall user

experience by optimizing the placement of applications based on the capabilities of fog nodes and user

requirements (Chen et al., 2020). By improving QoE, we can ensure that users receive timely and reliable

services, which is essential for maintaining the efficiency and effectiveness of IoT systems.

Next, energy consumption in fog computing is a significant concern, as the increased number of fog nodes can

lead to higher energy usage. Optimizing energy consumption involves dynamically adjusting the processing

power of fog nodes to match the demands of tasks, thereby reducing unnecessary energy expenditure. This not

only helps in lowering operational costs but also contributes to environmental sustainability by minimizing the

carbon footprint of computing activities.

Besides, computation offloading plays a vital role in preventing the overloading of individual fog nodes by

strategically redistributing tasks from heavily loaded nodes to those with available resources, computation

offloading ensures a balanced workload across the network. This approach helps in maintaining the

performance and reliability of fog computing systems, allowing for more efficient data processing and

resource utilization (Sheikh Sofla et al., 2021).

In response to these issues, research has focused on developing effective strategies for task scheduling and

resource management in fog computing environments. By implementing QoE-driven application deployment

policies, optimizing energy consumption, and employing computation offloading techniques, we can enhance

various performance metrics such as latency, cost, and energy efficiency. These approaches aim to improve

user service quality, minimize data processing times, and reduce network congestion.

This project explores improvement of existing solutions to enhance fog computing performance, focusing on

QoE-aware application deployment, energy-efficient module arrangement, and strategic computation

offloading. The goal is to ensure a seamless and efficient integration of fog computing within IoT ecosystems,

ultimately providing better services to end users. Lastly, this research aims to advance the capabilities of fog

computing, making it a more reliable and effective component of the modern technological landscape by

addressing these critical aspects.

Background

Fog computing, also known as edge computing, is a decentralized computing infrastructure that brings

computational resources and services closer to the data sources, at the edge of the network. This approach

addresses the limitations of traditional cloud computing, especially in scenarios requiring real-time data

processing and low-latency responses.

Then, fog computing architecture is generally divided into three layers. The first layer, known as the IoT

Devices Layer (End Tier), includes various Internet of Things (IoT) devices such as sensors, actuators, and

user devices. These devices generate and collect data from their environment, serving as the entry point for

data into the fog computing system. The second layer, termed the Fog Layer, acts as an intermediary and

consists of fog nodes or gateways equipped with storage, computing, and networking capabilities. These fog

nodes perform local data processing, storage, and preliminary analysis. Examples of fog nodes include routers,

switches, gateways, and even devices like surveillance cameras and micro data centers’. By handling tasks that

require quick response times, the fog layer reduces the amount of data that needs to be sent to the cloud. At

the top of this architecture is the Cloud Layer, which consists of centralized cloud data centers’. This layer is

responsible for extensive data storage, aggregation, and complex data analysis, leveraging the massive

computational power and scalability of cloud resources (Charaf et al., 2021).

http://www.rsisinternational.org/

Page 3670 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

Fig. 1. Fog cloud Architecture

Advantages & contributions

Fog computing offers several significant advantages that can greatly enhance the performance and efficiency

of various applications and systems (Abdali et al., 2021).

One key advantage is its ability to reduce latency. By processing data closer to the source, fog computing

minimizes the physical distance data must travel. This proximity enables quicker data processing and reduces

latency, which is crucial for applications requiring real-time responses, such as online gaming, video

conferencing, and VoIP. With data being processed locally, these applications can achieve faster response

times and improved user experiences.

Another important benefit is bandwidth efficiency. Local data processing at fog nodes means that less data

needs to be transmitted to the cloud. This reduction in data transmission alleviates network congestion and

optimizes bandwidth usage. As a result, network resources are used more efficiently, which is particularly

beneficial in large-scale IoT deployments where vast amounts of data are generated.

Enhanced security is also a significant advantage of fog computing. Since data is processed locally at fog

nodes, the exposure of sensitive information during transmission to distant cloud servers is reduced. This

localized processing can implement security measures closer to the data source, thereby enhancing the overall

security of the system and reducing the risk of data breaches.

Moreover, fog computing contributes to energy efficiency. Fog nodes can offload energy-intensive tasks from

resource-constrained IoT devices. By handling these tasks locally, fog nodes help optimize energy

consumption and can extend the battery life of IoT devices. This is particularly important for devices that

operate in remote or inaccessible locations where battery replacement or recharging is challenging.

http://www.rsisinternational.org/

Page 3671 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

Therefore, the advantages of fog computing become even more apparent when considering its role in

addressing the limitations of traditional cloud environments. The diagram in Figure 1.1 illustrates the growing

trend of organizations embracing multi-cloud architectures. According to the Flexera 2023 State of the Cloud

Report, 87% of organizations are adopting multi-cloud strategies, combining various cloud services to meet

their diverse needs (Luxner, 2023).

Fig. 1.2 Usage of Fog cloud in 2023

This widespread adoption of multi-cloud architectures demonstrates the shift towards more flexible and

efficient computing solutions. Multi-cloud environments typically involve a combination of public, private,

and hybrid clouds, allowing organizations to optimize their operations by leveraging the strengths of each

cloud type. In this context, fog computing plays a crucial role in enhancing the overall efficiency and

performance of these multi-cloud setups.

Research Motivation

With the rapid expansion of the Internet of Things (IoT), the demand for cloud computing has surged,

reflecting its integral role in handling the vast amounts of data generated by countless IoT devices. As more

sensors and smart devices come online, they continuously collect and transmit data to cloud servers, enabling a

wide range of applications from smart homes to industrial automation. However, this escalating demand has

revealed significant challenges within cloud computing infrastructures (Swarnakar et al., 2023). Issues such as

increased latency, network congestion, and bandwidth limitations have become critical concerns, highlighting

the need for more efficient and responsive solutions.

Fog computing has emerged as a promising approach to address these limitations by extending cloud

capabilities to the edge of the network. This intermediary layer, situated between cloud data centers and IoT

devices, brings computational resources closer to where data is generated. Current fog computing technologies

leverage advanced techniques such as edge analytics, real-time data processing, and decentralized storage to

mitigate the drawbacks of centralized cloud computing. For instance, the implementation of fog computing in

smart grid systems has enhanced energy management by enabling real-time monitoring and control.

Additionally, autonomous vehicles rely on fog computing to process data locally, reducing latency and

improving safety.

The adoption of fog computing is gaining momentum across various sectors. According to Figure 1.3, the

global fog computing market is expected to grow from USD 162.3 million in 2022 to USD 9698.2 million by

2032, driven by the increasing deployment of IoT devices including software and hardware (Fog Computing

Market Size, Share | CAGR of 52.1%, n.d.). In healthcare, fog computing is utilized to support telemedicine

services and patient monitoring systems, ensuring timely and reliable data transmission. Similarly, in smart

http://www.rsisinternational.org/

Page 3672 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

cities, fog computing facilitates efficient traffic management, environmental monitoring, and public safety

initiatives.

Fig. 1.3 Global Fog Computing market from year 2022-2032

Our motivation for this research is to explore ways to enhance current fog computing technologies. By

focusing on Quality of Experience (QoE)-driven application deployment and energy-efficient module

arrangement, coupled with strategic task offloading, we aim to optimize the performance and sustainability of

fog computing systems. The effective adoption of these techniques will assure fog computing service providers

a competitive advantage and operational sustainability, allowing them to meet the increasing demands of

modern applications. This will have a significant impact on various industries, including smart cities,

healthcare, and industrial IoT, ensuring continuous, efficient, and tailored service delivery.

By advancing fog computing technologies, we hope to contribute to the development of more resilient and

adaptive systems that can better support the dynamic needs of today’s digital world. This research aims to not

only improve technological capabilities but also deliver tangible benefits to society by enhancing the efficiency

and effectiveness of critical services.

Statement of the problem

Fog computing, as an extension of cloud computing, promises to address some of the inherent limitations of

the cloud, such as high latency and network congestion, by bringing data processing closer to the edge devices.

This architecture, designed to bridge the gap between cloud data centers and edge devices, offers significant

improvements for latency-sensitive Internet of Things (IoT) applications, including healthcare services and

real-time analytics. Despite these advantages, fog computing present’s new challenges, particularly in terms of

energy consumption and resource management (Mostafa, 2020).

The primary problem addressed in this project is the high energy consumption and sustainability concerns

associated with current fog computing architectures. With the growing proliferation of IoT devices and the

increasing demand for real-time data processing, there is a critical need for energy-efficient scheduling and

offloading strategies. Modern server hardware in fog environments often consumes a substantial amount of

power, even when idle, contributing to increased operational costs and environmental impact. Moreover, the

dynamic and distributed nature of fog computing complicates the allocation of computing resources, making it

challenging to maintain high Quality of Experience (QoE) for end-users.

http://www.rsisinternational.org/

Page 3673 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

Statement of the Objectives

Our project aims to develop advanced offloading strategies to maximize Quality of Experience (QoE) and

energy efficiency in fog computing environments. Our objectives is to:

1. To find the way of improve the existing QoE-aware application mapping policy for enhancing the user

satisfaction.

2. Design and implement energy-efficient module arrangement strategies in fog environments to

minimize energy consumption.

3. Develop and implement effective task offloading strategies in fog computing to optimize resource

utilization and improve overall system performance.

4. To evaluate the suggested solution and compare the work with the existing solutions.

Scope of the Research

This research focuses on enhancing the performance and efficiency of fog computing systems through the

improvement of QoE-driven application deployment, energy-efficient module arrangement, and effective task

offloading strategies. The scope of this study includes:

1. Comprehensive Understanding:

The research will start with a comprehensive review of existing solutions and approaches in fog computing and

include an analysis of current challenges, limitations, and opportunities for improvement in QoE, energy

efficiency, and task offloading for the basic understanding.

2. Review of Existing Solutions:

A thorough review of existing solutions will be conducted to identify gaps and areas for enhancement. This

will involve analyzing the effectiveness and shortcomings of current approaches in addressing QoE, energy

consumption, and resource management issues in fog computing.

3. Development of Enhancement Mechanisms:

Based on the review and analysis, the research will develop enhancement mechanisms for QoE-driven

application deployment, energy-efficient module arrangement, and effective task offloading in fog computing

systems. These mechanisms will aim to address the identified gaps and improve the overall performance and

efficiency of fog computing systems.

4. Experimental Evaluation:

The proposed mechanisms will be evaluated through experiments in simulated fog computing environments.

This will include implementing the mechanisms and conducting tests to assess their effectiveness in improving

QoE, reducing energy consumption, and optimizing resource utilization.

5. Performance Metrics:

The evaluation will focus on performance metrics such as QoE improvement, energy consumption reduction,

and system performance enhancement. These metrics will be used to quantify the impact of the proposed

mechanisms and compare them with existing solutions.

Chapter summary & evaluation

Our research focuses on enhancing the performance and efficiency of fog computing systems through the

improvement of QoE-driven application deployment, energy-efficient module arrangement, and effective task

offloading strategies. The chapter begins by discussing the evolution of technology, particularly the Internet of

Things (IoT), which has become integral to modern life. As the number of IoT devices grows, cloud

http://www.rsisinternational.org/

Page 3674 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

computing faces challenges such as increased latency and network congestion. Fog computing emerges as a

solution, offering local processing and networking functions to reduce latency and improve data processing

efficiency.

The research motivation stems from the escalating demand for cloud computing due to the proliferation of IoT

devices, highlighting the need for more efficient and responsive solutions. Fog computing addresses these

challenges by extending cloud capabilities to the edge of the network. However, fog computing presents new

challenges, particularly in terms of energy consumption and resource management.

The primary problem addressed in this project is the high energy consumption and sustainability concerns

associated with current fog computing architectures. This problem is exacerbated by the growing number of

IoT devices and the increasing demand for real-time data processing. To address these challenges, the research

aims to improve the existing QoE-aware application mapping policy, design energy-efficient module

arrangement strategies, and develop effective task offloading strategies in fog computing.

The scope of the research includes a comprehensive understanding of fog computing, a review of existing

solutions, and the development of enhancement mechanisms. Experimental evaluation will be conducted to

assess the effectiveness of the proposed strategies in improving QoE, reducing energy consumption, and

optimizing resource utilization. Performance metrics such as QoE improvement and energy consumption

reduction will be used to evaluate the proposed mechanisms.

In summary, our research seeks to advance fog computing technologies to provide better services to end users

and meet the increasing demands of modern applications. By enhancing QoE-driven application deployment,

energy-efficient module arrangement, and effective task offloading strategies, we aim to optimize the

performance and sustainability of fog computing systems.

LITERATURE REVIEW

There are several primary fog computing challenges such as placement, energy and offloading to be focused

on and reviewed in this section. There are various relevant research papers that have been analyzed and

reviewed for the purpose of achieving high efficiency in module placement, optimization of energy

consumption, and great offloading performance in the past. Next, based on these various research papers, there

are some obstacles and shortcomings found in the fog-cloud environment. In short, a new algorithm is able to

be proposed for solving the obstacles and shortcomings.

There are four sections in this chapter which include the project background, literature review, QoE placement,

Energy-aware, task offloading and a conclusion.

Project Background

The technologies to be focused on in this chapter are the Internet of Things (IoT) in which is evolving at a

rapid speed and is treated as a crucial source of big data. According to (He, 2020), IoT is embedded in a

network and an example of an IoT object can include electronics hardware, software, sensors and network

connectivity. IoT also further allows data to be gathered and interchanged by these physical objects. IoT

consists of three crucial parts that play an important role in completing the whole picture of IoT. The parts of

“things” (objects), the part of the computer system that uses data streaming to and from objects and the part of

communication networks that is used to form a connection between them. Based on Xu et.al (2022), the rise of

the IoT as the main connectivity medium for billions of industrial sensors, smart home appliances, and

consumer wearable devices is paving the way for novel communication and computation paradigms that can

assist in scaling such unexpected new communications. The realization of ICT is brought through algorithms

and applications based on different aspects.

Research by Raza (2020) stated that cloud computing is able to handle a large volume of storage without

affecting the performance of the service. Besides, according to Yan et.al (2022), cloud computing has been

recognized as a paradigm for big data storage, analytics and it offers better solutions for the implementation of

http://www.rsisinternational.org/

Page 3675 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

loT applications by developing its degree to manage things in a distributed environment. Therefore, IoT with

cloud computing has emerged in industry and life. According to Chen. et.al., (2020), the combination of cloud

computing and IoT enables widespread sensing services and powerful processing of sensing data streams.

Significant advances in core technologies, processing, and communication algorithms are leading to new

intelligent IoT services in our lives such as smart cities, smart industries, smart grids, smart healthcare, and so

on to improve all aspects of life.

On-demand self-service, widespread network access, resource pooling, quick elasticity, and measured service

are attributes of the cloud. Despite its advantages (cost savings, efficiency, scalability, and reliability), cloud

computing faces significant difficulties when dealing with large amounts of data. Additionally, because the

cloud is a centralized computing paradigm, the majority of computations take place there directly. However,

the current cloud computing services still contain limitations with large amounts of data transferring which

will cause latency and limited resources to be computed at the same time. In other words, Cloud Computing

has the limitations of ultra-low latency, high bandwidth, security, and real-time analytics.

Thus, the survey by Costa et.al. (2022) stated that fog computing was proposed to overcome the limitations of

cloud computing by bringing the computation closer to the edge of the network. The purpose of fog computing

is to process what is to be done by the cloud in the fog layer to reduce the workload between the end devices

and the cloud centre. Manzoor et.al. (2022) demonstrated that the fog nodes are located close to the end users

and these nodes offer resources such as computing, storage, and networking to the applications operating under

this infrastructure unlike cloud computing which has a centralized data centre to manage resources. It is thus

very important to make reasonable resource scheduling decisions to ensure the quality of service and reduce

resource waste. Fog computing provides advantages due to the geographically distributed fod nodes, real -time

data processing and low latency. With these characteristics, fog computing is suitable to be deployed for

applications that are very sensitive to delay. The applications can include smart cities, smart vehicles, smart

traffic lights, etc. While the fog provides localization, enabling real time interaction and low latency at the

network edge, the cloud provides centralization, the integration of which inspires applications that require the

interplay and cooperation between the edge (fog) and the core (cloud), particularly for big data and the Internet

of Things. Moreover, an emerging wave of Internet deployments, which is the Internet of Things (IoTs),

requires mobility support and low latency and a new platform is needed to meet these requirements which is

fog computing (Abkenar et.al., 2022). The coming trend in the world will be the Internet of Things (IoTs) that

use the internet and smart devices in our daily life such as connected vehicles, smart grid, smart campuses,

smart homes and wireless sensor and actuator networks. Therefore, our potential markets can be the users of

IoTs and the users of cloud computing.

Review result

Closed to User

The centralization of the Cloud data centers has caused some drawbacks in the Cloud-IoT integration. The

difference is that in the Fog Computing environment, Fog services hosted on Fog Nodes (FNs), are not only

toward the network edge but also distributed everywhere along the continuum from the Cloud-IoT. Any device

can become a fog node as long as it has enough storage, computing, and networking resources to process

advanced services. Therefore, fog nodes can be either (i) end devices with rich resources (for example, smart

traffic lights, vehicles, video surveillance cameras and industrial controllers) (ii) edge nodes (for example,

switches, wireless access points and cellular base stations) and (iii) specialized “core” network routers.

Fog computing overcomes the latency issue in Cloud Computing by carrying out data analytics near the source

where data is collected so that the response times become predictable. This is an important attribute for lots of

IoT applications. Besides that, since the fog nodes are located closer to IoT devices, it helps to overcome the

limitation of context awareness. This is because exploiting context information allows service improvement

and resource utilization optimization.

The amount of data exchanged and transmitted with a Cloud data centre can be reduced as some portion of the

data is communicated with nearby fog nodes which act as agents between the IoT and the Cloud. Therefore,

the volume of Big Data can be efficiently processed, thus reducing bandwidth consumption.

http://www.rsisinternational.org/

Page 3676 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

Fog computing has the attribute of providing improved privacy and security in IoT applications and addressing

security issues. This is because the fog node locally stores and analyzes the sensitive data stored and only

allows the Cloud to access part of the sensitive data. In this scenario, Fog will process data for privacy

enforcement that is not applicable for resource-constrained IoT devices (such as the extraction and

transmission of metadata, complex encryptions). Fog Computing helps to provide connection availability even

in a Hostile environment. When IoT devices experience no connectivity or discontinuous connectivity to the

Cloud, a nearby fog node is able to provide the IoT device with critical services. Sample Heading (Third

Level). Only two levels of headings should be numbered. Lower level headings remain unnumbered; they are

formatted as run-in headings.

System-level Paradigm

Fog Computing is a system-level paradigm, where a single resource-rich computer could not provide the

overall service; this is because the service is decomposed and provided by different fog nodes which process a

specific service at the same time cooperating with other fog nodes (Shaifali et al, 2021). One of the guiding

principles of the OpenFog Reference Architecture (OFRA) is the pyramid-like organisation as shown in Figure

2.1.

Fig. 2.1 Fog Computing pyramid-like hierarchical organization

The lowest layer hierarchy contains the IoT (end devices or Things), in which rich-resources IoT might

themselves act as fog nodes. The higher layers of the hierarchy numbers and composition depend on the actual

application domain and purpose from the network edge up to the core. The Cloud is at the highest layer. Fog

Computing is the expansion of Cloud in providing services within the same layer or among nodes belonging to

different layers. The role of each fog node depends on its position in the pyramid.

In short, fog computing can be said to consist of three main layers, IoT devices layer (End Tier), Fog layer

(Fog Tier), and Cloud layer (Cloud Tier). The IoT devices layer is the layer where the sensors gather all the

users’ requests from the application. The fog layer behaves as intermediary between IoT end devices layer and

cloud layer and helps in QoE, efficiency energy consumption and calculation offloading. Fog nodes are

devices with computing capability, storage and network connectivity such as switches, routers and video

surveillance cameras. Cloud layer is the highest layer in this fog computing architecture which receives

information from fog nodes and then conducts analysis.

http://www.rsisinternational.org/

Page 3677 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

The Examples of Application of Fog Computing

Smart Utility Service

The primary goal of smart utility services is to reduce costs and save time by saving energy. In order to enable

analysis of data from the application at every minute for real time update and to address the difficulty in

transmitting other data-heavy traffic caused by IoT applications, fog computing is advantageous.

Smart Cities

Traffic regulation is one of the most important uses of fog computing in smart cities. To gather information on

how vehicles move on the road, sensors are embedded in the traffic lights and road barriers. Real -time data

analysis made possible by fog computing enables the traffic signal to change quickly in response to the flow of

traffic.

Healthcare

The evolution of wearables is introduced by technological progress and IoT. From a watch that tells the time

and date to a smartwatch that does more than that by providing users with other data, such as their health

status. The wearables are also used on hospital patients to continuously provide information on their vital

signs, blood sugar levels, and other things. These devices benefit from fog computing because it guarantees

timely data delivery in emergency situations.

Video Surveillance

In order to give video footage of public behaviour, surveillance cameras are typically mounted in shopping

malls and other public areas. A large amount of data is gathered by surveillance cameras in the form of video.

Fog computing is crucial in identifying anomalies in crowd dynamics and promptly alerting authorities to the

issue in order to avoid lag.

Autonomous Vehicles

Autonomous vehicles rely on rapid data processing for navigation and safety. Fog nodes within the vehicle or

nearby infrastructure process data from various sensors, enabling real-time decision-making. This minimizes

latency and ensures the vehicle can respond swiftly to changing conditions.t the top, the Cloud layer includes

centralized data centers and cloud servers with extensive computing and storage capabilities. It receives

processed information from fog nodes for further analysis and long-term storage, focusing on large-scale data

management and complex analytics. The hierarchical organization of fog computing allows efficient data

management, reduces latency, and enhances real-time processing, making it a scalable and effective solution

for handling the massive data generated by IoT devices.

Advantages and Limitations in Fog Computing

Fog computing utilises computing components at the network edge to serve as an intermediary layer between

end devices and Cloud data centres. Fog nodes are computing components such as computers, Raspberry Pi,

micro-data centres, and gateways used in fog environments.

Delayed Consciousness

Fog computing utilises computing components at the network edge to serve as an intermediary layer between

end devices and Cloud data centres. Fog nodes are computing components such as computers, Raspberry Pi,

micro-data centres, and gateways used in fog environments.

Location Awareness

Most IoT apps are context-aware, which means they prepare themselves based on the surrounding environment

and other apps. Sending all of these context-aware application queries to the cloud isn't realistic (Bridges et.al.,

2020) but realistic if sent to a fog device.

http://www.rsisinternational.org/

Page 3678 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

Limitation of Fog computing

The limitation of fog computing in QoE is that the different applications have different application placement

policies in order to achieve a certain service level. Furthermore, QoE is frequently changing so proposing a

variety of real-time requirements for fog environments.

Introduction of fog computing does successfully solve the problem of cloud such as delay issue and location

awareness issue. However, it greatly increases the energy consumption in the computing environment which

contrasts with the “green computing” concept.

Fog computing is facing difficulty in evenly distributing tasks to different fog devices. This issue will cause

some of the fog devices to face overhead problems while some fog devices are having nothing to handle.

As a result, solving the QoE, energy and offloading limitations in the fog computing are required. Hence,

understanding what other people have researched on QoE, energy and offloading are important.

QoE Placement, Energy Aware, Task Offloading

Quality of experience (QoE) Review

The QoE is primarily connected to the general customer satisfaction level with a vendor. Additionally, QoE

can be applied to any customer-related service or business and is frequently used in information technology

(IT) and consumer electronics. Nevertheless, the evolution of IoT devices has required the IoT devices to

exchange data or information between themselves and also with the cloud data centre. The obstacle is that the

cloud data centre or cloud storage does not have enough computational resources to support this huge amount

of information, which will lead to latency issues. As a result of latency issues, the QoE delivered by cloud

computing will be decreased (Saovapakhiran et.al., 2022). Hence, this is the reason why fog computing is

necessary for extending cloud computing.

Fog computing is a decentralized computing infrastructure, where the location of data, computers, storage, and

applications is in between the data source (IoT devices) and the cloud. By doing so, fog computing could

execute some workload of cloud computing because of its structure, which could decrease the length of

transmission of data and the overall bandwidth needed (Bartosz Kopras et al., 2022). To fulfill QoE for cloud

services, fog computing has been developed. Cloud storage is utilized in many real-world applications, such as

cloud gaming, video and image processing which require weighty processing power to analyze and evaluate

data in a limited time. Fog computing offers essential services such as processing data locally instead of in the

cloud. Consequently, there will be a decrease in latency and network bandwidth as a huge amount of time-

sensitive data from applications or IoT devices is processed locally.

In short, as justified by Mazur et al (2021), QoE is an important measurement of the level of customer

satisfaction in order to retain them. QoE is an assessment of customers including expectations, perceptions,

cognition, feelings and satisfaction when prescribing a service, application or product. Hence, it can be said

that QoE assists fog computing in enhancing user satisfaction when using a service.

QoE Related Work

The placement policy of QoE-aware applications introduced by Mahmud et al (2020) contains various fuzzy

logic-based methods that prioritize many application placement requests and categorize fog computational

instances in line with user expectations and the instances' current status, respectively. To allow low latency

response requirements in IoT applications, Cloud-like services will be provided by fog computing at the

network edge. The reason that application deployment in fog is a burdensome problem is because of the nature

of computing instances which are hierarchical, dispersed, and heterogeneous. Each of the fog nodes has

distinctive network round-trip time, data processing speed, and resource accessibility which cause the

difficulty in putting applications in fog. However, to meet certain service level targets, different application

placement policies are mandatory in fog. Therefore, application placement in fog has utilized QoS, resource,

and situation-aware features. Additionally, in the computer environment, the deployment of applications to

http://www.rsisinternational.org/

Page 3679 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

applicable fog instances is able to fully utilize the user QoE in resource usage, utility access, and service

delivery (Laghari et al., 2023). Based on Mahmud et al (2020) experimental findings, this approach can

significantly minimize data processing times, network congestion, resource costs, and service quality.

By using modified TOPSIS, Baranwal et al. (2020) have come up with a lightweight QoE aware application

placement policy in fog computing. According to Gaurav and his team's relative presumption and

computational capabilities for the placement policy, this approach precedes the applications and fog instances.

Applications with distinctive values of dependent metrics were found to receive the same precedence when

fuzzy logic was deployed in previous research. Fog computational instances may have the same precedence

even with numerous levels of computing competence. However, the downside of this approach is that it

requires complex computing. The modified TOPSIS not only inherits all the strengths of the classical TOPSIS

but also removes the rank reversal problems which successfully get rid of the downsides of the approach. For

comparative research, simulation experiments indicate that the proposed model greatly lessens the time for

application placement as compared to the state-of-the-art. In the meantime achieving the targeted resource

usage, processing time, and reduced network congestion.

Based on the Multi-Dimensional QoE (MD-QoE) model, H.Nashaat et al. (2020) have introduced an IoT

application placement technique. Conventional methods are used to define the user QoE expectations of

subjectively evaluating QoE, for instance, feedback-based approaches like Mean Opinion Scores (MOS) and

Net Promoter Score (NPS). Nevertheless, the previous assessment methodologies might not be suitable for the

IoT environment because they measure QoE subjectively. For example, real-time events frequently occur in

the IoT, delivering feedback at each dedicated interval to govern QoE has led to an increase in network latency

and slower application response times. To satisfy the QoE influence factors (IFs), resource distribution of

application placement requests is required in fog environments. The approach has been divided into two main

sections. In the first stage, divergent IoT application placement requests are prioritized based on the 3 main IFs

which are (i) environment runtime context, (ii) application use, and (iii) user expectations. Feedback will be

given through QoS violations. In the second stage, mapping and routing the request to the suitable fog node

instance depends on its position, processing capability, and expected response time. In short, the proposed

technique has enhanced overall system performance but will increase power consumption.

A resource management strategy has been created in the Varshney et al. (2021) study that implements the AHP

technique and controls the various Fog resources by assessing the values of chosen QoE criteria in the Fog

computing environment. The suggested strategy takes into account an experimental study for analyzing the

various outcomes. The suggested experiment's performance is assessed based on QoE metrics such as network

bandwidth, typical latency, storage capacity, and processing speed. The fog computing environment can

allocate resources to smart applications in accordance with their needs.

In Zhao et .al (2021) paper, they proposed a QoE-driven cross-layer optimization scheme for secure video

transmission over the backhaul links in cloud-edge networks. They developed a secure transmission model

based on video encoding and edge caching. They formulated a joint optimization problem of video encoding

parameters and an edge caching strategy to improve QoE. Then, a near-optimal algorithm was designed to

solve the joint optimization problem. Furthermore, a greedy algorithm with low complexity to obtain the

suboptimal solution was proposed too and has proven to improve video encoding quality and reduce

transmission latency and be more robust for caching capacity and could ensure secure transmission for more

videos with the limited caching capacity of edge caching servers.

Wang et.al (2022) have proposed a QoE metric that integrates the bitrate of a tile’s representation, the

relationship between the tile and the user's viewport, the user's distance to the tile, the occlusion between tiles

and the resolution of the display screen based on perspective projection in projective geometry. Furthermore,

they have developed a greedy-based rate adaptation algorithm. They have demonstrated that their proposed

solution has near-optimal performance with low execution time, has outperformed existing tile-based

algorithms and non-tiling schemes in transmission efficiency and achieved the highest peak-signal-to-noise

ratio (PSNR) under limited bandwidth, whereas other non-tiling approaches held the highest PSNR for a

sufficiently large bandwidth.

http://www.rsisinternational.org/

Page 3680 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

Saovapakhiran et.al. (2022) reviewed QoE metrics and QoE optimization objectives for various kinds of

problems such as prediction models, optimization and control, and resource management respectively. The

paper categorized emerging IoT architecture problems as QoE-aware offloading problems, QoE-aware

placement problems and QoE-aware data caching problems. Their paper discovered that ML-based approaches

were used to predict QoE and solve resource allocation problems which requires a novel concept of AI-based

layers for managing QoE. The drawback of the proposed model based on QoE is that it does not take

completion time into consideration.

Sreenivasu Mirampalli et al. (2022) proposed a resource allocation strategy for fog-enabled mission-critical

IoT applications using the Hungarian Maximization Algorithm and a fuzzy-based approach. This method

optimizes the matching of IoT applications to fog instances, maximizing user Quality of Experience (QoE)

while meeting Quality of Service (QoS) constraints. The findings indicate that this approach significantly

reduces data processing times, network congestion, and resource costs, enhancing overall service quality.

According to Mirzapour-Moshizi and Sattari-Naeini (2022) paper, they proposed a QoE-aware application

placement framework for fog computing environments using the Simple Additive Weighting (SAW) method

combined with game theory. This framework aims to optimize the placement of IoT applications by

considering user expectations and various QoE parameters, such as processing speed, proximity to gateways,

and cost. The proposed approach divides the fog environment into multiple domains, each managed by a

gateway that oversees several nodes. Using game theory and the SAW method, the framework determines the

most suitable domain to handle each application, and then applies the Particle Swarm Optimization (PSO)

algorithm to select the most appropriate node within that domain. Simulations conducted in iFogSim show that

the framework significantly reduces service response times compared to existing methods, particularly for real -

time applications, while also improving resource utilization and reducing network congestion. By integrating

user expectations into the placement process, the framework enhances the overall Quality of Experience (QoE)

for users. The study concludes that the proposed method outperforms traditional approaches in terms of

performance, response times, and resource efficiency, making it a robust solution for IoT application

placement in fog environments. Future research will focus on incorporating mobility and additional parameters

to further enhance the framework's performance in more dynamic settings.

Z. Yang et al. (2022) presents a QoE-aware task processing controller based on fuzzy logic to optimize task

allocation in IoT edge computing systems. This mechanism efficiently manages task distribution by

considering multiple QoE and QoS parameters, such as network congestion, resource availability, and service

quality, to prioritize and allocate tasks effectively. The controller uses fuzzy logic to make informed decisions

about task placement, enhancing resource utilization and network performance. Simulations conducted in

iFog-Sim show that the proposed mechanism significantly reduces network congestion, minimizes latency, and

lowers energy consumption at the IoT network edge, making it more efficient for handling tasks with limited

resources. Overall, the fuzzy-based approach outperforms traditional methods, proving to be an effective

solution for managing task allocation in IoT environments.

Yadav & Baranwal (2023) introduced a novel QoE-aware mechanism based on fuzzy logic for task allocation

in IoT edge computing systems. The research focuses on optimizing network usage, reducing latency, and

lowering energy consumption by considering multiple QoE parameters in task allocation decisions. The

proposed fuzzy task allocation mechanism effectively improves resource management and network

performance in IoT edge environments.

Carvalho & Macedo (2023) propose a QoE-aware container scheduling algorithm that extends the Kubernetes

scheduler to improve user experience in cloud environments. The key contribution of their research is the use

of deep learning models, specifically Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU), to

estimate the Quality of Experience (QoE) that the cloud can offer. The proposed algorithm monitors cloud

resource usage and employs these estimations to schedule and reschedule containers based on QoE objectives.

Experimental results demonstrate that their scheduler improves average QoE by at least 61.5% compared to

other schedulers, and the proposed rescheduling method enhances QoE by up to 119%. The evaluation

considered two QoE-aware applications: live classroom and video on demand. This study highlights the

significant impact of integrating QoE objectives into container scheduling to enhance user experience.

http://www.rsisinternational.org/

Page 3681 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

Evangeline et al. (2023) proposed a fault-tolerant multimedia cloud framework to ensure Quality of

Experience (QoE) in live streaming. The key contribution of the research is to address issues related to

resource allocation, bandwidth sharing, and fault tolerance in a cloud multimedia environment. The proposed

framework incorporates novel algorithms for efficient queuing, resource allocation, bandwidth allocation, and

fault tolerance to guarantee the desired level of QoE. Their findings suggest that the proposed approach

significantly improves the prediction accuracy and fault tolerance in live streaming applications.

Feng et al., (2023) propose a framework that utilizes digital twin technology to optimize resource allocation,

including model selection, transmit power, computation time, and GPU-cycle frequency. The study

specifically employs the generalized fractional programming theory, Lagrangian dual decomposition, and an

adaptive modified harmony search algorithm to solve these optimization problems, ensuring fairness in QoE

across users. The results show that these algorithms effectively balance the QoE of worst -case clients,

improving overall system performance Jain & Kumar, (2023) used to optimize Quality of Experience (QoE) by

addressing resource utilization and task offloading in fog computing environments. The paper formulates the

task offloading problem as a Markov Decision Process (MDP) and employs Deep Reinforcement Learning

(DRL) methods like Deep Q-Network (DQN), Deep Deterministic Policy Gradient (DDPG), and Soft Actor-

Critic (SAC). These methods aim to maximize resource utility, balance service latency, energy consumption,

and ensure task deadlines and priorities are met, thus improving QoE in fog environments.

Hosseinzadeh et al., (2023) discusses the use of control-theoretic approaches, specifically model predictive

control (MPC), to optimize QoE in video streaming by managing bandwidth allocation among multiple

competing video players. The CANE framework focuses on improving QoE fairness by considering the

player's algorithm, state, and overall network conditions. It uses machine learning techniques to model the

behavior of video players and allocates bandwidth to balance both efficiency and fairness across players,

demonstrating significant improvements in QoE fairness over client-side adaptive bitrate (ABR) algorithms.

Ghasemi (2024) introduces the Multi-Objective Harris Hawks Optimization (MOHHO) algorithm for service

placement in fog computing environments, aiming to optimize the placement of services by balancing multiple

objectives, specifically reducing end-to-end delay and energy consumption. The algorithm addresses the

challenges of multi-objective optimization by converting them into single-objective problems, using two sets

of solutions: one focused on minimizing delay and the other on minimizing energy consumption. The best

solutions from each set are then compared using non-dominant sorting, and the optimal global solution is

selected. Simulation results in the CloudSim environment show that the proposed MOHHO algorithm

outperforms existing methods such as Random Mapping, Genetic Algorithm (GA), Modified Genetic

Algorithm and Particle Swarm Optimization (MGAPSO), and Teaching Learning-Based Optimization

(TLBO). It achieved up to 44% reduction in energy consumption compared to random mapping and 14% less

than TLBO, reduced end-to-end delay by up to 34% compared to random mapping and 10% compared to

TLBO, and improved network utilization efficiency by up to 43% compared to random mapping and 12%

compared to TLBO. Although the execution time of MOHHO is slightly higher than GA, it is lower than

MGAPSO and TLBO due to the complexities involved in optimization. The study concludes that the MOHHO

algorithm effectively optimizes service placement in fog computing, enhancing energy efficiency and reducing

latency. It demonstrates superior performance compared to current algorithms and has potential applications in

other cloud computing challenges like scheduling and load balancing. Future work will explore integrating

additional meta-heuristic algorithms to further improve performance in dynamic computing environments.

Abofathi et al. (2024) introduced a novel method for optimizing service placement in fog computing

environments using a Distributed Learning Automata (DLA) algorithm. The study focuses on improving

energy consumption and delay in IoT applications by efficiently distributing modules across fog nodes. Results

indicate that the DLA-FMP algorithm outperforms other optimization techniques in terms of energy efficiency

and delay reduction.

Bikas and Sayıt (2024) proposed a genetic algorithm-based path selection approach for Multipath TCP

(MPTCP) to maximize the Quality of Experience (QoE) in adaptive HTTP streaming systems. The key

contribution of the research is to jointly consider bandwidth and delay differences, as well as the disjointness

http://www.rsisinternational.org/

Page 3682 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

of paths, in the selection process. The findings suggest that this approach significantly improves QoE metrics

compared to methods that consider bandwidth or delay differences individually.

Liu et al. (2024) propose a novel framework for QoE-aware collaborative edge caching and computing tailored

for adaptive video streaming. The primary contribution of this research is to optimize video quality and

minimize latency by intelligently distributing computational and caching tasks across edge devices. The

findings demonstrate that the proposed approach significantly enhances user experience by reducing buffering

time and improving video quality.

Islam et al. (2024) introduced the HPSP algorithm design, utilizing Tabu Search Algorithm as a meta -heuristic

to improve QoE over POPP by proactively deploying service instances. The study analyzed QoE and

deployment cost, showing that QoE enhances with HPSP due to the Hyper-Heuristic strategy, while

deployment cost decreases with task size but rises with the number of ENs. The optimization formulation

focused on QoE-based optimization for service instance deployment, reducing it to an MKP problem and

considering user QoE and deployment costs in the MEC environment.

Our proposed QoE-aware application placement policy for Fog differs from the aforementioned works since

we have considered multiple user expectation parameters such as service access, resource requirement,

processing time, response rate, resource availability, processing speed, decentralized management, prioritized

placement, deadline and compound QoE gain. The policy is developed in a decentralized manner so that it is

less susceptible to single points of failure and management overheads. Application placement and met requests

are prioritized based on users’ expectations and the compound QoE of users is maximized through the policy.

Energy Aware Review

To enhance fog computing performance, load balancing and processing power are shared among fog nodes.

For boosting performance, offloading has to take into consideration energy usage, task load, waiting time and

network situations. As a result to design an energy-saving compute offloading strategy according to deep

learning that can fulfill the optimum offloading selection. Even though the aforesaid technique might greatly

enhance latency and energy consumption, the problems of data transmission and processing security are not

included in the aforesaid solution.

Bichi et.al. (2022), proposed that the Internet of Things enables sensors and devices to examine their

surroundings and make autonomous decisions. Innovative surveillance technologies have cleared the ground

for the military-based IoT to emerge. However, these high-security conditions are harsh and unpredictable, and

the devices deployed in such situations must operate constantly for an extended period of time. The new IoT -

Fog architecture paradigms, which encompass key sectors, are becoming possible for real-time decision

making, and optimal energy conservation in IoT-based application data processing is crucial. As a result, it is

critical to select an effective application architecture for operation that may conserve energy over the

application's lifetime.

(Malik et al., 2022) stated that offloading tasks saves energy. However, if task offloading is used in

conjunction with device control-based energy saving strategies, the amount of energy saved can be increased

even further. These strategies govern some functionalities or features of devices in order to improve

performance and conserve energy. Local devices and task helper nodes can use device control to change

parameters such as transmission power, on/off switching time, battery supply voltage, battery supply

frequency, and modulation scheme.

One key purpose of offloading is to lower the energy consumption of mobile devices when performing tasks

that require more energy. A mobile gadget that tries to handle everything on its own may quickly exhaust its

battery due to space limits. As a result, while passing tasks to the server for execution, performance in terms of

energy usage must be addressed. (Chuang & Hsiang, 2022)

Energy Consumption Work

Two semi-greedy based algorithms, (i) priority-aware semi-greedy (PSG) and (ii) PSG with multi start process

(PSG-M) were proposed by Azizi et al. (2022) to map IoT tasks to fog nodes effectively. They have also

http://www.rsisinternational.org/

Page 3683 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

developed task scheduling to satisfy the need for QoS in IoT jobs while at the same time reducing the overall

energy consumption of fog nodes. The primary purpose was to meet the job deadlines while fully utilizing the

overall energy usage of the system. If it has exceeded a job's deadline, it is dedicated to a fog node that enables

the slightest deviation from the job’s time limit requirements. The two effective precedence aware semi-greedy

algorithms are recommended to meet these objectives. Extensive experiments are used to assess the efficiency

of the suggested algorithms. The findings describe that the proposed algorithms greatly suppress previous

algorithms in terms of the proportion of IoT tasks that met their time limit requirements, the overall energy

consumption and system lifespan, and the aggregate amount of the deadline violation time.

A scheduling algorithm is a technique that assigns jobs to available system resources (Nazari Bu-Ali et al.,

2022). It should be noted that incompatible scheduling algorithms may result in hardware inefficiencies or

application slowdowns. Using a suitable algorithm, on the other hand, reduces energy usage and response time.

The recommended solution employs a genetic algorithm with Non-dominated sorting and a Simulated

Annealing algorithm. The research's primary innovations and points are described as (i) obtaining priority

tasks in the form of a DAG graph, with graph construction and weighting determined by network

communication and transmission latency, and dynamically allocating priority jobs. (ii) Create inventive first

solutions for the suggested algorithm. (iii) Consider how communication delays affect system response times.

(iv) Using a multiobjective algorithm to optimize both energy usage and reaction time. (v) Select the best

option from the list of possibilities using the DVFS method.

Naha et al.(2022) answered a problem statement and proposed energy-aware resource allocation to make the

Fog environment sustainable when satisfying time sensitive application requirements while available resources

in the devices are changing dynamically. Naha and the team determine which resources are suited for energy-

aware resource allocation. As a result, multiple linear regression is used to govern application execution in an

energy-conscious manner. The linear regression-based strategy is used to construct an energy-aware resource

allocation algorithm and to determine how all the independent factors affect the dependent variables using

linear regression.

In the paper by (Mordacchini et al., 2022), it offers a decentralized, self-organizing, and QoE-centric scheme

for optimizing the system's energy consumption. The technique allows Edge entities to interact with one

another in order to exchange information and decide whether the users of each application may be served with

fewer instances. This behavior allows you to limit the number of instances running in the system, which saves

energy and resources. When deciding whether to shut down a potentially redundant instance, the entities use

the data they have communicated to determine whether this decision is consistent with the QoE of the services

and the computational limits of Edge resources. The simulation results suggest that the proposed method can

lower the energy consumed by the system by about 40%.

In this paper by (Feng et al., 2022), it presents a novel transmission strategy-based NOMA transmission in a

multi-IoT cooperative fog computing system with one task node and numerous nearby fog nodes. To reduce

energy consumption, processing tasks from the task node can be offloaded to IoT devices using partial

offloading. To formulate an energy consumption minimization problem for the complete IoT fog computing

system, the study will consider fog node selection, duration allocation, offloading workload, and local

computation resources. In addition, to acquire the fog node selection, the paper will reformulate an assignment

problem by constructing a bipartite graph. Due to the coupling of local computing resource allocation and

offloading burden, it divided the origin nonconvex problem into two comparable subproblems and presented

the MCTC algorithm to solve it. To obtain the closed-expression solution of computation time and local CPU

frequency, solve the first subproblem. The second subproblem can then be proven to be convex and effectively

addressed. The simulation results demonstrate that the proposed algorithm outperforms other benchmark

techniques by at least 56.88%.

In the paper by (Delgado & Famaey, 2022), it is shown that energy-aware scheduling mechanisms are needed

to improve the performance of successful application execution on batteryless devices. These tiny gadgets

often turn on and off, so knowing how much energy will be spent and how much energy may be recovered is

critical. As a result, the paper presents theoretical insights into the attainable performance increase of energy-

aware task scheduling when compared to state-of-the-art non-aware batteryless application task schedulers in

http://www.rsisinternational.org/

Page 3684 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

this study. Furthermore, as a first step toward constructing a workable scheduling heuristic that can run on

batteryless devices, the paper also investigates the effect of the size of the look-ahead energy prediction

window. To accomplish this, Delgado & Famaey proposed a new optimal energy-aware scheduling algorithm

that takes into account the energy available in the capacitor as well as the expected energy to be harvested in

order to optimally schedule the tasks, which are defined by their priority, arrival time, execution time, energy

consumption, and set of task parents that must be executed beforehand.

The article by (Avgeris et al., 2022) introduced the ENERDGE framework, which addresses full task

offloading and resource allocation issues in a multi-site environment. Avgeris suggested a holistic energy-

aware resource optimization method based on VM flavor design and supplemented with a unique load

redistribution technique based on MRFs, together with the ultimate goal of minimizing total energy usage

without losing QoS in terms of latency. ENERDGE examines the dynamic wireless conditions of the access

network and enables a mobility prediction system to better guide the allocation solution during task offloading

to minimize the inverse impact of dynamic user presence. The prediction mechanism accurately forecasts

users' mobile behavior, according to numerical studies, and the ENERDGE resource optimizer surpasses two

well-established load balancing algorithms in terms of latency and energy usage. Finally, the article

demonstrated that the MRF technique rapidly converges to minimal energy solutions, allowing for efficient

future energy optimizations.

Using Deep Reinforcement Learning, (Sellami et al., 2022) demonstrated the feasibility of establishing task

assignment and scheduling algorithms for SDN-enabled IoT networks. It is devised as a task assignment and

scheduling issue that reduces network latency while maintaining energy efficiency. The solution outperforms

deterministic placement algorithms, random algorithms, and A3C strategies in determining optimal allocation

decision policies for task assignments and scheduling in real-time. In addition, Sellami et al. technique enabled

both local and global optimization, resulting in lower-latency communication and increased energy efficiency.

Thus, it claims that it can extend the DRL method to provide intelligent multi-access Ultra-Dense Edge

Computing (UDEC) to more efficiently utilize multiple 5G resources.

The protocol for Energy-efficient Fog Computing-enabled Data Transmission (EFoCoD) in Tactile Internet-

based Applications is proposed by (Idrees et al., 2022). In the Tactile Internet-based fog computing

architecture, the protocol operates at the sensor device level. To decrease data reading redundancy in this

device, the EFoCoD protocol employs the LiDaRE algorithm at the sensor devices. Several studies have been

carried out to demonstrate the efficacy of the proposed strategy. When compared to PFF and ATP, the

EFoCoD protocol reduces the quantity of transferred data and reduces the sensor device's energy usage from

87.23% to 87.94% and from 84.60% to 86.37% when compared to the PFF and ATP methods, respectively.

(Azizi et al., 2022) investigated the scheduling of IoT tasks in a heterogeneous fog network in the research.

The main goal of this research was to minimize the system's total energy consumption while fulfilling the task

deadlines. If a given task's deadline is not reached, it is assigned to a fog node that delivers the smallest

deviation from the task's deadline requirement. Two efficient priority-aware semi-greedy algorithms are

developed to fulfill these goals. Extensive experiments are used to assess the effectiveness of the presented

algorithms. The results showed that the suggested algorithms outperformed existing algorithms in terms of the

proportion of IoT tasks that met their deadline requirement, overall energy consumption and system lifespan,

and total amount of deadline violation time.

(Singh & Das, 2022) describe a four-tier cloud-fog-IoMT architecture paradigm based on the dependable

MQTT protocol, which allows network scalability at both the edge and fog layers. It implements a dynamic

gateway selection mechanism based on the idea of a principal actuator node. Singh's paper proposed the design

of a message transfer mechanism using the MQTT protocol for improved medical data delivery, appropriate

categorization of medical data using fuzzy logic, and offloading of these classified data using adaptive

scheduling combined with dynamic clustering of fog nodes. Load balancing technologies reduce network

energy usage and delay. Data offloading was accomplished in three stages: fuzzy based medical data

classification, computational capacity and energy-aware fog node clustering, and a storage capacity based

adaptive scheduling approach.

http://www.rsisinternational.org/

Page 3685 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

(Ghanavati et al., 2022) presented a work scheduling algorithm for fog computing with makespan and energy

consumption optimization. The paper demonstrated that the proposed strategy outperforms the baseline

approaches significantly.

In the paper by (Tariq et al., 2022), an optimal energy-aware job offloading strategy for the Internet of

Vehicles is presented in this research. They proposed offloading that can ensure stability in order to make the

Internet of vehicles more dependent. In this research paper, they proposed task offloading as a semi-Markov

decision process. The drawback of the proposed strategy based on energy is that it does not take scalability and

bandwidth into consideration.

Iftikhar et al., (2023) create a new method known as HunterPlus by adding a Bidirectional Gated Recurrent

Unit (GRU) to HUNTER so that it may assess graph inputs both forward and backward. HunterPlus is

implemented using an organized methodology that includes training, simulation, assessment, data collecting,

model development, and system architecture design. The resource layers, management, and Internet of Things

make up the system architecture. The DeFog benchmark is used to collect metrics such as CPU, RAM, disk

I/O, response time, energy consumption, and SLA breaches to obtain data for testing and simulation.

Furthermore, to improve task scheduling and estimate Quality of Service (QoS) parameters, a Convolutional

Neural Network (CNN) model is created and trained. The CNN model generates scheduling decisions based on

a matrix that represents the current condition of the cloud-fog environment. Azure virtual machines are used

for testing and simulation using the COSCO framework. The result demonstrates that HunterPlus outperforms

the state-of-the-art baselines in terms of energy consumption and task completion rates by at least 17% and

10.4%, respectively. In addition, the model's performance variability is smaller than that of other models.

Saif et al. (2023) proposed a new algorithm called Non-dominated Particle Swarm Optimization (NPSO). They

are using a mutation operator to broaden the particle population's range and prevent it from entering the local

optimal search. At the same time, can enhance the Particle Swarm Optimization (PSO)'s constraint and make

it easier to discover the Multiple-objective Problems (MOP) solution. First, they did a quantitative comparison

of a set of jobs organized by the FCFS, STML, LLF, and MLLF algorithms in terms of delay. They also do

another comparison to find the decrease in all techniques' maximum delays for ten task groups, each group has

been assigned with 10 tasks. They found out that in comparison to the other algorithms, MLLF performed best

in minimizing the maximum delay by about 11% which a stable decrease in delay when the number of jobs

conducted increased. After that, they did a performance comparison of the MOPSO-CD, NSGA-II, and NPSO

algorithms with a non-linear optimization method in terms of delay where upper bound of the delay threshold

(D_max) is set to 100. It is the MLLF's average delay threshold. There were five groups which are 30, 50, 90,

150, and 200 for the workload. The result shows that NPSO algorithm can use less energy than others

algorithm, lowering the delay threshold and helps to lower the transmission latency.

Liu et al. (2023) applied particle swarm optimization (PSO) to get the best computation time and energy

consumption in a single fog cluster as well as the best load balance among fog nodes. Then, they are using the

time and energy savings from load balancing and created the particle swarm genetic joint optimization

artificial bee colony method (PGABC) to optimize work scheduling across fog clusters. In comparison to

GABC, ABC, and PSO, the experimental findings demonstrate that the time delay that was computed using the

suggested PGABC method in the provided model was decreased by 1.04%, 15.9%, and 28.5%. Not only that,

but there was also a 3.9%, 6.6%, and 12.6% reduction in energy consumption, respectively. Due to PSO being

able to handle the issue of optimum load balancing for every task in a single fog cluster, a resource-scheduling

strategy based on the PSO and the PGABC algorithm (PGABC–PSO) is intended by them also. This strategy

has decreased the energy consumption by roughly 9.7%, 33.3%, 32%, and 29.6%, and the delay by

approximately 31.25%, 27.8%, 27.8%, and 25.4% when compared to SJF–PSO, PGABC-R, HSF.ABC&PSO,

and MFO, respectively.

Singh et al. (2023) provides a resource allocation method using collaborative machine learning (CML) for fog

computing enabled by SDN. The resource allocation strategy for the SDN-enabled fog computing environment

is linked with the suggested CML model. The outcomes of the suggested technique are tested using the

FogBus and iFogSim, utilizing a variety of performance evaluation parameters such execution time, power

consumption, latency, and bandwidth utilization. Using the previously described performance evaluation

http://www.rsisinternational.org/

Page 3686 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

metrics, the resulting findings are compared with other state-of-the-art methods currently in use. According to

the data, the suggested method cuts down on 19.35% of processing time, 18.14% of response time, and

25.29% of time delay. Additionally, it saves 21% execution time, 9% network utilization, and 7% energy

consumption over the current methods.

Mohammadzadeh et al. (2023) proposed HDSOS-GOA, which is a discrete hybrid version of the SOS and

GOA algorithms that randomly runs one of the Symbiotic Organisms Search (SOS) and Grasshopper

Optimization Algorithm (GOA) algorithms. It uses learning automata to decide which algorithm to run more

frequently. The DVFS-based scientific workflow scheduling problem in the fog computing platform was then

resolved using the HDSOS-GOA approach. The workflow's tasks are assigned to the most appropriate virtual

machines (VMs) based on the HEFT approach. The optimal DVFS-level VMs are then assigned using the

suggested HDSOS-GOA methodology. For the result, they aim to cutting down on scheduling time and

minimize workflow scheduling's energy consumption. Four different sizes of scientific procedures are used to

execute extensive simulations. The results shown that their methodology beat many optimization methods

algorithms, including SPEA2, PSO, SOS, SOA, GWO, ALO, HHO, GOA, PSO-GWO, and GA-WOA

algorithm, in terms of energy utilization and the number of VMs employed.

Hajam and Sofi (2023) recommend the enhanced version of the spider monkey optimization (SMO) meta -

heuristic algorithm which are semi-greedy task scheduling SMO (sgTS-SMO) and greedy task scheduling

SMO (gTS-SMO) for creating effective task scheduling in a fog computing environment. The primary goal is

to reduce energy usage and delays while taking deadline and time-violation restrictions into account. The

parameters of deadline violation time, makespan, energy consumption, overall cost, and degree of imbalance

are used to evaluate the system. According to the data, when gTS-SMO is compared to sgTS-SMO and particle

swarm optimization (PSO), it decreases the violation time by 13.86% and 88.38%, respectively. Additionally,

the results show that gTS-SMO outperforms in terms of makespan and energy usage. In comparison to sgTS-

SMO and PSO, makespan is decreased by 6.28% and 57.75%, while energy consumption is decreased by

5.74% and 53.65%.

Zhao et al. (2024) proposed EOPCO-S algorithm to solve the issue of partial task offloading under known

matching between the fog server and terminal device while maintaining optimal energy consumption. Another

algorithm called Kuhn–Munkres-based EOPCO-M algorithm is used to solve the best matching issue

involving fog servers and terminal devices. The result showed that EOPCO-S can always achieve the lowest

energy use when comparing to others scheme. Then, another result proves that when it comes to optimizing

task offloading success rate and lowering task processing energy consumption, EOPCO-M performs best

compared to other baseline methods such as Hungarian method, random generate and Euclidean distance-

based partial task offloading (DPTO).

The metaheuristic algorithm CSO (Cat Swarm Optimization) is employed to manage service activation and

resource allocation more effectively Hashemi et al., (2024). A request evaluator receives user requests, sorts

them according to priority, and uses the container live migration approach on fog resources to execute them

quickly and effectively. By using the container live migration technique, services are moved and positioned

more optimally on fog resources and preventing the needless activation of physical resources. To ascertain the

initial capacity of physical fog resources, this method makes use of a resource manager to locate and

categorize accessible resources. This approach's effectiveness has been evaluated by the application of six

metaheuristic algorithms which are Particle Swarm Optimization (PSO), Ant Colony Optimization,

Grasshopper Optimization, Genetic, Cuckoo Optimization, and Gray Wolf Optimization in iFogSim simulator.

The suggested method outperformed the other six options in terms of various evaluation parameters, including

execution time, energy consumption, imbalance, SLA violation, and network life, according to the simulation

findings. Based on the result, it is outperformed the other six options in terms of various evaluation parameters,

including execution time, energy consumption, imbalance, SLA violation, and network life.

Khan et al. (2024) suggested a novel reactive fault tolerance technique that includes the resubmission of tasks

and their execution on processing nodes in the event of a node failure. The monitoring module, which serves as

a resource use statistic for submitting, processing, and receiving nodes, resubmits the failed tasks to other

executable nodes. The suggested method combined with a modified version of the particle swarm optimization

http://www.rsisinternational.org/

Page 3687 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

technology reduces energy usage, network bandwidth usage, end-to-end latency, and boosts success and

reliability factors. The suggested technique is found to decrease energy consumption by 3%, latency by 5%,

network bandwidth uses by 3%, and to boost system reliability by 2% with success rate by 8%. Several trials

have been conducted with a maximum of 10 repetitions.

Ghafari and Mansouri (2024) proposes applying nonlinear based chaotic artificial rabbits optimization

(NCARO) which is a unique variation of artificial rabbits optimization (ARO), for task scheduling in a fog

computing environment (TSNCARO). By utilizing nonlinear and chaotic control settings, the NCARO

maximizes ARO. The suggested technique makes advantage of chaotic maps to enhance ARO's exploratory

behaviour. The results of the simulation shown that, the suggested TSNCARO algorithm enhanced makespan,

service duration, total cost, energy usage, CDER, and PDST in various scenarios. Through the application of a

nonlinear mechanism and chaotic maps, NCARO facilitates an easy shift from exploration to exploitation.

Idrees et al. (2024) proposes energy-aware data transmission strategy with decision-making (EDaTAD) that

operates on sensor devices and fog gateways, the two level nodes of the fog computing-based TI architecture.

At the sensor device level, the EDaTAD applies a Lightweight Redundant Data Removing (LiReDaR) method

to reduce the collected data before forwarding it to the fog gateway. A decision-making model is suggested in

the fog gateway to help the monitoring team in remote monitoring applications make the right choices. Lastly,

it sends the redundant data sets to the cloud for archiving and additional analysis, using a Data Set Redundancy

Elimination (DaSeRE) technique. In comparison to the PFF 0.8, PFF 0.75, Bartlett, Tukey, and Fisher

methods, respectively, the suggested EDaTAD methodology minimizes the energy consumption from 28.03%

up to 74.23%, from 23.55% up to 73.36%, from 14.95% up to 58.86%, from 11.24% up to 61.90%, and from

1.37% up to 58.02%. The findings demonstrate that by eliminating duplicate data reading sets after obtaining

them from the sensor devices, the EDaTAD offers superior energy-saving outcomes at the fog gateway

compared to the other approaches.

Hossam et al. (2024) deliver an exclusive two-layered hierarchical fog device architecture that maximizes fog

node selection for healthcare applications by utilizing cluster aggregation. In order to minimize system latency

and lower energy usage in fog computing settings, they provide three effective approaches which are Earliest

Deadline First (EDF) Algorithm, Search Nearest Gateway Algorithm and Energy-Aware Module Placement

(EAMP) Algorithm. Using the iFogSim toolkit, they thoroughly assess their suggested model and compare it

with a cloud-based and latency-aware model. When compared to the Cloud-based approach, the model shows

an average reduction in latency of at least 87% and an average reduction in energy usage of at least 76% in

four different network topologies. Similarly, the model shows at least a 43% reduction in average latency and

27% reduction in energy use compared to the Latency-aware model.

The Minimal Schedule Time with Energy Constraint (MSTEC) algorithm is a low-delay scheduling algorithm

that is suggested for fog computing workflows with energy constraints from Li et al. (2024). Not only that,

High Reliability with Energy Constraint (HREC) algorithm also proposed by them to maximize fog computing

system stability in mobile circumstances, a workflow with limited energy usage was suggested. The

workflow's energy consumption may be efficiently limited by the algorithm, which can also shorten the

workflow's completion time. Furthermore, an algorithm known as High Reliability with Energy Constraint

(HREC) was put out to optimize the system reliability of fog computing in mobile scenarios, specifically for

workflows involving energy constraints. According to our experiments, the HREC algorithm improves system

reliability by 22% when compared with the MSTEC algorithm, and the MSTEC algorithm reduces completion

times by an average of 16.5% when compared with the baseline algorithm.

Our proposed energy-aware method differs from other works in that we combined two optimization modules

which are energy-aware module placement and the dynamic voltage and frequency scaling (DVFS) technique

for energy optimization. Energy-aware module placement aims to improve efficiency by placing modules on

the fog device which can fulfill its requirements based on the module’s estimated minimum energy and MIPS.

DVFS reduces cost and enhances resource utilization by adjusting the MIPS of fog devices as close as possible

to the MIPS of the module requirement. In fact, by using our proposed energy-aware method, execution time

and service delay can also be reduced due to the improvement of overall efficiency.

http://www.rsisinternational.org/

Page 3688 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

Offloading Review

Fog computing uses an offloading method that transfers computation power closer to the data source instead of

the cloud which is located further from the data source. Implementing computation offloading can help extend

the life of the devices’ batteries, including laptops, smartphones and network. Fog computing has to be

investigated to deal with the issues of work scheduling in cloud data centres at the same time minimizing

energy usage. This is because it can decrease the amount of time taken by applications to go live. To achieve

this result, fog computing has to use a combination of an IWO (invasive weed optimization) and a cultural

evolution algorithm (CEA). In the IWO task scheduling (IWOTS) method, in order to attain high levels of

efficiency, employing heterogeneous cluster systems is necessary to organize work. IWOTS makes a point of

including both meta-heuristics and heuristic-based algorithms in its algorithms. The IWO technique, which is a

meta-heuristic algorithm, is applied to predict the respective dominant of tasks. In addition, the heuristic-based

earliest finish time (EFT) method assigns jobs among computer resources to attain the most applicable solution

for the job.

There are two offloading destinations: a single server and multiple servers. According to JianYu Wang and his

teams (2022), the purpose of offloading is to shift the computation power from a resource-limited mobile

device to resource-rich fog nodes so as to enhance the mobile applications’ accomplishment. Hence, at the

offloading algorithm design phase, selection on cloud servers has to be considered carefully. In order to assure

the user experience, by ensuring lower energy consumption and response latency, the runtime workload of an

application can be offloaded in sequential execution (to only one server) or in parallel execution (to multiple

servers). As the IoT devices are distributed in the network, computation is able to offload to fog servers

through WiFi or cellular networks. When a single fog server is not enough to fulfill the latency requirement,

then the workload will be shared with other fog servers to be assisted.

Offloading Issues

Task offloading techniques can help IoT devices overcome resource constraints, including computing power,

battery life and storage space, which can be particularly useful for computationally intensive workloads on IoT

devices, especially mobile devices. As mobile devices are often resource constrained, some of their activities

are offloaded to the fog or cloud to improve performance and save battery consumption. We need another

object to perform activities instead of IoT devices and deliver the results to them to enable various resource-

intensive IoT applications such as augmented reality, virtual reality, facial recognition and multimedia

distribution. Task offloading (Wang, B. et. al., 2020) is the term that represents this technology.

Mobile devices, communication connections and fog nodes are the three main components of the work offload

process from mobile devices to fog nodes. The mobile device demonstrates how tasks in the IoT program can

be disassembled to a smaller size and performed locally or remotely using offloading technologies. The

bandwidth, connectivity and mobility of the device determine the quality of data transfer (e.g. WiFi or cellular

networks) and offloading technologies are used to move computationally intensive activities from the mobile

device to the fog node. This is because the computing power of mobile devices is lower and the computing

power of cloud servers is higher than that of fog nodes. Task offloading is responsible for balancing the load of

IoT applications at runtime and improving offload performance and system throughput. Load balancing, data

management, latency control, security and energy efficiency are a few factors that offload technology can

influence in the IoT.

Offloading is a technique for transferring computationally intensive work from resource-limited IoT devices

(i.e. offload sources) to resource-rich compute nodes (i.e. offload destinations) to improve the performance of

latency-sensitive IoT systems. Methods for task offloading fall into two broad categories, determined by the

number of offloading destinations: single and multiple. Single type offloading methods allow offloading of

computational tasks to a single fog node for processing in a sequential order, while multiple type offloading

methods allow offloading of computational tasks to multiple destinations, e.g. offloading to multiple fog nodes

for parallel processing to ensure QoS requirements are met (e.g. lower response latency).

http://www.rsisinternational.org/

Page 3689 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

Overview of the Task Offloading Approaches

Ding, Y. et al. (2020) proposed a decentralised computing offload strategy (DCOS) method to build a task

segmentation and offloading approach for multi-user multi-mobile-edge scenarios in order to reduce

application execution overhead. MAUI was required to divide the application into a series of tasks with

correlations, which were represented as a programme call graph. The model solution was then turned into a

convex optimization problem, from which the best offloading option was generated.

Lu, H. et al. (2020) proposed a task scheduling algorithm based on MA-DDPG for discrete server selection in

order to improve system energy consumption, task latency and task discard rate for mobile and edge devices. It

exploited multi-agent continuous learning features to overcome the problem of environmental instability

induced by a single decision maker. It combined the SAC algorithm with a maximum entropy reward function

to encourage DDPG Actors to do as many actions as possible in order to find more near-optimal path options.

It coupled multi-agent DDPG with SAC to tackle the problems of reinforcement learning instability and small

learning, as well as offloading energy consumption, latency, and task discarding rate.

Chang, Z. et al. (2020) propose their work to tackle the problem of dynamic task offloading for numerous

users while calculating the best power and radio resources. More specifically, the model presented in this

research is built on batteries that can absorb energy using energy harvesting techniques and use it to power

mobile devices. The authors suggested an approach for dynamically assigning the appropriate power and

communication channels using Lyapunov optimization. According to the article, the number of subcarriers

influences the cost. The cost falls as the number of subcarriers grows because mobile devices will have more

possibilities to discharge their activities. Another finding in the article is that the number of mobile devices has

an influence on average cost, which increases as the number of mobile devices grows.

Liu, C. et al (2020) proposed work analyzes a network with a set of end-users and a set of fog nodes. End-user-

generated dynamic jobs are independent, yet the CPU cycles required to execute a single bit are the same for

all activities. Furthermore, the paper's scenario model includes binary offloading, in which end-users can

offload the entire work to an adjacent fog node. If the selected fog node believes that its resources will be

insufficient to finish the work by the deadline, the master fog node will offload the task to another selected fog

node. As a result, the suggested model implies that each fog node has two queues, one for high priority

activities and one for low priority jobs. If a job is transferred from one fog node to another, the suggested

model continues to route it to the high-priority queue.

Yang, M. et al. (2021) presented an architecture with a fog layer and a cloud layer, in which vehicles in the fog

layer can transfer jobs to the cloud layer. The architecture takes into account both static and mobile fog nodes

that can collaborate to offload tasks. It also considers the influence of mobility of task offloading. Thus, the

mathematical model portrays coverage as a dynamic variable and enables for the shortest possible task service

time while taking storage, bandwidth, and deadline limitations into account. As a result, the authors suggest a

task offloading strategy that reschedules work based on their due dates. The suggested approach then selects

how to offload tasks depending on capacity and bandwidth restrictions. The extensive simulation findings

presented in this research are obtained by employing realistic vehicle trajectories. They demonstrate the

suggested policy's performance in terms of task latency, service composition, and task completion rate in

various circumstances.

Cheng, Z., et al. (2021) suggested a DRL-based joint deep reinforcement learning (FDRL) architecture to

successfully decrease learning loss and privacy leakage during the learning phase. They also suggested a

hybrid optimization technique for task offloading and resource allocation approaches based on FDRL. The

strategy successfully protects data privacy in the UAV environment, reduces raw data transfer, and reduces

learning loss.

Tu et al. (2022) proposed a new approach for dynamic offloading of fog computing that combines long short -

term memory (LSTM) with deep learning. Thus, the key contribution of the research is to estimate the load of

the fog server in order to optimise the offloading option. Furthermore, the paper's findings suggest that the

proposed approach reduces average latency.

http://www.rsisinternational.org/

Page 3690 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

Wang, J. et.al. (2022) employed a sequence-to-sequence (S2S) neural network to obtain task dependencies of

applications and used non-policy reinforcement learning for task offloading decisions. The S2S neural network

was trained based on task DAGs collected periodically. According to the experimental results, the

reinforcement learning-based offloading approach achieved better performance than heuristic algorithms, but

the application to compute offloading online requires a large amount of training, which causes a large

consumption.

Yan, L., et al. (2022) suggested a DRL-based jointly optimal task offloading method that takes into account

energy waste when jobs are dropped. The optimization challenges of long-term latency and system energy

consumption in task offloading are addressed by integrating a DQN-based reinforcement learning technique

with collaborative computing offloading at the cloud edge. However, static simulation tests are used to assess

its performance. As a result, in order to evaluate its performance, it must be relocated to a genuine dynamic

environment. The drawback of the proposed method based on offloading is it does not take execution time and

network usage into consideration.

S. A. Khan et al. (2022) presents a novel approach to task placement that minimizes the cost of employing

cloud resources to fulfill the task by executing two-way offloading between cloud and fog. They compare their

suggested solution to the current state-of-the-art baseline method and evaluate it on a range of configurations,

including big and small data centers with homogeneous and heterogeneous physical machines (PMs) and

varying work batches. Their suggested approach actively and dynamically offloaded the cloud's activities

while optimizing the use of the fog resources that were available. When the fog can manage the duties, it can

return the jobs that are executing on the cloud to it. This significantly reduces both the total cost of employing

cloud resources and the time it takes to complete the operation. They assessed their suggested approach for a

range of assessing measures and contrasted it with the current cutting-edge baseline technique. In comparison

to the baseline approach, the experimental findings show a 40.87% increase in the fog data center's resource

utilization and a ×1.68 reduction in the cloud data center's cost.

Reddy and Sudhakar (2023) bringing forth an osmotic-based method for job loading and scheduling. The

devices and tasks are classified in the Osmotic Approach (OA)-based heuristic method, and the tasks are

allocated to the best devices according to their dynamically available capacity. Using simulated data sets, the

suggested scheduling algorithm is compared to more conventional random task loading and round robin task

loading procedures. It is discovered that the suggested algorithm performs significantly better than the other

algorithms. In terms of certain metrics, the Random Order (RO) and Revised Random Order (RRO) algorithms

are significantly outperformed by the Optimal Assignment (OA) algorithm. While OA's execution time is

23.36% to 60.71% faster, its timeliness reliability varies from 94.2% to 100%. Fog device utilization is as high

as 97.7%, and throughput improvement varies from 12.43% to 154.58% over RRO and from 57.57% to

199.23% over RO. Furthermore, OA demonstrates a 4.27% to 40.65% turnaround time improvement. These

improvements are ascribed to efficient handling of activities with tight deadlines, appropriate task assignment,

and effective load balancing.

Task Offloading technique with P4 (TOS-P4) is a new offloading technique that uses Programming Protocol-

independent Packet Processors (P4) technology is proposed by Akyıldız et al. (2023). An Intelligent

Transportation System (ITS) application scenario is used to assess the suggested scheme, and it is contrasted

with a traditional model known as Task Offloading Scheme with Software-Defined Networking controller

(TOS-SDN). The testing results show that TOS-P4 is 6.54 times more efficient than TOS-SDN in waiting

times for tasks received at Resource Poor (RP) Fog servers when the servers' load status is assessed at 5 s

intervals. Additionally, in the TOS-SDN scenario, RP Fog servers have an average task waiting time that is

thirty times longer than Resource Rich (RR) Fog servers.

Sulimani et al. (2024) proposes the Hybrid Offloading (HybOff) algorithm, which uses clustering theory to

solve problems in both static and dynamic ways, greatly improving load balancing and resource utilization in

fog networks. According to experimental data obtained with the iFogSim simulation program, HybOff

dramatically lowers offloading messages, distance, and decision-offloading implications. It outperforms static

offloading approach (SoA) (64%) and prevalent offloading approach (PoA) (88%), improving load balancing

http://www.rsisinternational.org/

Page 3691 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

by 97%. Furthermore, it improves system performance 1.6 and 1.4 times more than SoA and PoA,

respectively, and raises system utilization by an average of 50%.

Sumona et al., (2024) introduces the ELTO-DQL algorithm, a Deep Q-Learning-based method for task

offloading. The algorithm is designed to optimize both user Quality of Experience (QoE) and energy

consumption in fog computing environments. The paper emphasizes the balance between reducing service

delay and minimizing energy consumption through task offloading to fog nodes, demonstrating improvements

in both QoE (by 15%) and energy efficiency (by 19%) compared to existing benchmarks

For workflow applications in FCI with heterogeneous resources and varying communication costs, Shukla &

Pandey, (2024) proposed an algorithm called MOTORS algorithm which combine both hybrid optimization-

based resource scheduling approach (HORSA) with a fuzzy dominance-based task clustering and overloading

technique (FDTCO). The basis of HORSA is the hybridization of HS and GA. The following five workflow

datasets have been simulated: Montage, CyberShake, epigenomics, LIGO (inspiral), and SIPHT. Average

makespan, average cost, average RUF, and average energy consumption have all been determined. We have

compared our suggested MOTORS algorithm to other resource management strategies already in use such as

ACO, HPSOGWO, and the MAA algorithm. The task overloading and resource scheduling solution is

effectively optimized by the suggested MOTORS algorithm in terms of makespan, cost, resource utilization,

and energy consumption. In comparison to ACO, HPSOGWO, and MAA, MOTORS considerably shortens the

makespan by 91%, 88%, and 49%, respectively. This variation is acceptable even if the average cost increased

by roughly 129%, 112%, and 100% over these methods.

Our proposed computation offloading method can achieve the shortest execution time and the least network

usage compared with other work. This is because analysis and testing are carried out on the simulation

repeatedly to evaluate the performance of our proposed algorithm. In fact, several simulation parameters are

followed during the testing such as the processing capacity of fog devices, RAM of fog devices, network

latency, fog device upstream capability, fog device downstream capability, module size and tuple size.

Summary of Related Work

Table 1. Summary Related Work of the QoE

Reference Problem Technique Data Application

R. Mahmud et

al (2020)

Hierarchical, dispersed,

and heterogeneous nature

of computing instances

fuzzy logic models IoT devices iFogSim

Baranwal, G

et.al (2020)

High computational

complexity of application

placement policy

TOPSIS (Technique for

Order of Preference by

Similarity to Ideal Solution)

IoT devices IoT system

Nashaat,

Ahmed and

Rizk (2020)

Reduction of delay in

application

Multi-Dimensional QoE

(MD-QoE) model

Fog nodes IoT application

Varshney et al.

(2021)

Fog environments having

resource heterogeneity,

resource limitation and

unpredictable nature.

Multi-criteria decision

making (MCDM)

techniques

Fog computing Smart application

Zhao et .al

(2021)

QoE-driven cross-layer

optimization issues

Near-optimal iterative

algorithm (EC-VE) and

greedy algorithm

IoT devices IoT system

http://www.rsisinternational.org/
https://docs.google.com/document/d/1tUHJYZQhtCM6SnRv4VTu8BPQTg2xIgd63wuvVtVW7d4/edit#bookmark=kix.gwn1s14s3k7q
https://docs.google.com/document/d/1tUHJYZQhtCM6SnRv4VTu8BPQTg2xIgd63wuvVtVW7d4/edit#bookmark=kix.gwn1s14s3k7q
https://docs.google.com/document/d/1tUHJYZQhtCM6SnRv4VTu8BPQTg2xIgd63wuvVtVW7d4/edit#bookmark=kix.m3n2y55mhlp
https://docs.google.com/document/d/1tUHJYZQhtCM6SnRv4VTu8BPQTg2xIgd63wuvVtVW7d4/edit#bookmark=kix.m3n2y55mhlp
https://docs.google.com/document/d/1tUHJYZQhtCM6SnRv4VTu8BPQTg2xIgd63wuvVtVW7d4/edit#bookmark=kix.mrak4mk55cng
https://docs.google.com/document/d/1tUHJYZQhtCM6SnRv4VTu8BPQTg2xIgd63wuvVtVW7d4/edit#bookmark=kix.mrak4mk55cng
https://docs.google.com/document/d/1tUHJYZQhtCM6SnRv4VTu8BPQTg2xIgd63wuvVtVW7d4/edit#bookmark=kix.mrak4mk55cng
https://docs.google.com/document/d/1tUHJYZQhtCM6SnRv4VTu8BPQTg2xIgd63wuvVtVW7d4/edit#bookmark=kix.t8gotad5tuhb
https://docs.google.com/document/d/1tUHJYZQhtCM6SnRv4VTu8BPQTg2xIgd63wuvVtVW7d4/edit#bookmark=kix.t8gotad5tuhb
https://docs.google.com/document/d/1tUHJYZQhtCM6SnRv4VTu8BPQTg2xIgd63wuvVtVW7d4/edit#bookmark=kix.fxp964aayka9
https://docs.google.com/document/d/1tUHJYZQhtCM6SnRv4VTu8BPQTg2xIgd63wuvVtVW7d4/edit#bookmark=kix.fxp964aayka9

Page 3692 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

Saovapakhiran

et.al. (2022)

IoT service providers are

competing to provide

services

QoE-driven architecture IoT Devices IoT system

Wang et.al

(2022)

Point clouds have large

volume of data, difficult

to stream in bandwidth-

constrained networks

QoE-driven adaptive

streaming approach

Point clouds Point Cloud

Sreenivasu

Mirampalli et

al., (2022)

Addresses the challenge

of efficiently allocating

resources in fog-enabled

mission-critical IoT

applications

Hungarian Maximization

Algorithm and fuzzy-based

approach for QoE

calculations

Parameters for

applications

(access rate,

resource

requirements,

processing time)

and fog instances

(round trip time,

resource

availability,

processing

speed)

Fog computing

networks,

particularly for

mission-critical IoT

applications

Yadav &

Baranwal,

(2023)

Find an efficient method

of selecting task

processing positions in

IoT edge networks while

considering QoE to meet

the expectations of

different applicants and

improve system

performance

fuzzy logic models IoT devices IoT System

Carvalho &

Macedo, (2023)

Degradation of user

Quality of Experience

(QoE) caused by co-

located applications in

cloud environments

Deep Learning Models,

QoE Estimator Algorithm,

Kubernetes Scheduler

Extensions, and evaluation

on Testbed

QoE metrics IoT System

Evangeline et

al., (2023)

Device Heterogeneity,

Limited Bandwidth,

Response Time, Resource

Allocation, Fault

Tolerance, Quality of

Experience (QoE), Cost

Guess Fit Algorithm,

Cluster Bandwidth

Allocation (CBA)

Algorithm, Switching

Table-based Fault Tolerance

Module

Bandwidth in

cloud network

IoT devices

Abofathi et al.,

(2024)

Optimize module

placement to meet quality

of service requirements,

reduce energy

consumption, and

improve service quality in

fog computing

environments.

Whale Optimization

Algorithm (WOA),

Learning Automata,

Distributed Learning

Automata, Particle Swarm

Optimization (PSO), and

NSGA-II algorithm.

IoT applications,

fog nodes,

service

placement,

energy

consumption,

delay, and

network usage

IoT application

Bikas & Sayıt, Selection of paths for Genetic Algorithm-Based QoE Metrics Adaptive HTTP

http://www.rsisinternational.org/
https://docs.google.com/document/d/1tUHJYZQhtCM6SnRv4VTu8BPQTg2xIgd63wuvVtVW7d4/edit#bookmark=id.7kbjjshhal7w
https://docs.google.com/document/d/1tUHJYZQhtCM6SnRv4VTu8BPQTg2xIgd63wuvVtVW7d4/edit#bookmark=id.7kbjjshhal7w
https://docs.google.com/document/d/1tUHJYZQhtCM6SnRv4VTu8BPQTg2xIgd63wuvVtVW7d4/edit#bookmark=kix.8qyvjuy2tqpj
https://docs.google.com/document/d/1tUHJYZQhtCM6SnRv4VTu8BPQTg2xIgd63wuvVtVW7d4/edit#bookmark=kix.8qyvjuy2tqpj

Page 3693 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

(2024) Multipath TCP (MPTCP)

subflows to maximize the

Quality of Experience

(QoE) for adaptive HTTP

streaming systems.

Path Schelection Streaming Systems

(HAS)

Liu et al.,

(2024)

Effectively caching video

files and managing bitrate

adaptation to balance

video quality, re-

buffering time, and

transmission delays

Caching Placement Model,

Bitrate Adaptation Model,

Video Transmission Model,

Utility Function Model

QoE Metrics Collaborative

caching and

adaptive bitrate

streaming

Islam et al.,

(2024)

Addressing trade-offs

between service latency,

availability, QoE, VNF

deployment costs.

HPSP - Hyper-heuristic

algorithm for NP-hard

optimization.

IoT devices Fog Computing

Work Observes User Expectations in Meets Instances Status regarding Decentralised

Management

Prioritised

Placement

Deadlin

e

Compound

QoE Gain

Service

Access

Resource

Requirement

Processing

Time

Proximity/

Response

Rate

Resource

Availability

Processing

Speed

H. Santos et

al., 2020
✔ ✖ ✖ ✔ ✖ ✖ ✔ ✖ ✖ ✔

M.J. Farooq

et al., 2020
✖ ✖ ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✔

A. Tsipis et

al., 2020
✔ ✖ ✖ ✔ ✖ ✖ ✔ ✖ ✖ ✔

A.

Munusamy

et al., 2020

 ✖ ✖ ✖ ✔ ✔ ✖ ✔ ✔ ✖ ✖

Abd Elaziz

et al., 2021
✖ ✖ ✔ ✖ ✖ ✔ ✔ ✖ ✖ ✖

Bichi et al.,

2022
✔ ✖ ✖ ✔ ✔ ✔ ✖ ✔ ✖ ✔

Liu et al.,

2022
✔ ✖ ✖ ✔ ✔ ✔ ✔ ✔ ✖ ✖

Jasim et al.,

2022
✔ ✖ ✔ ✔ ✖ ✔ ✔ ✖ ✖ ✔

M.

Sriraghaven

dra et al.,

2022

✖ ✖ ✖ ✔ ✖ ✖ ✔ ✖ ✔ ✖

Guha Roy et

al., 2022
✖ ✖ ✔ ✖ ✔ ✔ ✔ ✔ ✖ ✔

Sreenivasu

Mirampalli

et al., 2022

✔ ✔ ✔ ✖ ✔ ✔ ✔ ✔ ✖ ✔

http://www.rsisinternational.org/

Page 3694 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

Yadav &

Baranwal,

2023

✔ ✔ ✔ ✔ ✖ ✔ ✔ ✔ ✖ ✔

Carvalho &

Macedo,

2023

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✖ ✔

Evangeline

et al., (2023)
✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✖ ✔

Abofathi et

al., 2024
✔ ✔ ✔ ✖ ✔ ✔ ✔ ✔ ✔ ✔

Bikas &

Sayıt, 2024
✖ ✖ ✔ ✔ ✔ ✔ ✖ ✖ ✖ ✔

Liu et al.,

(2024)
✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✖ ✔

Islam et al.,

2024
✔ ✖ ✔ ✔ ✔ ✔ ✔ ✔ ✖ ✔

Our Work ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Table 2.1 Summary Related Work of the Energy aware

Reference Problem Technique Data Application

Bichi et al. (2022) High-security environments are

harsh and unpredictable, and the

technologies used in them must

work constantly for an extended

period of time.

A sequential application

module and a master-

worker application

module.

Military things

data

Energy in IoT

devices

Malik et al. (2022) IoT devices and fog nodes

have limited energy, energy-

efficient approaches for storage

and processing are required in

6G.

Newly developed energy-

efficient solutions

Energy-efficient

solutions

Energy efficiency in

IoT devices / Sensor

nodes / Fog nodes

Chuang & Hsiang

(2022)

Due to mobile devices keep

increasing, hardware resource

faced limits, certain applications

may not run smoothly.

popularity‐aware and

energy‐efficient offloading

mechanism

Upload and

return data size

Energy in mobile

devices / Fog nodes

and offloading

S. Azizi et al

(2022)

Green renewable energy with

novel dynamic frequency scaling

Energy and performance-

aware scheme for the Fog–

IoT environment

Blockchain

technology

Energy

Nazari Bu-Ali et

al. (2022)

Scheduling such dependent

jobs in Fog is an NP-hard issue

that takes a long time to solve and

high energy consumption, leaving

it unsuitable for real-time

applications.

A multiobjective task

scheduling model which

includes an intelligent

solution named IETIF

which combines and

leverages the benefits of

simulated annealing and

NSGA-III algorithms.

Priority tasks

in the form of a

DAG graph, with

graph

construction and

weighting

IoT devices

Naha et al, (2022) Due to unique programmes,

mobile devices' energy

consumption is very dynamic

which makes a realistic energy

profiling for mobile devices

difficult.

energy-aware resource

allocation technique with a

hybrid approach and a

sustainable solution.

Delay,

processing time

and processing

cost status data

Fog nodes, energy-

aware

http://www.rsisinternational.org/
https://docs.google.com/document/d/1tUHJYZQhtCM6SnRv4VTu8BPQTg2xIgd63wuvVtVW7d4/edit#bookmark=kix.ed9p5d2rtlg6
https://docs.google.com/document/d/1tUHJYZQhtCM6SnRv4VTu8BPQTg2xIgd63wuvVtVW7d4/edit#bookmark=kix.ltmlqbfz7pol
https://docs.google.com/document/d/1tUHJYZQhtCM6SnRv4VTu8BPQTg2xIgd63wuvVtVW7d4/edit#bookmark=kix.iqb9c0x13yub
https://docs.google.com/document/d/1tUHJYZQhtCM6SnRv4VTu8BPQTg2xIgd63wuvVtVW7d4/edit#bookmark=kix.iqb9c0x13yub
https://docs.google.com/document/d/1tUHJYZQhtCM6SnRv4VTu8BPQTg2xIgd63wuvVtVW7d4/edit#bookmark=kix.gtm2b2xxoav9
https://docs.google.com/document/d/1tUHJYZQhtCM6SnRv4VTu8BPQTg2xIgd63wuvVtVW7d4/edit#bookmark=kix.gtm2b2xxoav9
https://docs.google.com/document/d/1tUHJYZQhtCM6SnRv4VTu8BPQTg2xIgd63wuvVtVW7d4/edit#bookmark=kix.wotzny7mrv76
https://docs.google.com/document/d/1tUHJYZQhtCM6SnRv4VTu8BPQTg2xIgd63wuvVtVW7d4/edit#bookmark=kix.wotzny7mrv76
https://docs.google.com/document/d/1tUHJYZQhtCM6SnRv4VTu8BPQTg2xIgd63wuvVtVW7d4/edit#bookmark=kix.3eh0qab1n79a

Page 3695 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

Mordacchini et al.

(2022)

It is difficult to maintain highly

accessible computer and data

infrastructures while minimising

system energy usage.

Application placement

performing edge-to-edge

exchanges (EMC

algorithm)

Convergence

speed

Energy and Qoe

Aware

Feng et al. (2022) Energy minimization problem

is a mixed-integer nonlinear

programming that causes more

energy consumption.

Novel transmission-

strategy-based NOMA

transmission in the multi

IoT cooperative fog

computing system

Computation

time and local

CPU frequency

Energy in Fog

nodes / IoT nodes

Delgado &

Famaey (2022)

Capacitors have a limited energy

storage capacity, they exhibit

intermittent on-off behaviour.

Energy-aware task

scheduling algorithm

Voltage behaviour Batteryless IoT

devices

Avgeris et al.

(2022)

It is difficult to place computing

duties of IoT applications in fog

infrastructure.

Fuzzy logic is used to

determine the RoE of

applications, CCS of

instances, and QoE of a

user. Then use the

Hungarian maximisation

assignment technique for

mapping.

Resource Gain

and Processing

Time Reduction

Ratio

Energy in IoT

devices, QoS and

QoE

Sellami et al.

(2022)

Problem in establishing

appropriate resource allocation

and high performance levels

while dealing with job

management, energy
conservation, and ultra-reliable

low-latency unpredictability.

Deep Reinforcement

Learning is being used to

construct job assignment

and scheduling methods

for SDN-enabled IoT

networks.

Computing

Intensity status

and computing

resources on fog

nodes

Fog-enabled

mobile IoT nodes and

QoS, QoE

Idrees et al.

(2022)

This massive amount of data
results in high communication

costs, increased power

consumption, and excessive

latency at the fog gateway.

Energy-efficient Fog
Computing-enabled Data

Transmission(EFoCoD)

protocol, a Lightweight

Data Redundancy

Elimination (LiDaRE)

Algorithm.

EFoCoD

protocol

Energy
efficiency in smart

sensor nodes

Singh & Das

(2022)

Massive amounts of data

generated by time-sensitive IoT

devices necessitate increased

scalability, excessive energy

consumption and reduced latency.

Four-tier cloud-fog-IoMT

architectural model based

on reliable MQTT protocol

MQTT, Client,

Broker and

Subscriber

Energy, QoS

Ghanavati,

Abawajy & Izadi

(2022)

Additional resources are

required to reduce the conflict

between developing IoT

applications and resource-

constrained IoT devices.

Ant Mating

Optimization (AMO) and

bi-objective task

offloading

Computation

intensity status

Energy and Task

offloading in IoT

devices, QoS

Tariq et al. (2022) The Internet of Vehicles has

become more dependent, so it

needs to ensure stability.

Task offloading as

semi-Markov decision

process (SMDP)

Resource units Internet of

Vehicles, energy-

aware and offload

(Iftikhar et al.,

2023)

Existing algorithms, including

Reinforcement Learning (RL),

have drawbacks such delayed

adaptation in unstable contexts

and poor scalability.

HUNTER include a

Bidirectional Gated

Recurrent Unit (GRU)

(HunterPlus)

Instructions per

Second(IPS),

RAM, Disk, and

Bandwidth

consumption

energy used by

processors, storage,

memory, and network

devices

 Saif et al. (2023) Multiple-objective problems

(MOP)

 Non-dominated Particle

Swarm Optimization

(NPSO),

 Delay

threshold

 energy

consumption within

workload groups

http://www.rsisinternational.org/

Page 3696 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

Liu et al. (2023) Inefficient fog devices due to

amount of IoT devices

particle swarm genetic

joint optimization artificial

bee colony algorithm and

particle swarm

optimization (PGABC–

PSO) strategy

Fog node Energy in fog

computing

Singh et al. (2023) Absence of prerequisites for

the majority of contemporary fog

computing applications

SDN-enabled fog

computing with

Collaborative Machine

Learning (CML)

performance

evaluation

parameters

robust resource

allocation technique

Mohammadzadeh

et al. (2023)

High number of Virtual

Machines required for workflow

execution

discrete hybrid version

of the SOS and GOA

algorithms (HDSOS-

GOA) algorithms

scientific

procedures,

number of virtual

machines

energy

consumption of the

scheduling process

Hajam and Sofi

(2023)

resource constrained fog nodes

for heterogeneous IoT tasks

Greedy task scheduling

SMO (gTS-SMO) and

semi-greedy task

scheduling SMO (sgTS-

SMO)

performance

evaluation

parameters

energy

consumption in an

active state when fog

nodes process tasks

Zhao et al. (2024) Maximize system energy

consumption during task

offloading

EOPCO-S and EOPCO-

M algorithm

Fog node, IoT

devices

Energy

consumption during

task offloading

(Hashemi et al.,

2024)

disordered energy

consumption and latency

increasement

metaheuristic algorithm

Cat Swarm Optimization

(CSO) and live migration

technique

Fog node Energy

consumption and

minimize latency on

processing resources.

Khan et al. (2024) faulty or damaged fog devices

result in inaccurate measurements

or destruction that will negatively

impacts the system's overall

performance

fault-tolerant technique

using optimization

algorithm

data generated

by sensors

energy usage as a

criterion for any

reactive techniques.

Ghafari and

Mansouri (2024)

The majority of earlier

scheduling plans did not

simultaneously take into account
the three criteria factors: energy,

cost, and service time

Nonlinear and Chaotic

version of the ARO

algorithm (NCARO) for
Nonlinear and Chaotic

ARO

private energy resulting

from both active and

inactive states

Idrees et al.

(2024)

heavy data traffic of IoT

applications reality

Energy-aware Data
Transmission Approach

with Decision-making

(EDaTAD)

Actual
measurements of

detected data

from the sensor

nodes

energy
consumption at

sensor devices

Hossam et al.

(2024)

Due to resource limitations and

device limitations, effectively

choosing fog nodes for

application modules with

different deadline needs and

guaranteeing adherence to quality

of service (QoS) criteria pose

substantial difficulties.

Search Nearest Gateway

Algorithm, Earliest

Deadline First (EDF)

Algorithm, the Energy-

Aware Module Placement

(EAMP) Algorithm

data sensed by

the sensors

energy

consumption in fog

computing

environments

Li et al. (2024) electricity costs and carbon

emissions continue to rise due to

the high energy consumption

Minimal Schedule Time

with Energy Constraint

(MSTEC) algorithm, High

Reliability with Energy

Constraint (HREC)

algorithm

Fog nodes restricted energy

consumption for the

workflow

http://www.rsisinternational.org/

Page 3697 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

Work Article Criteria

Energy

Efficiency

Scalability Latency Bandwidth Energy Usage in

Fog Nodes

Violation Time

and Energy

Delay-aware

Bichi et al., 2022 ✖ ✖ ✔ ✔ ✖ ✖ ✖

Malik et al., 2022 ✔ ✖ ✔ ✖ ✔ ✖ ✔

Chuang & Hsiang, 2022 ✔ ✖ ✔ ✔ ✔ ✖ ✖

Azizi et al, 2022 ✔ ✖ ✔ ✔ ✔ ✔ ✔

Nazari Bu-Ali et al.,

2022
✔ ✖ ✔ ✖ ✔ ✖ ✔

Naha et al., 2022 ✖ ✖ ✔ ✔ ✔ ✔ ✖

Mordacchini et al., 2022 ✔ ✖ ✔ ✔ ✔ ✖ ✖

Feng et al., 2022 ✔ ✖ ✔ ✖ ✔ ✔ ✔

Delgado & Famaey,

2022
✔ ✖ ✖ ✖ ✖ ✖ ✖

Avgeris et al., 2022 ✔ ✔ ✔ ✖ ✖ ✔ ✖

Sellami et al., 2022 ✔ ✔ ✔ ✔ ✔ ✖ ✔

Idrees et al., 2022 ✔ ✖ ✔ ✖ ✖ ✖ ✖

Singh, N & Das, AK

2022
✔ ✔ ✔ ✔ ✔ ✖ ✔

Ghanavati, Abawajy &

Izadi, 2022
✔ ✖ ✔ ✖ ✔ ✖ ✖

Tariq et al., 2022 ✔ ✖ ✔ ✖ ✔ ✔ ✔

(Iftikhar et al., 2023) ✔ ✔ ✖ ✖ ✔ ✔ ✔

Saif et al. (2023) ✔ ✖ ✔ ✖ ✖ ✔ ✔

Liu et al. (2023) ✔ ✖ ✖ ✖ ✔ ✖ ✔

Singh et al. (2023) ✔ ✖ ✔ ✔ ✖ ✖ ✖

Mohammadzadeh et al.

(2023)
✔ ✔ ✖ ✖ ✖ ✖ ✖

Hajam and Sofi (2023) ✔ ✖ ✖ ✖ ✖ ✔ ✖

Zhao et al. (2024) ✔ ✔ ✔ ✖ ✔ ✖ ✔

(Hashemi et al., 2024) ✔ ✖ ✔ ✔ ✔ ✖ ✖

Khan et al. (2024) ✔ ✖ ✔ ✔ ✖ ✖ ✖

http://www.rsisinternational.org/
http://naza/

Page 3698 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

Ghafari and Mansouri

(2024)
✔ ✖ ✖ ✔ ✖ ✖ ✖

Idrees et al. (2024) ✔ ✖ ✔ ✖ ✖ ✖ ✖

Hossam et al. (2024) ✔ ✖ ✔ ✔ ✔ ✖ ✖

Li et al. (2024) ✔ ✖ ✔ ✔ ✔ ✖ ✖

Our Work ✔ ✔ ✔ ✔ ✔ ✔ ✔

Table 2.2 Summary Related Work of the Offloading

Reference Problem Technique Performance Parameters

Time Energy Network

Phan et

al., (2021)

Overloaded nodes in task

scheduling

Dynamic fog-to-fog offloading in

SDN-based fog computing systems
✔ ✔ ✔

(Kishor &

Chakarbar

ty, 2021)

Difficulty of balancing

compute and

communication delays

while minimizing latency

in IoT-Fog situations

through task offloading

optimization

Smart Ant Colony Optimization

(SACO) algorithm
✔ ✔ ✔

S. A.

Khan et

al. (2022)

Inadequate for huge

workloads requiring a lot

of computation on

devices with limited

resources

Workload/job placement method that

performs two-way offloading
✔ ✔ ✖

Reddy

and

Sudhakar

(2023)

absence of a scheduling

algorithm designed to

maximize resource

utilization at the fog

layer, meet job deadlines,

and reduce overall

execution time

Osmotic Approach (OA)-based

heuristic solution
✔ ✔ ✖

Akyıldız

et al.

(2023)

Low-quality offloading

caused by low bandwidth

and high latency

Task Offloading Scheme with P4

(TOS-P4)
✔ ✖ ✔

Sulimani

et al.

(2024)

Static offloading (SoA)

falls short in

heterogeneous networks

Hybrid Offloading (HybOff)

algorithm
✔ ✔ ✔

Shukla &

Pandey,

(2024)

Workflow applications

with diverse resources

and varying

communication costs in

FCI

 MOTORS algorithm which combine

both hybrid optimization-based

resource scheduling approach

(HORSA) with a fuzzy dominance-

based task clustering and

overloading technique (FDTCO)

✖ ✔ ✖

Our work Limited resources on fog

computing can easily

caused overload

Load estimation and optimal task

offloading in fog devices
✔ ✔ ✔

http://www.rsisinternational.org/

Page 3699 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

CONCLUSION

In this chapter, much research has been done on QoE placement, energy and offloading. There are a lot of

methods that can be used to increase performance in terms of the three criteria. The first and most efficient

method for placement is QoE-aware Application Mapping Policy which is proposed in this project. The QoE-

aware Application Mapping Policy which includes Fuzzy logic-based approaches and multi-constrained

single-objective optimization techniques to improve data processing time and service quality. It also

guarantees one-to-one mapping between instances and applications. Besides, this QoE-aware Application

Mapping Policy differs from other existing related work because it investigates and studies criteria such as

service access rate, required resource amount and responsiveness to data processing problems. The standard

designates application placement demands according to user requirements. Their main purpose is to maximize

the user's composite QoE gain in terms of criteria such as less crowded networks, capable resource allocation,

and shortened operation processing time. Furthermore, this proposed policy is developed in a decentralized

manner, therefore, the single point failure issue and management overhead can be avoided.

Moreover, our proposed energy-aware method will be different from other existing related works because the

two optimization modules which are energy-aware module placement and the dynamic voltage and frequency

scaling (DVFS) technique for energy optimization are combined in this project. Energy-aware module

placement aims to improve efficiency by placing a module on the fog device that can fulfill its requirements

based on the module's estimated minimum energy and MIPS. DVFS reduces cost and enhances resource

utilization by adjusting the MIPS of the fog device as close as possible to the MIPS of the module requirement.

Finally, the offloading method that is proposed by this project is able to achieve the shortest execution time

and the least network usage compared with other existing related work. This is because analysis and testing are

carried out on the simulation repeatedly to evaluate the performance of our proposed algorithm. In fact, several

simulation parameters such as processing capacity of fog devices, RAM of fog devices and network latency,

fog device upstream capability, fog device downstream capability, module size, and tuple size are followed

during the testing.

Research Methodology and Problem Analysis

In this chapter, the main purpose is to analyse the problem faced and the encountered approaches during the

research. The causes and issue of the research topic problems are further illustrated by reviewing plenty of

related papers and journals. The research objectives for this research will be done through the methods such as

QoE, energy and offloading are explained and introduced in detail. Additionally, a framework is presented for

the research methodology. The tools and techniques involved to acquire the data are fully explained.

In this chapter, there will be two main sections which are section 3.1 that describe the approaches to achieve

research objectives, problem analysis as well as the faced challenges in this research. Meanwhile, section 3.2

will be the chapter summary of this chapter.

Approaches to Research

The main features of fog computing such as QoE-aware application mapping policy, energy consumption and

computation offloading are being studied to further understand the perspective on the development of existing

solutions. The research methodology framework is illustrated as shown in Figure 3.1. From Figure 3.1, it can

be seen that the analysis will be carried out based on the three main criteria which are QoE-aware mapping,

energy and computation offloading based on the collected information from the literature review. The analysis

results will assist in understanding and provide a more accurate perspective on the issue that affects the overall

performance in fog computing environment. The gathered information will also specify the direction of the

research. Besides, the gathered information will also assist in formulating the following objectives in this

research.

1. To propose a QoE-aware application mapping policy to improve the satisfaction.

http://www.rsisinternational.org/

Page 3700 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

2. To optimise and keep the energy consumption at an optimal level through module placement.

3. To introduce a computation offloading method to prevent overloading on any fog device.

4. To access the suggested solution and measure the work with the existing solutions.

Fig. 3.1 Research Methodology Framework

Energy Aware Review

The main features of fog computing such as QoE-aware application mapping policy, energy consumption and

computation offloading are being studied to further understand the perspective on the development of existing

solutions. The research methodology framework is illustrated as shown in Figure 3.1. From Figure 3.1, it can

be seen that the analysis will be carried out based on the three main criteria which are QoE-aware mapping,

energy and computation offloading based on the collected information from the literature review. The analysis

results will assist in understanding and provide a more accurate perspective on the issue that affects the overall

performance in fog computing environment. The gathered information will also specify the direction of the

research. Besides, the gathered information will also assist in formulating the following objectives in this

research. In this chapter, there will be two main sections which are section 3.1 that describe the approaches to

achieve research objectives, problem analysis as well as the faced challenges in this research. Meanwhile,

section 3.2 will be the chapter summary of this chapter.

http://www.rsisinternational.org/

Page 3701 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

Formulate Research Problem

Challenges of Developing QoE-aware Application Mapping Policy

Different from Cloud data centres, Fog nodes are geographically distributed more closer to the end users. The

resource constrained from the fog node will create a significant variance of network round-trip time, data

processing speed and resource availability. Therefore, application placement in Fog environments will be a

challenging task. There might be different application placement policies required to achieve a certain service

level in Fog. The application placement such as Quality of Service (QoS), resource, situation-aware

application placement in fog environment are already exploited. However, the impact and effect brought from

Quality of Experience (QoE) in Fog-based application placement is still haven't be investigated and researched

widely. In some situations, the QoE can be acted as the complement of the QoS. Although separate policy

based service is led by QoE and QoS due to there being some subtitles between QoE and QoS.

QoE is accepted to be used for user centric measurement in different service aspects such as to observe user

requirements, perception and requirements on a service in different situations. QoE mainly focuses on user

interests, therefore, QoE-aware policies can further increase the loyalty of users on a particular service and

decrease the service abandon rate. In a fog environment, QoE-aware policies are already used for resource

estimation and service coverage optimization. In addition to recovery and service provisioning, the application

in Fog Computing is for estimating user QoE which can improve data processing time, resource consumption,

and network quality. However, the user interest on different system services might be varied in real-time

environments like fog environments. There will also be a frequent change in the QoE domination factors in fog

environments. Therefore, to develop efficient QoE-aware policies will be a quite challenging and difficult task.

In IoT, real-time interactions will happen more often than human interventions. Therefore, it is not possible to

give feedback after every certain interval to notify QoE. Correspondingly, the significant variety of QoE

dominating factors also made prediction-based QoE models to not be successful. There will be difficulties in

modifying the placement based on the evaluation of QoE. After placing the application, it is necessary to make

modifications based on the evaluation. So, identifying the QoE dominating factors and the combined impact on

user QoE will be more viable and prior to application placement. Then, based on the factors, the applications

can be placed to the most suitable computing instances so the user QoE will be downgraded. Hence, it is

possible to monitor the difference between QoE on specific service and user feedback.

Challenges of Lowering Energy Consumption

Power consumption will be one of the major challenges to be taken into consideration while designing the

algorithms and policy. The main purpose for an energy efficient algorithm is to consume the least energy to

distribute the tasks and ensure the low latency quality of service at the same time. Available energy budget is

another challenge to reduce the energy consumption due to battery-limited power on the devices. For example,

IoT devices like sensors are not rechargeable and also have limited energy on the used battery size. Thus, it is

required to sleep the sensor while the sensor is unused to save energy by using low-energy communication

protocols. Green computing can be achieved by QoS-aware policy due to the non-increment of energy

consumption.

Challenges of Distributing Tasks with Computation Offloading in Fog

Computation offloading is a common demand on end devices as well as in fog computing networks. It is very

vital to handle fault tolerance and maintain the efficiency of a distributed system in a fog environment due to

numerous devices running at the same time. There are certain algorithms that only can be used on closely

placed nodes with insignificant delays. In fog environments, multiple fog nodes are used instead of single fog

nodes, this because the multiple fog nodes can increase the computing capability to execute the task in order to

fulfil low latency requirements. However, the high computation complexity and communication overhead

ended up being an obstacle for achieving low-latency and agile response, optimal solutions which are

accompanied by global information and centralised control in a fog environment. Thus, the complexity of

algorithms is required to be taken into consideration because the simple implementation and operation of

algorithms will always ensure the best performance.

http://www.rsisinternational.org/

Page 3702 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

Furthermore, there are several aspects that will be required to take into consideration such as the distances

between service providing nodes, network links speeds between nodes and the distance between task processed

nodes and the client. Thus, it is challenging to design a task distributing algorithm with computation offloading

that can work on geographically distributed fog nodes. Also, developing a method to control load balancing

mechanisms on the distributed fog nodes that have high delays tolerance in an effective manner is vital. To

ensure the efficiency of the performance, the design of load balancing algorithms must be as simple as

possible.

Define Research Objectives

There are few objectives to be achieved in this research. First and foremost, the first objective is to propose a

QoE-aware application mapping policy to enhance the quality of service with a shorter processing time.

Besides, the optimization of energy consumption while assuring the acceptable performance for the distributed

task will be the second objective. Furthermore, the third objective is to propose the computation offloading

method to prevent overloading on fog devices. Last but not least, the last objective is to evaluate the proposed

solutions and use the collected data to compare in terms of efficiency and performance with the existing

solutions.

Proposed QoE-aware Application Mapping Policy

To achieve the first objective, several research papers and journals have been reviewed to further understand

QoE regards its policy. The reviewed research paper or journal assists in proposing a QoE-aware application

mapping policy that can improve quality of service with lesser processing time for data.

QoE-aware application mapping policy uses Fuzzy logic based approaches and multi-constraint single

objective optimization technique. The QoE is capable of being influenced by the wide range of user

assumptions parameters. Besides, based on various state criteria parameters, the instances of fog computing

can also be classified. However, in this research, the access rate, demanded resources and speed limited the

user assumption criteria. While, the circulation time, available resource and processing time limited the state

criteria.

To develop a QoE-aware policy, it is required to calculate the Degree of Assumption (DoA) and Capacity

Class Grade (CCG). To calculate the DoA and CCG, the Fuzzy logic based approach is chosen because the

consideration of Fuzzy logic is the best solution for the scalability characteristic in different situations and also

the importance of dominance of multiple parameters. According to the assumption criteria and state criteria

parameters, the associated Fuzzy sets and rules have been scaled.

After the DoA of application mapping request and CCG of Fog instances which is to get the maximised QoE

Gain for mapping of applications are obtained, the multi-constrained single objective optimization technique

will be applied. Then, to solve the optimization problem, an optimization solver with a single objective and

multiple constraints will be used shortly.

Proposed Energy-aware Module Placement

To achieve the second objective which is to optimise the energy consumption the energy-aware method is

proposed. There are two optimization modules proposed which can decrease the total energy consumption,

total network usage and execution time. The understanding of energy-aware methods is vital because the

performance and capability of infrastructure will be affected.

There are a lot of research papers and journals that show that the capability and performance can be improved

by energy optimization. The serious energy wastage is also extremely important. Moreover, the existing

proposed algorithms in energy related papers can assist and be a reference on designing an improved energy-

aware method.

The first module of energy-aware method is energy-aware module placement which functions to place the

incoming task or module to fog devices to fulfil the requirement of the incoming task or module. There are two

http://www.rsisinternational.org/

Page 3703 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

methods associated in the energy-aware module which include estimating minimum energy of the mobile and

MIPS of the module. Comparison between these two methods are made with available fog devices. The

comparison will be used to determine whether the fog device is able to handle more incoming tasks and

modules in order to place the module. In other words, if the fog device is available to be placed in more

modules, the incoming module will be placed in that particular module. Otherwise, the most suitable following

fog device will be the next available fog device to place the incoming module.

After the mobile is placed to the fog device, the second module, dynamic voltage and frequency scaling

(DVFS) technique will be performed to enhance the energy consumption and resource utilisation. DVFS is

used to adjust the MIPS of fog devices in order to fit the MIPS of module requirements based on the MIPS of

the module. The purpose of DVFS is to minimise the energy consumption and resource utilisation. In other

words, after the fog device is placed by the module, the DVFS is to calculate the new MIPS. Thus, if the

incoming module requires less MIPS but the current fog device contains a large amount of MIPS, the DVFS

will adjust the MIPS of the fog device to fit the incoming module MIPS.

Proposed Offloading

To achieve the third objective which is to lessen the execution time and decrease the network usage in fog

environments, an offloading algorithm is proposed. In the fog environment, there are numerous fog devices in

the fog layers that can host applications with one and above instances. It is vital to know how the fog

architecture works in terms of the simulation and module mapping function. Besides, it is important to

familiarise with the procedure of offloading due to the proposed algorithm being run in simulation and the

review will be made during the development process. There will be maximum load of fog devices and the

maximum load must be determined at the beginning. The current job load will be added with the new job load

when the new job reaches the fog devices. The job will be offloaded to the other fog devices if the result of job

load for both current job load and new job load is exceeded on the fog devices. The job will not be executed on

the current fog device if the result of job load is exceeded. During the simulation, the offloading analysi s and

testing will be carried out. During the simulation, there will be few simulation parameters to be followed such

as RAM of fog devices, capacity of fog devices, network latency, etc. The result will be generated after the

execution is done.

There are other related works such as research papers and journals related to implementation of the offloading

method that are also reviewed. The suitable algorithm is chosen and the modification is made based on the

chosen algorithm. To achieve the shortest execution time, testing is repeatedly performed. Additionally, the

results from the testing simulation are recorded as well as the charts and graphs for further comparison. A set

of notation for computation offloading is produced to standardise the coding style. The notation is illustrated in

the pseudocode and coding phase of the program. The reader can have a better understanding by referring to

the notation set.

To result in better performance in terms of the execution time and network usage during the simulation in the

fog environment, an offloading algorithm is proposed. The advantages of this algorithm is it can prevent the

fog devices being flooded with every incoming task. Besides, it can determine which fog devices handle the

least amount of tasks due to the MIPS. Therefore, all of the fog devices will be fully utilised in the fog

environment.

System Design and Implementation

The proposed techniques are transformed into a workable system to achieve all objectives before the proposed

techniques can be implemented as a tool to collect data and feedback from the users that are being invited to

evaluate the effectiveness of the proposed methods. The evaluation is done through a scenario of virtual reality

(VR) game in fog computing environments. There will be two stages in the transformation process which

includes system design and the implementation stage.

In the system design stage, the use case diagrams, flowcharts and pseudocodes are used to present all the

activities that involve the transformation of the requirements. The implementation of the VR game algorithm

http://www.rsisinternational.org/

Page 3704 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

involves three stages. By using QoE-aware application mapping policy, energy-aware placement and

offloading algorithm to map the module to appropriate mobile devices in order to ensure the optimization of

the performance.

During the implementation stage, the simulator called iFogSim is used to implement the proposed

methodology. iFogSim is a dynamic environment of IoT applications platform for using to perform

simulation. Besides, the tools Eclipse is used as the design and development tool to run iFogSim simulator.

The Java programming language is used to write the proposed algorithm. To achieve the predefined objectives,

the prototype for every proposed system is well developed and recursively tested.

System Testing and Evaluation

Scenario

Several scenarios have been set to test the proposed solution and solution without energy-aware to achieve the

fourth objective. The comparison is made based on a few aspects such as execution time, total power

consumption and network usage from the simulation results. Based on the scenario, different aspects will result

in different results as shown in Table 3.1. Table 3.1 shows the simulation scenario on the proposed solution

without QoE-aware and energy-aware.

Table 3.1 Simulation scenario on fog device and application module arrangement

Scenario Fog Device Arrangement Application Module Arrangement

Scenario 1 Fog Device MIPS increases from end user

towards cloud

Module’s MIPS requirements increases from

client towards last module

Scenario 2 Fog Device MIPS increases from end user

towards cloud

Module’s MIPS requirements decreases from

client towards last module

Scenario 3 Fog Device MIPS increases from end user

towards cloud

Module’s MIPS requirements is in random order

between client and last module

Scenario 4 Fog Device MIPS is in random order between

end user and cloud

Module’s MIPS requirements increases from

client towards last module

Scenario 5 Fog Device MIPS is in random order between

end user and cloud

Module’s MIPS requirements decreases from

client towards last module

Scenario 6 Fog Device MIPS is in random order between

end user and cloud

Module’s MIPS requirements is in random order

between client and last module

Case Study

After the development, the existing solution is used to compare and evaluate the proposed solution. Table 3.2

shows the data gathering techniques for evaluation and comparison. The criteria that is used to compare and

evaluate the proposed solution and existing solution includes execution time, energy consumption and network

usage. The simulation is completed in the tool iFogSim.

http://www.rsisinternational.org/

Page 3705 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

Table 3.2 Data gathering technique used for evaluation and comparison

No. Title Data Gathering Technique Method Information obtained

1. Comparison with

solution without

QoE-aware

Simulation in iFogSim Quantitative Comparison result based on energy

consumption, execution time and

network usage

2. Comparison with

solution without

energy optimization

Simulation in iFogSim Quantitative Comparison result based on energy

consumption, execution time and

network usage

3. Comparison with

solution without

computation

offloading

Simulation in iFogSim Quantitative Comparison result based on energy

consumption, execution time and

network usage

4. Comparison between

solution with QoE-

aware

Simulation in iFogSim Quantitative Comparison result based on energy

consumption, execution time and

network usage

5. Comparison between

solution with QoE-

aware and energy-

aware

Simulation in iFogSim Quantitative Comparison result based on

execution time, network usage and

energy consumption

System Testing and Evaluation

The involved steps and acquired findings will be documented at the end of the research. To show the level of

performance and improvement of the development, documentation is necessary to be an evidence to express

the findings. Documentation can also express the completeness and accuracy of the work for the reader. The

understanding of the reader in terms of the flow of research and the contribution made on existing knowledge

is mainly based on the documentation. Besides, documentation will serve as a vital reference in the future

work for other researchers.

Summary

In summary, the problem analysis and discussion of methodology used are contained in this research, The

problem statement is analysed including the detailed explanation of the cause and issue that lead to the

problems. The research methodology framework is developed to achieve the research objectives. The detailed

explanation based on the Proposed QoE-aware Application Mapping Policy, Proposed Energy-aware Method,

Proposed Computation Offloading Method, System Design and Implementation, System Testing and

Evaluation and Documentation are described in the research. The explanation of tools used for the

development phase as well as data gathering method is described as well. The following chapter will be

presented on the topic of system design and implementation of the proposed solution.

Research Methodology and Problem Analysis

The main topic will be presented in this chapter is the system design and implementation of the proposed

solutions. There are two phases in the proposed solution, phase one is QoE-aware application mapping and

energy-aware module placement, meanwhile, phase two is the implementation of computation offloading

algorithm. The purpose of the proposed solution is to enhance user satisfactions, minimise the execution time,

network usage and to optimise the energy consumption. The beginning of this chapter will be the discussion of

system architecture design. Then, the system implementation of QoE-aware application mapping, energy-

http://www.rsisinternational.org/

Page 3706 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

aware module placement and computation offloading will be discussed subsequently. The last section will be

the conclusion of this chapter.

System Architecture Design

The information related to the fog computing framework, fog environment simulation and the modelling of fog

environment and module placement will be provided in this section.

There are three layers to build up the fog computing architecture which are sensor layer, fog layers and cloud

layers. Figure 4.1 shows the fog computing architecture which constitutes layers that are liable for explicit

assignments to aid the operation of higher layers.

All service requests are gathered from users in integrated fog and cloud networks. The users are linked with

various applications. The users can send service requests to fog nodes via wireless access as well as access to

the fog nodes. The fog nodes will respond to the users based on the service request on demand as well. The

result will return back to the users through three layers architecture.

The IoT devices linked with applications will perform specific functions based on the request from the end

users. Multiple interconnected Applications Modules are divided from Fog-enabled IoT applications. There

will be two Applications Modules composed for Fog-enabled IoT applications. The two Application Modules

include Client module and Main Application Module. The Client Module will run and process at the user’s

proximate devices. It will hold the user’s preferences and contextual information as well as the deliveries such

as acknowledgement or instruction of the Main Application Module. Meanwhile, the Main Application

Modules will carry out all the application data operations. The output of the Main Application Module will be

regarded as the final product of the Fog-enabled IoT systems.

Fig. 4.1 Fog Computing Architecture

http://www.rsisinternational.org/

Page 3707 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

The third layer of fog computing architecture will be the sensor or IoT devices layer. The devices in this layer

are located the most closest to the end user. This layer is a physical environment which consists of various IoT

devices like sensors, actuators, mobile phones, and etc. All of these devices are geographically distributed

widely in the world. All of the devices in IoT are modelled by a sensor and actuator and all of these devices are

able to emit data. Sensors are used to perform sensing the physical objects or events feature data and

transmitting the sensed data for processing and storing to the upper layer. Actuators are used for responding

when there are changes in environments imposed by the applications based on the captured information from

sensors.

The second layer is a fog layer in which numerous fog nodes are located in this layer. The fog nodes include

routers, switches, access points, fog servers, etc. The fog nodes are distributed between the clouds centre and

end devices from the end users. The services are obtained by connecting the end devices to the fog nodes. The

fog nodes are able to perform computing, transmitting, temporarily storing and receiving sensed data. In the

fog layer, the real-time analysis and latency-sensitive application will be accomplished. Additionally, the other

side of the fog node is connected to the cloud data centre by IP core network. The interaction and cooperation

will be done between fog nodes and cloud data centres for obtaining more powerful computing and storage

capabilities.

The cloud layer that performs global or centralised monitoring and control is located at the top layer. The

cloud layer consists of multiple storage devices and high-performance servers which are able to perform strong

computing and storing capabilities for supporting extensive computation analysis and permanently storage of

gigantic amounts of data. Large-scale event detection, long-term pattern recognition and relationship

modelling to support dynamic decision making will be the result of cloud scale analytics. One of the major

objectives of cloud level analytics is to guarantee the grid and service vendors in order to perform large scale

resource and management activities as well as prepare for the blackouts or brownouts.

On top of this, there will be three main aspects to be considered in fog computing. The first aspect is Quality of

Experience (QoE). QoE is an acceptable service that is mainly determined based on the users requirements and

perception. QoE will provision the service by summarizing the user’s perceptions, requirements and intentions.

QoE-aware application mapping is required to guarantee the ensuring quality of experience of the users in

terms of enhancing the data processing time and service quality. There are two techniques used for proposing

QoE-aware mapping policy. The techniques are fuzzy logic and multi-constraint single objective optimization

techniques.

Fuzzy logic is used to perform the calculation of Degree of Assumption (DoA) for application and Capacity

Class Grade (CCG) for computing instances. The high combined intensity of associate Assumption Criteria

parameters is indicated by high DoA. Whereas, the CCG is to represent the better ability of an instance to fulfil

different user assumptions. After performing calculations on both DoA and CCG, the multi-constraint single

objective optimization technique is used to maximise the Rating Gain for all application mapping to improve

the QoE of the user and also maintain QoS of the user at the same period of t ime. QoE-aware policy will

ensure one to one mapping between applications and instances.

Energy is a second aspect in fog computing. It refers to the total power consumption during fog

implementation. Although the increment of quality of service will result in more energy consumed, it is also

vital to minimise the power consumption by using an energy-aware module placement. First of all, the fog

node will calculate the estimated minimum energy on the incoming module, Then, the estimated minimum

energy and MIPS of the incoming module will be compared to the maximum energy and MIPS of the fog

device. This process will stop until a fog device is found and able to fulfil the incoming module requirements.

Next, the incoming module is placed to the found fog device. The dynamic voltage and frequency scaling

(DVFS) that is used to adjust the remaining MIPS.

Lastly, the third aspect is the proposed offloading in the fog layer. The proposed offloading is used to transfer

resource intensive computational tasks to another fog device due to the limitation of fog devices such as

limited computational power, storage, and energy. To prevent the overall performance being affected, an

offloading algorithm is proposed to solve the issues. Although there are numerous fog devices located in the

http://www.rsisinternational.org/

Page 3708 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

fog layer which are able to host more than one instance for the application, there is the maximum workload for

fog devices. When the new task is arrived at the fog device, the system will compare the job load of the task on

the current fog device. If the fog device is already occupied by a task, the newly arrived task will be offloaded

to the following fog device instead of executing the task at the current fog device.

In short, the three aspects mentioned above are the most vital elements in fog computing environments in order

to enhance overall performance for execution of job as well as execution time and usage of network.

The distributed data flow (DDF) model is created for deployment in fog computing and it is the role model of

the applications. Applications which contain data processing capabilities are modelled as module collections.

Also, based on the data output, it is to produce information which is beneficial to the application. The output

data from a processing module for example, module I. This means when the module I is done processing, the

result from module I is able to be used as another module such as module J and so on. The data dependency is

created between module I and J due to this appearance and it can be performed as an application on directed

graph design in this model.

In IoT, the IoT devices use sensors as source of the data. Meanwhile in cloud architecture, the data is known as

cloudlet. On the other hand, in fog computing, the data is known as tuples.

Fog Environment Simulation

Fig. 4.2 Main classes

Figure 4.2 shows the main classes in fog environment simulation. Fog controller is one of the physical devices

that is responsible for building the fog node to deploy the abstraction, it is similar to cluster lead while also

granting communication between cloud and fog layers. The Controller is used to control the ModuleMapping,

FogDevice as well as the Application.

QoE is used to support module mapping in order to develop an QoE-aware application mapping policy which

improves overall user experience and ensures one to one mapping between applications and instances. The

second process will be gone through in Energy class which is an energy-aware module placement after

application being mapped to fog instance. Energy-aware module placement aims to optimise the energy

consumption as well as execution time and usage of the network. Next, the Offloading class is to prevent the

overloading of a fog device through the implementation of a proposed offloading algorithm. Through this

algorithm, the task will be offloaded to other fog nodes instead of executing when the current fog device is

processing a task. After these three processes, the results will be passed to ModulePlacementMapping and

finally the module is placed to the suitable fog device by ModulePlacement class. The results will be returned

http://www.rsisinternational.org/

Page 3709 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

back to application after the task is processed by the fog device. The three classes which are AppModule,

AppLoop and AppEdge connect to the application. AppModule serves as the processing elements of fog

applications. AppModule will process and send the generated output tuples to next modules in the DAG.

AppLoop is an extra class, utilised for determining the loops that are important to the user and controls the

process whereas an AppEdge case indicates the information reliance between a couple of application modules

and represents a directed edge in the application mode.

Modeling Fog Environment

The target application is a fog computing environment that consists of multiple fog devices which can bring

the cloud applications closer to the physical IoT devices at the network edge. Fog device is also known as fog

node which is able to process tuples that were sent from other modules hosted on the other fog node hence

qualifying fog node as a “mini-cloud” located at the edge of a network that is interconnected by varieties of

communication technologies. Virtual machine is the logical data flow presented in a physical fog node in order

to fully leverage the processing capability of the fog node. Thus, the virtual machine which is located in the

fog devices will process the tuple according to the tuple scheduler. A host is a computer or other device that

communicates with other hosts on a network. Hosts on a network include clients and servers that send or

receive data, services or applications. Based on research, only one application module is provisioned within a

single virtual machine instance to simplify the testing. Figure 4.3 shows the relationship of the related main

entities of the proposed solution.

Fig. 4.3 The relationship of the main entities in proposed solution

Application is composed of modules that could be individually hosted on fog nodes to fully leverage the

potential of fog devices. The characteristics of modules include maximum MIPS requirement, RAM

requirement, Bandwidth requirement, and the tuple frequency. On the other hand, the characteristics of fog

devices include MIPS, RAM, bandwidth, link latency, and energy consumption.

iFogSim supports resource management service through two application module placement. “Cloud-only

placement” is all modules of an application run in data centres whereas “Edgeward placement” is application

modules that are placed close to the edge of the network. However, devices close to the edge of the network

may not be powerful enough to host all the applications. The placement policy determines how application

modules are placed across Fog devices upon submission of application. The placement process can be driven

by objectives such as minimising end-to-end latency, network usage, operational cost, or energy consumption.

The class Module Placement is the abstract placement policy that needs to be extended for integrating new

policies. The illustration of module placement is shown in Figure 4.4.

http://www.rsisinternational.org/

Page 3710 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

Fig. 4.4 Illustration of module placement

QoE-aware Application Mapping

QoE-aware application will be the first process in phase one of a proposed solution which enhances the user

satisfaction.

Architecture of QoE-aware Application Mapping

The computational nodes are equipped with resources such as memory, bandwidth and CPU to run various

applications for computational fog nodes (CFN). The resources are virtualized among MSs, micro services,

where assignment of applications for execution are conducted in computational nodes. Dynamic provision on

the additional resources for a micro service can be conducted from either In CFN, all configured MSs can be

operated independently. Controller node is in charge of monitoring and controlling the overa ll activities of

CFN. There is data storage in the controller node that stores metadata that is related to the running application

and State Criteria parameters of the MSs. In the controller node, a Capacity Grade Unit is proposed to define a

capacity index for each MS based on the State Criteria parameters to ensure that MSs are ranked in accordance

with their competence.

Sometimes, the computation of data signals transmitted from IoT devices is facilitated by edge fog nodes,

EFNs. For certain Fog-enabled IoT systems, it is assumed that the corresponding EFNs run the Client Module

and aid in placing the subsequent module to CFNs in the upper level. In this approach, the connections are

established between EFNs and IoT devices. The Client Module is initiated by the Application Initiation Unit of

EFNs, through which a user expresses assumptions related to the application to EFNs. EFN services are used

to obtain and collect the capacity index of MSs and it is stored in a data storage. Moreover, the data storage

keeps user Assumption Criteria and Quantity of Service (QoS) attributes related to the application for further

processing. In EFN, there are two individual units which are, Application Mapping Unit and Assumption

Degree Unit. For each application mapping request, Assumption Degree Unit calculates a priority value by

considering user Assumption Criteria. Other than that, the Application Mapping Unit of EFN carries out

mapping of applications to appropriate Fog instances according to the priority value of application mapping

requests and the capacity index of MSs respectively. Figure 4.5 shows the architecture for QoE-aware

application mapping.

http://www.rsisinternational.org/

Page 3711 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

Fig. 4.5 Architecture for QoE-aware application mapping

Flow of QoE-aware Application Mapping

The calculation of a priority value called Degree of Assumption (DoA) will be the essential steps of each

application mapping request according to the user assumption parameters, and also to calculate a capacity

index called Capacity Class Grade (CCG) of MSs in CFNs in accordance to the state parameters and guarantee

the QoE maximised applications mapping to competent MSs using DoA and CCG values. It requires the active

participation of Assumption Degree Unit, Application Mapping Units of EFNs and Capacity Grade Unit of

CFNs in order to carry out the steps. Figure 4.6 shows the sequence diagram for QoE-aware application

mapping.

Fig. 4.6 Sequence diagram for QoE-aware application mapping

http://www.rsisinternational.org/

Page 3712 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

To ensure the best quality of experience for end users, the calculation of two values is vital. The two values are

DoA of an application and CCG of a computing instance to effectively map the application to fog instances.

There are several steps that need to be followed from the calculation of two values until mapping of

application. The first step is to get the Bandwidth, Demanded Resources and Latency Acceptability to store

into data storage from the clients assumption. The parameters are sent for DoA calculation through the process

of fuzzy inference and defuzzification after assumption parameters are normalised. After calculating DoA,

edge fog nodes will query the accessibility of cloud fog nodes about available micro services and CCG values

will be associated. Then, State Criteria will be acquired for the calculation of CCG and the CCG is sent once it

is calculated. The total Rating Gain of the applications are maximised in the process of mapping applications

on that instance. QoE-aware mapping of the applications will be promoted based on the maximum Rating

Gain.

Notation and Definition

Table 4.1 shows the QoE-aware application mapping

Symbol Definition

𝑀 Set of all Edge Fog Nodes (EFNs)

𝑁 Set of all Computational Fog Nodes (CFNs)

𝐷𝑜𝐴 Degree of Assumption (𝐷𝑜𝐴) is the priority value that are calculated based on assumption

parameters

𝐶𝐶𝐺 Capacity Class Grade (𝐶𝐶𝐺) is a capacity index of micro services according to state parameter

to ensure the maximisation of application placement

𝐸𝑚 Set of all application mapping request in EFN

𝐽𝑛 Set of all micro services in CFN

∝ Bandwidth parameter in Assumption Criteria

𝛽 Demanded resources parameter in Assumption Criteria

𝛾 Latency Acceptability parameter in Assumption Criteria

𝜃 Circulation time parameter in State Criteria

𝜆 Resource availability parameter in State Criteria

𝜋 Processing speed parameter in State Criteria

𝐴𝑒𝑚 Assumption Criteria for application 𝑒 ∈ 𝐸𝑚

𝑆𝑗𝑛
 State Criteria for instances 𝑗 ∈ 𝐽𝑛

𝜎𝑒𝑚
 DoA of application 𝑒 ∈ 𝐸𝑚

ɸ𝑒𝑚
 Data signal size for 𝑒 ∈ 𝐸𝑚

𝛺𝑗𝑛
 CCG of instances 𝑗 ∈ 𝐽𝑛

𝐾𝜔
𝑒𝑚 Assumption (value) of parameter ω for application 𝑒 ∈ 𝐸𝑚 ; 𝜔 ∈ {𝛼, 𝛽, 𝛾}

𝐺𝜀
𝑗𝑛 State (value) of parameter ɛ for instances 𝑗 ∈ 𝐽𝑛 ;𝜀 ∈ {𝜃, 𝜆, 𝜋}

𝜏𝜔 Fuzzy membership function for any 𝐴𝑒𝑚 parameter ω

𝜏𝜀
′ Fuzzy membership function for any 𝑆𝑗𝑛 parameter ɛ

𝐹𝑎 Fuzzy outcome set for DoA calculation.

𝐹𝑐
′ Fuzzy outcome set for CCG calculation.

∀𝑓𝑒𝑚 Singleton value for a Fuzzy outcome in (DoA) 𝑓𝑒𝑚
∈ 𝐹𝑎 of 𝑒 ∈ 𝐸𝑚

Ʌ𝑓𝑗𝑛
′

 Singleton value for Fuzzy outcome in (CCG) 𝑓𝑗𝑛

′ ∈ 𝐹𝑐
′ of 𝑗 ∈ 𝐽𝑛

𝜏𝑎 Membership function for any Fuzzy outcome in DoA calculation

𝜏𝑐
′ Membership function for any Fuzzy outcome in CCG calculation

𝑣𝑗𝑛

𝑒𝑚 ∈ {0,1} Equals to 1 if 𝑒 ∈ 𝐸𝑚mapped to 𝑗 ∈ 𝐽𝑛, 0 otherwise

𝐴𝑟 Normalised access rate

𝑅𝑟 Normalised resource requirement

𝑃𝑡 Normalised processing time

𝛤𝐵𝑤 Fuzzification bandwidth set

http://www.rsisinternational.org/

Page 3713 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

𝛤𝑅𝑟 Fuzzification resource requirement set

𝛤𝑃𝑡 Fuzzification processing time set

𝛤𝑖 Fuzzification Inference

𝛱𝑠 Defuzzification Singleton

s Singleton

𝛱 Defuzzification

RoE Return on Equity Value

CCS Cloud Computing and Services Value

Calculation of Degree of Assumption (DoA)

Based on the specific fog environment, application placement requests are given distinctive expectation

parameters ‘range. The amount of the parameter can be chosen unless it didn’t reach beyond the range.

Table 4.2 Range of the Parameters for DoA

Parameter/Metrics Value in Range(𝑥𝜔, 𝑦𝜔)

Bandwidth (3, 18)

Demanded Resources (4, 16)

Latency Acceptability (20, 140)

The users end device compromise to the 𝐴𝑒𝑚
∈ {𝐾𝛼

𝑒𝑚, 𝐾𝛽
𝑒𝑚, 𝐾𝛾

𝑒𝑚 } regarding an application 𝑒𝑚 to the system

through the Application Initiation Unit. The data storage will contain the 𝐴𝑒𝑚
 and it is sent to the Assumption

Degree unit of EFN 𝑚. 𝐴𝑒𝑚 which contain three parameters and the range. The units of the values vary. The

values of each parameter are normalised to simplify further calculation. The result of the normalisation will

fall in between -1 and 1 by using Eq.4.1:

𝐾𝜔
𝑒𝑚 = 2 (

𝐾𝜔
𝑒𝑚 −𝑥𝜔

𝑦𝜔−𝑥𝜔
) − 1 (4.1)

𝐾𝜔
𝑒𝑚 is the normalised value for criteria 𝜔 within the range [𝑥𝜔, 𝑦𝜔]. Each criteria in [𝑥𝜔, 𝑦𝜔], is defined based

on the scope for every criteria of Table 4.2 offered in the Fog Environment. In the other words, 𝑥𝜔 refer to the

minimum value of the range of parameters, 𝑦𝜔 refers to maximum value of the range of parameters In

Assumption Degree Unit, a Fuzzy logic based approach is used to calculate the 𝜎𝑒𝑚
of each application from

the normalised parameter in 𝐴𝑒𝑚
.

Fuzzification Module for DoA Calculation

Fuzzification is used to convert the crisp input values into fuzzy values by using the information in the

knowledge base. In fuzzification, the crisp inputs which are x and y are taken to determine the degree whether

they belong to which of the appropriate fuzzy sets. The standardised value 𝐾𝜔
𝑒𝑚 of any 𝐴𝑒𝑚

 parameter 𝜔 is

transformed into an equivalent fuzzy dimension through associate membership function 𝜏𝜔 . This work

involved membership functions of different Assumption Criteria from three different fuzzy sets. The following

are the fuzzy sets:

● Bandwidth: 𝐵𝑤 ∈ {𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 𝐿𝑜𝑤, 𝐿𝑜𝑤, 𝑀𝑒𝑑𝑖𝑢𝑚, 𝐻𝑖𝑔ℎ, 𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 𝐻𝑖𝑔ℎ}

● Demanded resources: 𝐷𝑟 ∈ {𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 𝑆𝑚𝑎𝑙𝑙, 𝑆𝑚𝑎𝑙𝑙, 𝑀𝑒𝑑𝑖𝑢𝑚, 𝐿𝑎𝑟𝑔𝑒, 𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 𝐿𝑎𝑟𝑔𝑒}

● Latency Acceptability: 𝐿𝑎 ∈ {𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 𝑆𝑙𝑜𝑤, 𝑆𝑙𝑜𝑤, 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒, 𝐹𝑎𝑠𝑡, 𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 𝐹𝑎𝑠𝑡}

In this case, the following 𝐾𝜔
𝑒𝑚 value will be given as 6 per seconds, 7 CPU cores and 110 ms to Bandwidth,

Demanded Resources and Latency Acceptability respectively, as shown in Table 4.3.

http://www.rsisinternational.org/

Page 3714 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

Table 4.3 Value of DoA Calculation

Parameter Bandwidth (per seconds) Demanded Resource (CPU cores) Latency Acceptability (ms)

𝑥𝜔 3 4 20

𝑦𝜔 18 16 115

𝐾𝜔
𝑒𝑚 6 7 100

After the value is prepared, it takes fuzzy input and applies it to the antecedents of fuzzy rules, then it can start

to calculate the Degree of Assumption (DoA) as shown in Table 4.4 based on Eq.4.1:

Table 4.4: Result of Calculation of DoA

Bandwidth Demanded Resource Latency Acceptability

𝐾∝
1 = 2 (

6 − 3

18 − 3
) − 1

 𝐾∝
1 = -0.60

𝐾𝛽
1 = 2 (

7 − 4

16 − 4
) − 1

 𝐾𝛽
1 = -0.50

𝐾𝛾
1 = 2 (

100 − 20

115 − 20
) − 1

 𝐾𝛾
1 = 0.68

The membership degree, 𝜏𝜔 (𝐾𝜔
𝑒𝑚) for any normalised value for criteria 𝜔 based on respective fuzzy sets in

Figure 4.7. Table 4.5 is fuzzy sets after assumption parameters that are normalised. The fuzzy set will be

arranged in:

❖ Bandwidth:

➢ 𝜏𝜔 (𝐾∝
1) → 𝐵𝑤: { 𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 𝐿𝑜𝑤, 𝐿𝑜𝑤, 𝑀𝑒𝑑𝑖𝑢𝑚, 𝐻𝑖𝑔ℎ, 𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 𝐻𝑖𝑔ℎ}

❖ Demanded Resource:

➢ 𝜏𝜔 (𝐾𝛽
1) → 𝐷𝑟: {𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 𝑆𝑚𝑎𝑙𝑙, 𝑆𝑚𝑎𝑙𝑙, 𝑀𝑒𝑑𝑖𝑢𝑚, 𝐿𝑎𝑟𝑔𝑒, 𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 𝐿𝑎𝑟𝑔𝑒}

❖ Latency Acceptability:

➢ 𝜏𝜔 (𝐾𝛾
1) → 𝐿𝑎: {𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 𝑆𝑙𝑜𝑤, 𝑆𝑙𝑜𝑤, 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒, 𝐹𝑎𝑠𝑡, 𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 𝐹𝑎𝑠𝑡}

Figure 4.7: Membership function of assumption criteria parameters

http://www.rsisinternational.org/

Page 3715 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

Before the normalisation process, it is assumed that the value of parameter ∝ in application. Fuzzy sets can be

displayed in many shapes. However, triangles or trapezoids can usually fully express expert knowledge and

can greatly simplify the calculation process. Figure 4.8 shows how Fuzzy logic separates the area for

Bandwidth fuzzy sets.

Fig. 4.8 Area separation for Bandwidth fuzzy sets

After the normalisation process is complete in Table 4.4, the answer for 𝐾∝
1 is = -0.60. 𝐾∝

1 refer to the

normalised application 1 under Bandwidth parameter ∝. Based on the result, it is shown that -0.60 of the x axis

hit 0.25 and 0.75 on the y axis of its respective membership set in the Extremely Low and Low area. Refer

Figure 4.9, therefore it is concluded that the fuzzy set for 𝜏𝜔 (𝐾∝
1) → 𝐵𝑤: {0.25,0.75,0.0,0.0,0.0}.

Fig. 4.9 Bandwidth normalised value intercepted Extremely Low and Low area

In parameter of Demanded Resources, 𝐾𝛽
1 is = -0.50. 𝐾𝛽

1 refer to the normalised application 1 under Demanded

Resources parameter 𝛽. Based on the result, it is shown that -0.50 of x axis hit 0.00 and 0.00 on y axis in

Extremely Small and Small area on y-axis of its respective membership set correspondingly, therefore it is

concluded that the fuzzy set for 𝜏𝜔 (𝐾𝛽
1) → 𝐷𝑟: {0.0,0.0,0.0,0.0,0.0}.

In parameter of Latency Acceptable, 𝐾𝛾
1 is = 0.68. 𝐾𝛾

1 refer to the normalised application 1 under Latency

Acceptability parameter 𝛾. Based on the result, it is shown that 0.50 of x axis hit 0.50 on y axis in Fast and

Extremely Fast membership sets respectively, therefore it is concluded that the fuzzy set for 𝜏𝜔 (𝐾𝛾
1) →

𝐿𝑎: {0.0,0.0,0.0,0.50,0.50}. Table 4.5 shows the examples of fuzzy sets after assumption parameters being

normalised.

Table 4.5: Fuzzy sets after assumption parameters being normalised

Parameter DoA

(𝐾𝜔
𝑒𝑚)

Intercepted Area of Y-axis (Normalised Value) 𝜏𝜔 (𝐾𝜔
𝑒𝑚)

Bw -0.60

Extremely Low

(0.25)

Low

(0.75)

Medium

(0.00)

High

(0.00)

Extremely

High (0.00)

{0.25,0.75,0.00,

0.00,0.00}

http://www.rsisinternational.org/

Page 3716 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

Dr

-0.50

Extemely Small

(0.00)

Small

(1.00)

Medium

(0.00)

Large

(0.00)

Extremely

Large

(0.00)

{0.00,0.00,0.00,

0.00,0.00}

La

0.68

Extremely Slow

(0.00)

Slow

(0.00)

Moderate

(0.00)

Fast

(0.52)

Extremely

Fast (0.48)

{0.00,0.00,0.00,

0.52,0.48}

Fuzzy Inference Module for DoA Calculation

Fuzzy inference is used to formulate a mapping from a given input to an output using fuzzy logic. Then, the

mapping will provide the basis from which decisions can be made or patterns can be identified. During fuzzy

inference, corresponding fuzzy outputs are determined by mutually comparing fuzzy inputs with the help of

fuzzy rules. The fuzzy rules are set in such a way that approximately stringent assumption parameters like

large resource demand are given higher weight. As a result, the DoA value for the requests will be more

aligned with the stringent assumption parameters compared to flexible parameters like moderate latency

acceptable and medium bandwidth. After that, the system needs to be tuned and evaluated to see if the fuzzy

system meets the requirements specified at the beginning. The surfaces can be generated by using the fuzzy

logic toolbox to analyse the performance of the system. The fuzzy rules used to calculate DoA are shown in

Figure 4.10 while the results of fuzzy inputs (Assumption Criteria parameters) comparison based on the fuzzy

rules are shown in Appendices.

Fig. 4.10 Fuzzy rules for DoA calculation

The membership degree for each of the fuzzy outputs refers to the highest membership degree of each

compared parameter from the corresponding fuzzy set. The figure 4.10 is based on table 4.2 Range of the

Parameters for DoA. The equation used to determine the membership degree is shown in Eq.4.2:

𝜏𝑎(𝑓𝑒𝑚
)

= (𝜏𝛼 (𝐾𝛼
𝑒𝑚) , 𝜏𝛽 (𝐾𝛽

𝑒𝑚) , 𝜏𝛾 (𝐾𝛾
𝑒𝑚))

(4.2)

http://www.rsisinternational.org/

Page 3717 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

Fig. 4.11 Fuzzy rules for DoA calculation

From Figure 4.11, the bandwidth will be divided into 5 types which are ‘EH’, ‘H’, ‘M’, ‘L’, ‘EL’ and represent

‘Extremely High’, ‘High’, ‘Medium’, ‘Low’ and ‘Extremely Low’. The resource demand is divided into 5

types which are ‘EL’, ‘L’, ‘M’, ‘S’, ‘ES’ and represent ‘Extremely Large’, ‘Large’, ‘Medium’, ‘Small’ ,

‘Extremely Small’. Using the comparison of the first fuzzy set as an example, with the Extremely Low

Bandwidth, Extremely Large Demanded Resource and Extremely Slow Latency Acceptance, the fuzzy output

will be on an High level. The illustrative explanation is shown in Figure 4.12. Any u number of fuzzy rules can

be triggered based on the Assumption Criteria parameters.

Fig. 4.12 Illustrative explanation on getting fuzzy output for DoA calculation

Defuzzification Module of DoA calculation

The maximum rating of the application for that fuzzy output is represented by a value called singleton value

which is set in a way that could make the logical difference on having fuzzy outputs obviously visible. In this

http://www.rsisinternational.org/

Page 3718 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

case, the singleton value for fuzzy output is set as ‘Extremely High’, ‘High’, ‘Medium’, ‘Low’ and ‘Extremely

Low’ as 10, 8, 6, 4 and 2 respectively. Fuzziness helps us evaluate the rules, but the final output of the fuzzy

system must be a clear number. The input of the defuzzification process is the aggregate output fuzzy set, and

the output is a single number. For defuzzification, Fuzzy logic is applied on different parameters of the

Assumption Criteria to obtain the exact DoA for application. The equation used to obtain DoA is shown in

Eq.4.3:

𝜎𝑒𝑚
=

∑𝑧=𝑢
𝑧=1 𝜏𝑎(𝑓𝑒𝑚

𝑧)×∀𝑧

𝑓𝑒𝑚

∑𝑧=𝑢
𝑧=1 𝜏𝑎(𝑓𝑒𝑚

𝑧)
 (4.3)

Each membership degree will be multiplied with the corresponding singleton value, then all the values resulted

from the multiplication will be summed up and lastly, be divided by the sum of all membership degrees.

σ_(e_m) refers to the exact DoA obtained for application e_m. The Application Mapping Unit will then use

σ_(e_m) to map the application to a suitable Fog computing instance.

Calculation of Degree of Assumption (CCG)

Table 4.6: Range of the Parameters for CCG

Parameter/Metrics Value in Range(𝑥𝜀
′ , 𝑦𝜀

′)

Circulation Time (2, 17)

Available Resources (3, 15)

Processing Time (40, 160)

CCG is calculated after the calculation of DoA has been done for each application placement request. At this

stage, EFN m will question the accessibility of CFN n on the available micro services j_n and associate CCG

values. For every micro services in a CFN, the CCG is calculated in Capacity Class Grading unit from the

correlated State Criteria, S_(j_(n))∈ {G_θ^(j_n),G_λ^(j_n),G_π^(j_n) }. The calculation steps are similar to

calculation for Degree of Assumption (DoA). The values for State Criteria parameters are different, therefore

the normalisation process is carried out using Eq.4.4:

𝐺𝜀
𝑗𝑛 = 2 (

𝐺𝜀
𝑗𝑛 − 𝑥𝜀

′

𝑦𝜀
′ − 𝑥𝜀

′
) − 1

(4.4)

𝐺𝜀
𝑗𝑛 is the result after the normalisation process for criteria 𝜀 within the range [𝑥𝜀, 𝑦𝜀]. The range is set based

on the capacity of the Fog environment for those respective parameters. After normalisation, a Fuzzy logic

based approach is used for further calculation.

Fuzzification Module for CCG Calculation

The membership 𝜏𝜀
′ is use to determine the membership degree of normalised 𝐺𝜀

𝑗𝑛 value to relate fuzzy sets.

This fuzzy sets for each parameter are listed as follow:

i. Circulation time: 𝐶𝑡 ∈ {𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 𝑆ℎ𝑜𝑟𝑡, 𝑆ℎ𝑜𝑟𝑡, 𝐴𝑣𝑒𝑟𝑎𝑔𝑒, 𝐿𝑜𝑛𝑔, 𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 𝐿𝑜𝑛𝑔}

ii. Resource Availability: 𝑅𝑎 ∈ {𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙, 𝐿𝑖𝑚𝑖𝑡𝑒𝑑, 𝐴𝑑𝑒𝑞𝑢𝑎𝑡𝑒, 𝑆𝑢𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡, 𝑃𝑙𝑒𝑛𝑡𝑖𝑓𝑢𝑙}

iii. Processing Time: 𝑃𝑡 ∈ {𝑀𝑖𝑛𝑖𝑚𝑎𝑙, 𝐹𝑎𝑖𝑟, 𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒, 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡, 𝑂𝑝𝑡𝑖𝑚𝑎𝑙}

In this case, the following 𝐺𝜀
𝑗𝑛 value will be given a sample as 11 per seconds, 12 CPU cores and 85 ms to

Circulation Time, Resources Availability and Processing Time respectively, as shown in Table 4.7.

http://www.rsisinternational.org/

Page 3719 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

Table 4.7 Value of CCG Calculation

Parameter Circulation Time

(per seconds)

Resource Availability

(CPU cores)

Processing Time

(ms)

𝑥𝜀
′ 2 3 40

𝑦𝜀
′ 17 15 160

𝐺𝜀
𝑗𝑛 11 12 85

After the value is prepared, calculate the Capacity Class Grade (CCG) as shown in Table 4.8 based on Eq.4.4:

Table 4.8: Result of Calculation of CCG

Circulation Time Resources Availability Processing Time

𝐺𝜃
𝑗𝑛 = 2 (

11 − 2

17 − 2
) − 1

𝐺𝜃
𝑗𝑛= 0.20

𝐺𝜆
𝑗𝑛 = 2 (

12 − 3

15 − 3
) − 1

𝐺𝜆
𝑗𝑛= 0.5

𝐺𝜋
𝑗𝑛 = 2 (

85 − 40

160 − 40
) − 1

𝐺𝜋
𝑗𝑛= -0.25

The membership function, 𝜏𝜔 (𝐺𝜀
𝑗𝑛) for state criteria parameters is shown in Figure 4.13, while examples of

fuzzy sets after state parameters that are normalised are shown in Table 4.9. The fuzzy set will be arranged in:

❖ Bandwidth:

➢ 𝜏𝜔 (𝐺𝜃
𝑗𝑛) → 𝐶𝑡: { 𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 𝑆ℎ𝑜𝑟𝑡, 𝑆ℎ𝑜𝑟𝑡, 𝐴𝑣𝑒𝑟𝑎𝑔𝑒, 𝐿𝑜𝑛𝑔, 𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 𝐿𝑜𝑛𝑔}

❖ Demanded Resources:

➢ 𝜏𝜔 (𝐺𝜆
𝑗𝑛) → 𝑅𝑎: {𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙, 𝐿𝑖𝑚𝑖𝑡𝑒𝑑, 𝐴𝑑𝑒𝑞𝑢𝑎𝑡𝑒, 𝑆𝑢𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡, 𝑃𝑙𝑒𝑛𝑡𝑖𝑓𝑢𝑙}

❖ Latency Acceptability:

➢ 𝜏𝜔 (𝐺𝜋
𝑗𝑛) → 𝑃𝑡: {𝑀𝑖𝑛𝑖𝑚𝑎𝑙, 𝐹𝑎𝑖𝑟, 𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒, 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡, 𝑂𝑝𝑡𝑖𝑚𝑎𝑙}

Fig. 4.13: Membership function of state criteria parameters

http://www.rsisinternational.org/

Page 3720 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

After the normalisation process is complete in Table 4.8, the answer for Circulation Time, 𝐺𝜃
𝑗𝑛 is = 0.20. 𝐺𝜃

𝑗𝑛

refer to the normalised application 1 under Bandwidth parameter 𝜃. Based on the result, it is shown that 0.20

of x axis hit 0.5 on y axis of its respective membership set in Average and Long area, therefore it is concluded

that the fuzzy set for 𝜏𝜔 (𝐺𝜃
𝑗𝑛) → 𝐶𝑡: {0.0,0.0,0.55,0.45,0.00}.

In parameter of Resource Acceptability, 𝐺𝜆
𝑗𝑛 is = 0.50. 𝐺𝜆

𝑗𝑛 refer to the normalised application 1 under

Demanded Resources parameter 𝜆. Based on the result, it is shown that 0.50 of x axis hit 0.35 and 0.65 on y

axis in Adequate and Sufficient area on y-axis of its respective membership set correspondingly, therefore it is

concluded that the fuzzy set for 𝜏𝜔 (𝐺𝜆
𝑗𝑛) → 𝑅𝑎: {0.00,0.00,0.00,1.00,0.00}.

In parameter of Processing Time, 𝐺𝜋
𝑗𝑛 is = -0.25. 𝐺𝜋

𝑗𝑛 refer to the normalised application 1 under Latency

Acceptability parameter 𝜋. Based on the result, it is shown that -0.25 of x axis hit 0.35 and 0.65 on y axis in

Minimal and Fair membership sets respectively, therefore it is concluded that the fuzzy set for 𝜏𝜔 (𝐺𝜋
𝑗𝑛) →

𝑃𝑡: {0.50,0.50,0.00,0.00,0.00}.

Table 4.9: Fuzzy sets after state parameters being normalised

Parameter CCG

(𝐺𝜀
𝑗𝑛)

Intercepted Area of Y-axis (Normalised Value) 𝜏𝜔 (𝐺𝜀
𝑗𝑛)

Ct 0.20 Extremely

Short (0.00)

Short

(0.00)

Average

(0.55)

Long

(0.45)

Extremely

Long (0.00)

{0.0,0.0,0.55,0.45,0.

00}

Ra 0.50

Critical

(0.00)

Limited(

0.00)

Adequate

(0.00)

Sufficient

(1.00)

Plentiful

(0.00)

{0.00,0.00,0.00,1.00

,0.00}

Pt -0.25 Minimal

(0.00)

Fair

(0.50)

Acceptable

(0.50)

Efficient

(0.00)

Optimal

(0.00)

{0.00,0.50,0.50,0.00

,0.00}

Fuzzy Inference Module for CCG Calculation

Corresponding fuzzy outputs are determined by mutually comparing fuzzy inputs with the help of fuzzy rules

during fuzzy inference similar to the calculation of DoA. However, the fuzzy rules for calculating CCG give

higher weight to those approximately impediment state parameters such as long Circulation Time. As a result,

the CCG value of the instances indicate more on the limitation instead of the convenience such as adequate

Resources Availability and fair Processing Time. The fuzzy rules used to calculate CCG are shown in Figure

4.14 which is based on table 4.6, while the results of fuzzy inputs comparison based on the fuzzy rules are

shown in Appendices.

Fig. 4.14: Fuzzy rules for CCG calculation

http://www.rsisinternational.org/

Page 3721 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

Fig. 4.15: Fuzzy rules for CCG calculation

From Figure 4.15, the calculation time will be divided into 5 types which are ‘ES’, ‘S’, ‘A’, ‘L’, ‘EL’ and

represent ‘Extremely Short’, ‘Short’, ‘Average’, ‘Long’ and ‘Extremely Long’. The resource availability is

divided into five types which are ‘P’, ‘S’, ‘A’, ‘L’, ‘C’ and represent ‘Plentiful’, ‘Sufficient’, ‘Adequate’,

‘Limited’, ‘Critical’. The membership degree for each of the fuzzy outputs refers to the lowest membership

degree of the compared parameters from the corresponding fuzzy set. The equation used to determine the

membership degree is shown in Eq.4.5:

𝜏𝑐
′ (𝑓𝑗𝑛

′) = (𝜏𝜃 (𝐾𝜃
𝑗𝑛) , 𝜏𝜆 (𝐾𝜆

𝑗𝑛) , 𝜏𝜋 (𝐾𝜋
𝑗𝑛))

(4.5)

Using the result of the comparison of the first fuzzy set as a reference, with the Extremely Short Circulation

Time, Critical Resources Available and Minimal Processing Time, the fuzzy output will be Extremely Low.

The illustrative explanation is shown in Figure 4.16.

Fig. 4.16: Illustrative explanation on getting fuzzy output for CCG calculation

Defuzzification Module for CCG Calculation

In this case, the singleton value represents the maximum rating of the application for that fuzzy output. The

singleton values for fuzzy output are set as ‘Extremely High’, ‘High’, ‘Medium’, ‘Low’ and ‘Extremely Low’

as 10, 8, 6, 4 and 2 respectively. For defuzzification, the membership degrees generated are combined with an

equation to obtain the exact CCG, 𝛺𝑗𝑛
 of the instance. The equation used to obtain CCG is shown in Eq.4.6:

𝛺𝑗𝑛
=

∑𝑧=𝑢
𝑧=1 𝜏𝑐

′ (𝑓𝑗𝑛

′𝑧) × Ʌ𝑧

𝑓𝑗𝑛
′

∑𝑧=𝑢
𝑧=1 𝜏𝑐

′ (𝑓𝑗𝑛

′𝑧)

(4.6)

http://www.rsisinternational.org/

Page 3722 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

Each membership degree will be multiplied with the corresponding singleton value, then all of the values

resulting from the multiplication will be summed up and lastly be divided by the sum of all membership

degrees. The CCG obtained is then forwarded to the querying EFN to carry out the following application

mapping process.

Application Mapping to Fog Instances

The output of DoA of an application and CCG of a computing instance is named Rating Gain for mapping the

application on that instance. The total Rating Gain of the applications are maximised in the process of mapping

applications to computing instances. The maximum Rating Gain is able to promote the QoE-aware mapping of

the applications. The high combined intensity of associate Assumption Criteria parameters are denoted by the

high DoA of the applications. The higher CCG relatively indicates better ability of the instances to satisfy

different user assumptions even within the weaknesses. DoA of an application serves as the representative

parameter for all of its assumption parameters, therefore the best possible convergence of the assumption

parameters to corresponding state parameters of the instances are guaranteed by the maximised Rating Gain of

the particular application. As a result, the chance of managing Fog facilities such as computational resources

and service accessibility increases without affecting the user assumptions, the QoE regarding the applications

are optimised as well.

In an EFN, the applications are mapped to computing instances in the Application mapping unit using a multi-

constraint objective function. The multi-constraint objective function is shown in Eq.4.7:

 𝑚𝑎𝑥 ∑

∀𝑒𝑚∈𝐸𝑚

∑

∀𝑗𝑛∈𝐽𝑛

𝑣𝑗𝑛

𝑒𝑚 (𝜎𝑒𝑚
× Ω𝑗𝑛

)

(4.7)

Throughout the objective function, the Rating Gain for all application mapping requests are maximised to

improve overall user QoE, one to one mapping between applications and instances are guaranteed, and the

QoS of the application including service delivery time, service cost and packet loss rate are maintained. In case

mapping that satisfies the constraints is not arranged by the EFN, the nodes will be queried for further

instances.

The objective function satisfied the decentralised optimization problem. The optimization problem will be

solved and the application will be mapped once the application mapping requests are submitted to an EFN. The

EFN can solve this optimization problem with multiple constraints using any integer programming solver such

as SCIP. A local view of the Fog system is considered by EFN in order to solve the optimization problem. Due

to the location, the chance for an EFN to receive a huge load of application mapping requests in a specific time

is low. Thus, the optimization problem is less likely to be an NP-hard problem.

Algorithm for QoE-aware Application Mapping

The pseudocode for QoE-aware application mapping is presented in Figure 4.17:

Algorithm 1 QoE-Aware Application Mapping

1: function DoA(bandwidth, demandedResources, latencyAcceptability)

2: 〖Bw〗_ = bandwidth ← Normalised bandwidth within (-1, 1)

3: Rr = demandedResources ← Normalised demanded resources within (-1,1)

4: Pt = latencyAcceptability ← Normalised latency acceptability within (-1, 1)

5: ΓBw = 〖Bw〗_ ← convert Normalised Bw to fuzzy set

http://www.rsisinternational.org/

Page 3723 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

6: ΓRr = Rr ← convert NormalisedRR to fuzzy set

7: ΓPt= Pt ← convert NormalisedPT to fuzzy set

8: for each ΓBw = min..max do

9: for each ΓRr = min..max do

10: for each ΓPt = min..max do

11: take the largest among the 5 values then

12: store in Γi

13: Πs += Γi* s

14: Π += Γi

15: end

16: end

17: end

18: return DoA = Πs / Π

19 end function

20: function CCG(circulationTime, availableRequirement, processingTime)

21: Bw = circulationTime ← Normalised circulation time within (-1, 1)

22: Rr = availableRequirement ← Normalised available requirement within (-1,1)

23: Pt= processingTime ← Normalised processing time within (-1, 1)

24: ΓBw = 〖Bw〗_ ← convert Normalised to fuzzy set

25: ΓRr = Rr ← convert NormalisedRR to fuzzy set

26: ΓPt= Pt ← convert NormalisedPT to fuzzy set

27: for eachΓBw = min..max do

28: for each ΓRr= min..max do

29: for each ΓPt= min..max do

30: take the smallest among the 5 values then

31: store in Γi

32: Πs +=Γi* s

33: Π+= Γi

34: end

http://www.rsisinternational.org/

Page 3724 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

35: end

36: end

37: return CCG = Πs /Π

38 end function

Fig. 4.17: Pseudocode for QoE-aware application mapping

System Testing for QoE-aware Application Mapping

A policy called Edgeward is implemented in the fog simulator and used as comparison to our proposed

solution. Edgeward placement strategy is inclined towards the deployment of application modules close to the

edge of the network. However, devices close to the edge of the network may not be computationally powerful

enough to host all operators of the application. In such a situation, the strategy iterates on fog devices towards

clouds and tries to place remaining operators on alternative devices.

This section is to ensure the validation testing is verifying every class in the iFogSim simulation to be accurate

and properly running. Table 4.10 shows some of the simulation parameters which include processing capacity

of fog devices, RAM of fog devices, network latency, fog device upstream and downstream capability, module

size and tuple size.

Table 4.10: Simulation parameters for QoE-aware application mapping testing

Parameter Value

Processing capacity of fog devices 500 - 4500 MIPS

RAM of fog devices 200 - 1800 Mb

Network latency 2 - 100 ms

Fog Device Upstream capability 1024000 Mbps

Fog Device Downstream capability 1024000 Mbps

Module Size 150 - 1100 MIPS

Tuple Size 100 – 3000 MIPS

Before the comparison between the proposed solutions with others’ work is carried out, few scenarios are

defined to have an accurate result. In the simulation, few aspects are compared which are the execution time,

total power consumption and total network usage. Different aspects will display different results which depend

on the scenario. Table 4.11 shows the 6 scenarios used to simulate the results of the proposed solution. All the

scenarios are using 1 application to run.

Table 4.11: Simulation scenarios used in the experiments

Scenario Fog Device Arrangement Application Module Arrangement

Scenario 1 Fog Device MIPS increases from end user

towards cloud

Module’s MIPS requirements increases from client

towards last module

Scenario 2 Fog Device MIPS increases from end user

towards cloud

Module’s MIPS requirements decreases from client

towards last module

Scenario 3 Fog Device MIPS increases from end user

towards cloud

Module’s MIPS requirements is in random order

between client and last module

Scenario 4 Fog Device MIPS is in random order

between end user and cloud

Module’s MIPS requirements increases from client

towards last module

Scenario 5 Fog Device MIPS is in random order

between end user and cloud

Module’s MIPS requirements decreases from client

towards last module

Scenario 6 Fog Device MIPS is in random order

between end user and cloud

Module’s MIPS requirements is in random order

between client and last module

http://www.rsisinternational.org/

Page 3725 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

Fig 4.18 and 4.19 shows the comparison of execution time and network usage between application mapping

with and without QoE awareness.

Fig. 4.18: Bar Chart for execution time for solution with and without QoE-aware and with proposed QoE-

aware application allocation with 1 and 5 application

Figure The bar chart in Figure 4.18 compares the execution times for three approaches: without QoE-aware,

with QoE-aware, and the proposed QoE-aware algorithm in 6 different scenarios. In the figure, the x-axis

shows the different scenarios while the y-axis represents the execution time in milliseconds. Besides on figure

4.18 where each solution’s execution time are significantly different, it is illustrated that the execution time of

the solution with QoE-aware is clearly shorter than without QoE-aware and proposed QoE-Aware. Hence, it

showed that the QoE-Aware can fulfil the user requirement on QoE (improve the user satisfaction) and at the

same time reduce the execution time. However, the proposed QoE-Aware application allocation is having high

execution time compared to previous QoE-aware solutions when executing 1 application. When we add the

number of application to 5, we can see that the execution time of purposed QoE-aware application allocation

are having significant reduction.

http://www.rsisinternational.org/

Page 3726 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

Fig. 4.19: Bar chart for total energy consumption of application with and without QoE-aware

Figure 4.19 shows the total energy consumption of application in 6 different scenarios by using QoE-aware

and without QoE-aware. In the figure, the x-axis represents the difference of scenarios while the y-axis shows

the total energy consumption. Based on the figure above, the total energy consumption of the application with

QoE-aware is slightly higher than without QoE-aware. This is because to fulfil the QoE requirement, the

energy consumption will increase to carry out the QoE-aware module placement. In short, although energy

consumption has not been improved, the QoE requirement is fulfilled.

http://www.rsisinternational.org/

Page 3727 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

Fig. 4.20: Bar chart for comparison of network usage for solution with and without QoE-aware

Figure 4.20 shows the total network usage of the solution with and without QoE-aware in 6 different scenarios.

In the figure, the x-axis represents the different types of scenarios while the y-axis shows the total network

usage. In the 6 scenarios, the results show that the solution with QoE-aware is better as it has the lower

network usage compared to the solution without QoE-aware. This is because the application did not run or use

the cloud but just using the fog computing so the network usage is much lower. It indicates that it can fulfil

the user requirements on QoE and at the same time reduce the network usage.

Energy-Aware Module Placement

The energy-aware module placement is the second process in phase one of the proposed solution, the objective

is to optimise the energy consumption. The reason for proposing the Energy-aware is to reduce the energy

consumption in the fog computing.

Analytical Modeling of Proposed Energy-aware Algorithm

To place the modules, a minimum energy requirement by a module was estimated then placed into the fog

device that can handle the modules.

Fig. 4.21: Processing of energy-aware module placement

http://www.rsisinternational.org/

Page 3728 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

Figure 4.21 shows that the process of placing the incoming module and above is the example of the process.

As the figure showed the module minimum energy needed and MIPS, there are 1,2,3.....n fog devices in which

are represented by different maximum energy and MIPS. At first, if the fog device is not enough maximum

energy and MIPS for the incoming module, the fog device will forward the module to the following fog device

and find a fog device which can fulfil the requirement of the module.

Fig. 4.22: Sequence diagram for energy-aware module placement

Figure 4.22 shows the sequence diagram for energy-aware module placement that illustrates the essential steps

in achieving energy saving in fog computing. The first step is to get the MIPS of the incoming module and

available fog devices which is the execution speed of the computer's CPU. Next is to get the current CPU

utilisation based on the two MIPS values. After that, minimum energy needed by that incoming module is

calculated. Once it is calculated, the MIPS and minimum energy of the module is compared with the available

energy of the fog device until a suitable fog device is found and eventually the module will be placed to that

fog device. Lastly, the DVFS will adjust the MIPS of the fog device into a value of used MIPS value.

Parameter Definition

Pmax Maximum power

 Ps Static power

 Pc Constants power

 U Utilisation

M mips The MIPS of the incoming module

F mips The available fog devices MIPS

Min Energy The get the minimum energy of incoming module

frequency The available frequency value

http://www.rsisinternational.org/

Page 3729 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

maxFre The max frequency number on HOST (in GHz)

 NCV Closest value of energy consumption fog devices

 AM Module

 ECE Estimated consumed energy after allocation

 AMIPS Adjusted MIPS =
𝐹𝑚𝑖𝑝𝑠

𝑀𝑎𝑥𝐹𝑟𝑒
 ×frequency [𝜒]

 NNAME Name of Fog Device

 VRNAME VRGame’s name

 C Client

 PDVFS Process of Dynamic voltage and frequency scaling

 U Utilisation

The following formula is applied to perform the energy-aware module placement.

𝑃𝑚𝑎𝑥 − 𝑃𝑠

100

(4.8)

Using 𝑃𝑚𝑎𝑥- 𝑃𝑠 and divided by 100, in order to obtain the constant power value.

𝑚𝑖𝑛𝐸𝑛𝑒𝑟𝑔𝑦 = (𝑃𝑠 + 𝑃𝑐) × 𝑈 × 100 (4.9)

In this formula, the formula above is used to do the calculation and get the estimated minimum energy of the

module.

𝑈 = 𝑀𝑖𝑛 (1 ,
𝑀𝑚𝑖𝑝𝑠

𝐹𝑚𝑖𝑝𝑠
)

(4.10)

The parameter 𝑈 shown above is the parameter put inside the Eq.4.9. The formula for the parameter 𝑈 is using

the function Math.min and compare the 1 and the result which is
𝑀𝑚𝑖𝑝𝑠

𝐹𝑚𝑖𝑝𝑠
 . In other word, the Eq.4.10 formula

was used to obtain the current utilisation of CPU from and applied by the minEnergy and compare with the

available energy of fog devices. The process will loop until the module is found the fog device which satisfy

the 𝑚𝑖𝑛𝐸𝑛𝑒𝑟𝑔𝑦 and 𝑀𝑚𝑖𝑝𝑠 of the module.

After the modules are placed to the fog devices, DVFS is performed in order to check whether the fog devices

still have available resources or not. If the fog device still has plenty of remaining MIPS, then DVFS will

adjust the MIPS of the fog device into a value that is close to the used MIPS value.

Fig. 4.23: Processing of Dynamic voltage and frequency scaling (DVFS)

http://www.rsisinternational.org/

Page 3730 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

DVFS will adjust the MIPS of the selected fog device. After that, the selected fog device MIPS is adjusted as

close as possible with the incoming module MIPS.

Algorithm 2 Energy-Aware Module Placement

1: function NCV (FMIPS, PMAX, NNAME)

2: for each NCV do

3: for each AM do

4: function U

5: if U(NCV) bigger than MMIPS(minEnergy) then

6: add MMIPS to NCV

7: return NNAME

8: deployed modules

9: end if

10: if (NNAME equal VRNAME AND NNAME equal C) then

11: add MMIPS to NCV

12: return NNAME

13: deployed modules

14: end if

15: end

16: end

17: for each NCV do

18: if NNAME include "cloudlet" then

19: PDVFS(NCV)

20: end if

21: end

Fig. 4.24: Pseudocode for energy-aware module placement

For any fog device that is closest, it will perform the module of estimating the consumed energy after

allocation. If the device is suitable for the module placement, then it will add the module to the device and

print the device name before the modules are deployed, else it will find the upper level of devices for suitable

module placement. If the device name equals m-VRGame and the module name is client, then it will add the

module to the device and print the device name before the modules are deployed.

Algorithm 3 DVFS (Dynamic Voltage and Frequency Scaling

1: used mips = fog device total MIPS – fog devices available MIPS

2: Device adjust total mips = used mips

Fig. 4.25: Pseudocode for DVFS

http://www.rsisinternational.org/

Page 3731 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

First, calculate the used mips by using the formula. After that, the fog device total MIPS is set to equal to the

used MIPS. For the scenarios used to test the result of the proposed algorithms, please refer to Table 4.13.

Table 4.13: Simulation parameters for energy efficiency application mapping testing

Parameter Value

Processing capacity of fog devices 2500 - 6500 MIPS

RAM of fog devices 200 - 1800 Mb

Network latency 2 - 100 ms

Fog Device Upstream capability 1024000 Mbps

Fog Device Downstream capability 1024000 Mbps

Module Size 150 - 1100 MIPS

Tuple Size 100 – 3000 MIPS

System Testing For Energy Efficiency

Fig. 4.26: Execution time of application with and without QoE & Energy-aware

Fig. 4.27: Execution time of application with and without Energy-aware only

http://www.rsisinternational.org/

Page 3732 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

Figure 4.26 shows the execution time of the application with and without QoE & Energy-aware in different

scenarios. In the figure, the x-axis represents the difference of scenarios while y-axis shows the execution time

in milliseconds. The result shows that the execution time of the application with QoE and Energy-aware is

shorter than without QoE and Energy-aware. As a result, the QoE and Energy-aware placement is able to fulfil

the QoE requirements and further reduce the execution time as compared to application without QoE and

Energy-aware.

Figure 4.27 shows the execution time of the application with and without Energy aware in different scenarios.

In the figure, the x-axis represents the 6 differences of scenarios; the y-axis shows the execution time in

milliseconds. As the graph above it can be clearly seen that the results of the execution time with Energy-

aware only is consistent throughout the 6 scenarios and has a lower execution time as compared to without

Energy-aware except for scenario 4 whereas the execution time without Energy-aware is inconsistent.

Overally, it can be concluded that by implementing the Energy-aware only can reduce the execution time too.

Fig. 4.28: Total energy consumption of application with and without QoE & Energy-aware

Fig. 4.29: Total energy consumption of application with and without Energy-aware only

http://www.rsisinternational.org/

Page 3733 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

Figure 4.28 shows the total energy consumption of application in 6 different scenarios by comparing QoE,

Energy-aware with without Energy-aware. In the figure, the x-axis represents the 6 different scenarios while

the y-axis shows the total energy consumption in a megajoule. Based on the figure above, the total energy

consumption of the application with QoE and Energy-aware is slightly higher than the application without

QoE and Energy-aware. This result stated that energy consumption is not reduced when at the same time

fulfilling the QoE requirement.

Figure 4.29 shows the total energy consumption of application in 6 different scenarios by comparing Energy-

aware only with without Energy-aware. In the figure, the x-axis represents the 6 different scenarios while the

y-axis shows the total energy consumption in a megajoule. According to the figure, it shows that the total

energy consumption is reduced.

Fig. 4.30: Total network usage of application with and without QoE & Energy-aware

Fig. 4.31: Total network usage of application with and without Energy-aware only

Figure 4.30 shows the results of total network usage of application with and without QoE, Energy-aware in 6

different scenarios. In scenario 3 and 5, the total network usage with QoE and Energy-aware is lower

compared to the network usage without QoE and Energy-aware. This result concluded that the total network

usage of applications with QoE and Energy-aware will be better compared to without QoE and Energy-aware.

Figure 4.31 shows the results of total network usage of applications with and without Energy-aware only in 6

different scenarios. In all scenarios, the total network usage with Energy-aware only is lower compared to the

http://www.rsisinternational.org/

Page 3734 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

network usage without Energy-aware. This result concluded that the total network usage of applications with

Energy-aware only will be better compared to without Energy-aware.

The result showed the parameter of the infrastructure and application that the team defined to run the

stimulation of the energy algorithm in iFogsim. According to the figure, the result of the Energy-aware

algorithm is shown. Through the result, the team examines the total network usage, cost of execution in cloud,

total energy consumption, energy consumed, etc. As a result, the team can use these results to compare the

proposed algorithm with other energy aware algorithms to determine whether the proposed algorithm has the

better capability and performance.

Proposed Offloading Algorithm

The result showed the parameter of the infrastructure and application that the team defined to run the

stimulation of the energy algorithm in iFogsim. According to the figure, the result of the Energy-aware

algorithm is shown. Through the result, the team examines the total network usage, cost of execution in cloud,

total energy consumption, energy consumed, etc. As a result, the team can use these results to compare the

proposed algorithm with other energy aware algorithms to determine whether the proposed algorithm has the

better capability and performance.

In phase two of the proposed solution, the proposed Offloading Algorithm is implemented. It is assumed that

the fog layer consists of large amounts of fog devices that can host the application for more than one instance.

First, the MIPS of the fog devices are determined. When a new task arrives at the fog device, the MIPS of the

new task from the application will be compared with the current MIPS of the fog device. If the current fog

device is already processing a task, this means the fog device will have higher MIPS compared to other fog

devices. Therefore, the system will offload the task to another fog device to prevent the fog device from being

fully scheduled and affecting the performance.

The distance between the fog device that is executing the job and the end user’s device determines the network

usage. For instance, the further the fog device is located from the user, the higher the network usage due to the

fact that the job has to travel through a lot of fog devices in order to reach the destination fog device that is

responsible for executing the job.

The total number of modules to execute determines the execution time. For instance, the higher the number of

modules to be executed on a fog device, the higher the execution time due to the fact that the job has to wait

for resources from the resource constrained fog device that are currently overloaded with modules.

Fig. 4.32: Sequence diagram for offloading

http://www.rsisinternational.org/

Page 3735 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

Figure 4.32 shows the sequence diagram for offloading. Firstly, the client will send a task execution request to

the edge node and the task execution request will be forwarded to the fog node. The maximum job load for

each fog node is determined. If the fog node is able to execute the task, the task will be scheduled for

execution, otherwise the task will be offloaded to another applicable fog node. There is also a situation that the

task cannot be executed within the fog environment and the task will be forwarded to cloud in this case. After

the task has been executed, all the results will be sent back to the client. Figure 4.33 shows the pseudocode of

the Computation Offloading algorithm.

Algorithm 4 Computation Offloading algorithm

1: function ResourceDiscovery(NF, FG, DEND, A)

2: for each FD in NF do

3: FOGmips = FOGmips + Dmips

4: end for

5: for each M in NM do

6: APPmips = APPmips + Mmips

7: end for

8: Initialize MMAP

9: NMP = QoEApplicationMapping(app)

10: NFC = EnergyModulePlacement(NF, FG, DEND)

11: while FOGmips > APPmips do

12: FOGmips= MapDeviceLoop(NFC, NMP, MMAP)

13: end while

14: end function

Fig. 4.33: Pseudocode of proposed Offloading algorithm

System Testing for Proposed Offloading Algorithm

The simulation parameters are similar with those in the system testing conducted for QoE-aware mapping

which includes processing capacity of fog devices, RAM of fog devices, network latency, fog device upstream

capability, fog device downstream capability, module size and tuple size. The simulation parameters are shown

in Table 4.14. Strategies with and without the proposed Offloading Algorithm are tested according to the

parameter value are shown in Table 4.14.

Table 4.14: Simulation Parameters for Computation Offloading algorithm testing

Parameter Value

Processing capacity of fog devices 2500 - 6500 MIPS

RAM of fog devices 200 - 1800 Mb

Network latency 2 - 100 ms

Fog Device Upstream capability 1024000 Mbps

Fog Device Downstream capability 1024000 Mbps

Module Size 150 - 1100 MIPS

Tuple Size 100 – 3000 MIPS

http://www.rsisinternational.org/

Page 3736 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

Fig. 4.34: Bar chart for comparison of execution time algorithm with and without QoE-aware & Energy-aware

& Offloading

Figure 4.34 shows the execution time of the solution with and without the proposed Offloading algorithm in 6

different scenarios. In the figure, the x-axis represents the difference of scenarios while the y-axis shows the

execution time in milliseconds. By looking at the chart, it is shown that there is much difference in the

execution time in different scenarios for both solutions, while it is clearly visible that the solution with

offloading has decreased the execution time.

Fig. 4.35: Energy consumption of algorithm with and without QoE & Energy-aware & Offloading

Figure 4.35 shows the total energy consumption of application in 6 different scenarios by using the proposed

offloading algorithm and without the proposed offloading algorithm. In the figure, the x-axis represents the

difference of scenarios while the y-axis shows the total energy consumption in megajoules. Based on the figure

http://www.rsisinternational.org/

Page 3737 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

above, the total energy consumption of the application with QoE, Energy-aware and proposed offloading

algorithm is equal to without computation offloading algorithm. This result already stated clearly that the

proposed offloading algorithm would increase the energy consumption.

Fig. 4.36: Bar chart for comparison of network usage for solution with and without enhanced Offloading

algorithm

Figure 4.36 shows the total network of the solution with and without QoE, Energy-aware and proposed

offloading algorithm in 6 different scenarios. In the figure, the x-axis represents the difference of scenarios

while the y-axis shows the total network usage in milliseconds. By looking at the chart, it is concluded that the

solution with the QoE, Energy-aware and proposed Offloading algorithm has lower network usage

Chapter Summary and Evaluation

In this chapter, the QoE-aware application mapping implemented has proven able to reduce the execution time

and network usage but will increase the energy consumption. The implementation of QoE-aware application

mapping with energy-aware module placement is able to further reduce the execution time and network usage

but energy consumption was not reduced. However, implementing energy-aware module placement only, the

execution time, energy consumption and network usage will be slightly reduced. Hence, QoE-aware and

energy-aware cannot be guaranteed at the same time. Furthermore, implementing QoE-aware application

mapping, energy-aware module placement with offloading algorithms will slightly reduce the network usage

but will increase in execution time and have no effect on the energy consumption. In short, the proposed

algorithms can fulfil the user QoE requirement and at the same time would not overload the fog devices.

Energy consumption can be reduced if solely implementing the energy-aware module placement.

Evaluation

In this chapter, the QoE-aware application mapping implemented has proven able to reduce the execution time

and network usage but will increase the energy consumption. The implementation of QoE-aware application

mapping with energy-aware module placement is able to further reduce the execution time and network usage

but energy consumption was not reduced. However, implementing energy-aware module placement only, the

execution time, energy consumption and network usage will be slightly reduced. Hence, QoE-aware and

energy-aware cannot be guaranteed at the same time. Furthermore, implementing QoE-aware application

mapping, energy-aware module placement with offloading algorithms will slightly reduce the network usage

but will increase in execution time and have no effect on the energy consumption. In short, the proposed

algorithms can fulfil the user QoE requirement and at the same time would not overload the fog devices.

Energy consumption can be reduced if solely implementing the energy-aware module placement.

http://www.rsisinternational.org/

Page 3738 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

This chapter will be focused on the proposed solution evaluation as well as the data collection technique used

to perform analysis on the result of the QoE, Energy-Aware and Offloading algorithm. Next, A statistical

model is used to ensure the accuracy and consistency of the data. Other than that, experiment setup and several

tools are used in order to analyse and evaluate the QoE, Energy-Aware and Offloading algorithm performance.

First and foremost, the evaluation of the network usage, consumption of power and execution time based on

the results obtained from the proposed QoE application allocation, QoE algorithm and Edgeward begins. Next,

the Energy-Aware algorithm will then be implemented into the proposed QoE application allocation and QoE

algorithm and the result will be tested and compared with the Edgeward. Thirdly, the enhanced algorithm will

be implemented into the QoE-Aware and Energy-Aware algorithm and compared with the Edgeward.

This chapter is organised as follows: Section 5.1 describes performance setup that includes the experiment

setup and components. Section 5.2 describes the data collection method that we used to collect the data.

Section 5.3 presents the statistical model that we used to ensure the accuracy of results collected. Section 5.4

discusses the performance analysis of proposed QoE-Aware algorithm, QoE-Aware algorithm added with

Energy-Aware algorithm and together with the proposed Offloading algorithm. Finally, Section 5.5 will be the

conclusion of the chapter.

Performance Setup

In order to evaluate the performance of the proposed algorithm, a predefined set of fog computing resource and

application module job parameters are used and shown in Table 5.1. A fog-cloud environment is modelled in a

way that it consists of a total number of nine fog devices in the fog layer. The unit used to measure the

processing power is the million instructions per second (MIPS). Next, as the MIPS of a fog device is high, then

the better or faster the fog device in handling and efficiently performing the tasks.

Table 5.1: A predefined set of fog computing resources and application module parameters

Parameter Value

Processing capacity of fog devices 350 - 1000 MIPS

Ram of fog devices 256 - 512 Mb

Network latency 2 - 100 ms

Fog Device Upstream capability 10000 - 1024000 Mbps

Fog Device Downstream capability 10000 - 1024000 Mbps

Module Size 100 - 600 MIPS

Tuple Size 1000 - 6000 MIPS

Several application modules are divided to enable those modules to be hosted by individual fog devices in the

fog layer for the purpose to process the job of the application modules. Besides that, five applications are

created and divided into four modules for each application to be hosted in the fog layer for the testing

simulation purposes. Next, 100 MIPS to 600 MIPS are the variation requirement for each application module.

The pseudocode for Edgeward module placement is presented in Figure 5.1:

Algorithm 1: Edgeward module placement

1: for p ∈ PATHS do Across all paths

2: placedModules ←{};

3: for Fog device d ∈ p do ⇾ leaf-to-root traversal

4: modulesToPlace ←{};

5: for module w ∈ app do ⇾ find modules ready for

placement on device d

http://www.rsisinternational.org/

Page 3739 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

6: if all predecessors of w are in placedModules then ⇾ if all

predecessors are placed

7: add w to modulesToPlace;

8: end

9: end

10: for module θ ∈ modulesToPlace do

11: if d already has instance of θ as θ’ then

12: if 𝐶𝑃𝑈𝜃
 𝑟𝑒𝑞

 ≥ 𝐶𝑃𝑈 𝑑
𝑎𝑣𝑎𝑖𝑙 then ⇾ device d does not have

CPU capacity to host θ

13: 𝜃 ←merge(θ, θ’);

14: 𝑓 ←parent(d);

15: while𝐶𝑃𝑈𝜃
 𝑟𝑒𝑞

 ≥ 𝐶𝑃𝑈 𝑓
𝑎𝑣𝑎𝑖𝑙do ⇾ find device north

of d for hosting θ

16: 𝑓 ←parent(𝑓);

17: end

18: Place 𝜃 on device 𝑓; ⇾ device d can host θ

19: add θ to placedModules;

20: end

21: else

22: Place θ on device d;

23: add θ to placedModules;

24: end

25: end

26: else if no device north of d has an instance of θ then

27: if 𝐶𝑃𝑈𝜃
 𝑟𝑒𝑞

 ≤ 𝐶𝑃𝑈 𝑑
𝑎𝑣𝑎𝑖𝑙 then ⇾ if not, will be handled by

subsequent iterations

28: Place θ on device d;

29: add θ to placedModules;

30: end

31: else

32： 𝑓 ←parent(d);

http://www.rsisinternational.org/

Page 3740 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

33: while 𝐶𝑃𝑈𝜃
 𝑟𝑒𝑞

 ≥ 𝐶𝑃𝑈 𝑓
𝑎𝑣𝑎𝑖𝑙do ⇾ find device north

of d for hosting θ

34: 𝑓 ←parent(𝑓);

35: end

36: Place 𝜃 on device 𝑓; ⇾ device f can host θ

37: add θ to placedModules;

38: end

39: end

40: end

41: end

42: end

Fig 5.1: Pseudocode for Edgeward Module Placement

Fig 5.2: Edgeward Module Placement Process

According to Figure 5.1 and 5.2, all the modules will be sent to the fog devices which are closest to the edge

network, also known as users’ network. When the module reaches the fog device, the fog device will check on

http://www.rsisinternational.org/

Page 3741 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

its own available resources in order to determine if the module could be placed on itself. The modules will be

always placed on the nearest fog devices until the fog devices are out of resources. If so, the rest of the

modules will be forwarded to the upper fog devices which are closer to the cloud. The process of the Edgeward

Module Placement will be iterated until there is no more module.

Fig 5.3: System topology of testing environment

Tree system topology in the testing environment is being shown in Figure 5.3. The model of the fog-cloud

environment consists of several components such as the applications, mobiles, fog devices, proxy server and

the cloud service. The reason for setting up the proxy server is to act as a gateway between the cloud and the

fog devices.

Data Collection Method

Proposed QoE-Aware application allocation, QoE-Aware and Edgeward algorithm has been run several times

of testing using the iFogSim simulation. The purpose of the testing is to obtain the data and results between the

Proposed QoE-Aware application allocation, QoE-Aware and Edgeward algorithm. Finally, the QoE-Aware,

Energy-Aware, and enhanced Offloading algorithm will be put together into a test and compared against the

Edgeward algorithm.

The fog devices and modules are arranged in a strategic manner where the arrangement is based on the

processing power of each of the fog devices and the processing power requirement for the modules.

The parameters obtained and collected are the execution time, energy consumption, and usage of the network

for the purpose to compare the performance of the scheduling algorithm application module. Last but not least,

total execution time of the application, energy consumption of the fog devices and the usage of the network are

being used as performance metrics for comparison purposes.

http://www.rsisinternational.org/

Page 3742 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

Statistical Model

The indicator used to measure the accuracy of the estimate is the confidence interval. Next, the function of the

confidence interval is to provide an accurate calculation on how close the measurement is to the initial

estimation. The equation used to calculate can be referred below.

𝑥 =
∑ 𝑥

𝑛
 Calculate Mean Formula

 Eg: 𝑥 = (587 + 30152 + 32583 + 1152116 + 1978420 + 763 + 38278 + 424569 + 1214947 +

2458161 + 698 + 31568 + 329580 + 1190417 2305892) / 15 = 11188731 / 15 = 745,915.4

(5.1)

The sum of all values obtained from the results and then divided by the total number of experiments n comes

the mean of the data. Besides that, confidence intervals can be used to calculate standard deviation through the

following equation.

𝑆 = √∑ (𝑥− 𝑥)
2

𝑛−1
 Calculate Sample Standard deviation Formula

(5.2)

𝑥 𝑥 𝑥-𝑥 (𝑥 − 𝑥)
2

587 745,915.4 -745,328.40 555514423846.56

30152 745,915.4 -715,763.40 512317244779.56

32583 745,915.4 -713,332.40 508843112889.76

1152116 745,915.4 406,200.60 164998927440.36

1978420 745,915.4 1,232,504.60 1519067589021.16

763 745,915.4 -745,152.40 555252099225.76

38278 745,915.4 -707,637.40 500750689878.76

424569 745,915.4 -321,346.40 103263508792.96

1214947 745,915.4 469,031.60 219990641798.56

2458161 745,915.4 1,712,245.60 2931784994719.36

698 745,915.4 -745,217.40 555348973262.76

31568 745,915.4 -714,347.40 510292207886.76

329580 745,915.4 -416,335.40 173335165293.16

1190417 745,915.4 444,501.60 197581672402.56

2305892 745,915.4 1,559,976.60 2433526992547.56

∑ (𝑥 − 𝑥)
2
 = Total = 11441868243785.60

Eg: S = Sqrt (Total / (n - 1))

= Sqrt (11441868243785.60 / (15 - 1))

= 904033.352884473

There are three values that are commonly used for confidence levels such as 90%, 95% and 99%. A decision

has been made where 95% are chosen as the desired confidence level. Then, the calculation of Margin of Error

can be calculated based on the following equation.

𝑀𝑎𝑟𝑔𝑖𝑛 𝑜𝑓 𝐸𝑟𝑟𝑜𝑟 = 𝑍𝛼
2

 ×
𝑆

√(𝑛)

(5.3)

http://www.rsisinternational.org/

Page 3743 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

Table 5.2: Notation for confidence interval

𝑥 Mean

𝑛 Sample size

𝜎 Population Standard deviation

S Sample Standard deviation

𝛼 Confidence level

𝑍 Value refer to z table

𝑍𝛼
2

 ×
𝜎

√(𝑛)

Margin Error

𝜏 T value

Fig 5.4: Z-table

Z_(α/2) stands for confidence coefficient. At the beginning, the confidence level α is 95%. Next, division of

the confidence level α value by 2 and obtain a value of 0.475. Hence, 0.475 is between the intersection of

column 0.06 and row 1.9 based on the Z-table in Figure 5.4 and it shows that the critical value is 1.9 + 0.06 =

1.96. Next, the following equation can be used to define the confidence interval.

𝐶𝐼 = 𝑥 ± 𝑍𝛼
2

 ×
𝑆

√(𝑛)

 Eg: 𝐶𝐼= 745,915.4 ±1.96 * (904033.352884473 /

Sqrt(15))

 = 745,915.4 ± 1.96 * 233420.408

 = 745,915.4 ± 457503.9997

 = (288411.4003 , 1203419.3997)

(5.4)

http://www.rsisinternational.org/

Page 3744 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

We also will use paired sample T-test in order to make sure that QoE-Aware algorithm and QoE-Aware with

Energy-Aware algorithm have significant differences with Edgeward algorithm. The equation 5.5 is used to

calculate the T value and P value.

𝜏 =
|𝑥1 − 𝑥2|

√
𝜎2

𝑛1
+

𝜎2

𝑛2

Eg: τ = |498132.13 - 608106.93| / Sqrt(489458.28522

/1+591935.34132/15)

(5.5)

= |-109974.8| / Sqrt (15971294198 + 23359163219)

= |-109974.8| / Sqrt (39330457417)

= |-109974.8| / 198319.0798

= 0.5545

After the calculation and computation of previous equations, the values and information obtained will be

recorded in tables in Section 5.4.

Performance Analysis

First and foremost, the results of the QoE-Aware algorithm such as the time execution and total network usage

are obtained and recorded from the simulation and then further compared with the Edgeward algorithm. Next,

the results for Energy-Aware with QoE-Aware from the simulation are recorded. In short, the QoE with

Energy-Aware algorithm is compared with the Edgeward algorithm. Finally, the QoE-Aware, Energy-Aware,

and enhanced Offloading algorithm will be tested and compared with the Edgeward algorithm.

In order to test the two algorithms which are the QoE-Aware with the Energy-Aware algorithm, we used

several testing scenarios in deploying the application modules to the fog layer. Below is the table 5.3 that

shows how the application modules are arranged in each test scenario.

Table 5.3 Test Scenario with their respective Application Module Arrangement

Scenario Application Module Arrangement

Scenario 1 Module’s MIPS requirements increase from client towards last module.

Scenario 2 Module’s MIPS requirements decrease from client towards last module.

Scenario 3 Module’s MIPS requirements are in random order between client and last module.

Table 5.4 Module’s MIPS used in each scenario

Scenario first module Second module Third module Fourth module

1 100 200 300 400

2 600 500 400 300

3 random (100-1100) random (100-1100) random (100-1100) random (100-1100)

In this testing, each application has 4 modules, and its MIPS will be used in accordance with Table 5.4. The

fog devices and modules are arranged solely based on its processing power requirement. The nearer the fog

devices to the cloud, the higher the processing power. In the first scenario, the modules’ MIPS are increased

correspondingly, and the modules are placed in the ascending order of modules’ MIPS from end users towards

the cloud. On the contrary, the modules' MIPS are decreased correspondingly, and the modules are placed in

the descending order of modules’ MIPS from end users towards the cloud. However, the order of placing the

modules and the modules’ MIPS are random in scenario 3. The main purpose of the test scenario is to evaluate

http://www.rsisinternational.org/

Page 3745 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

and test the proposed mechanism in those three different scenarios. Therefore, the total number of three

scenarios are formed and tested using the two algorithms.

Data Collection for performing QoE-Aware Algorithm

In this testing, each application has 4 modules, and its MIPS will be used in accordance with Table 5.4. The

fog devices and modules are arranged solely based on its processing power requirement. The nearer the fog

devices to the cloud, the higher the processing power. In the first scenario, the modules’ MIPS are increased

correspondingly, and the modules are placed in the ascending order of modules’ MIPS from end users towards

the cloud. On the contrary, the modules' MIPS are decreased correspondingly, and the modules are placed in

the descending order of modules’ MIPS from end users towards the cloud. However, the order of placing the

modules and the modules’ MIPS are random in scenario 3. The main purpose of the test scenario is to evaluate

and test the proposed mechanism in those three different scenarios. Therefore, the total number of three

scenarios are formed and tested using the two algorithms.

Table 5.5 shows the result of the Execution time of the application with the QoE-Aware algorithm and

Edgeward tested.

Table 5.5: Execution time for Edgeward and QoE-aware algorithm

No of apps Scenario QoE-Aware algorithm (ms) Edgeward (ms)

App 1 Scenario 1 1001 541

Scenario 2 936 493

Scenario 3 1350 535

App 2 Scenario 1 55805 77412

Scenario 2 56838 78089

Scenario 3 56396 75387

App 3 Scenario 1 658386 719644

Scenario 2 635081 738338

Scenario 3 671802 716679

App 4 Scenario 1 1124034 1254331

Scenario 2 1213788 1258754

Scenario 3 1203488 1234770

App 5 Scenario 1 862431 1685794

Scenario 2 825641 1364587

Scenario 3 856733 1685466

Total 8223710 10890820

Mean 548247.3333 726054.6667

SSD (Sample Standard Deviation) 473105.1415 649964.9823

CI (Margin of Error) 239424.2356 328927.6641

T Test 0.3989

P Value 0.0350

The table 5.5 clearly shows the algorithm with better execution time is the QoE-Aware algorithm in

comparison with Edgeward algorithm. Next, the mean value is recorded and obtained where the QoE-Aware

algorithm has the mean value of 548247.333 while the Edgeward algorithm has the mean value of 561727.2.

Hence, the mean value result indicates that QoE-Aware has lower value which means it performs better than

the Edgeward algorithm. Validation on the results are performed where T-test and P-value is calculated and

computed. Furthermore, a value of 0.9458 is obtained for the T-test value and it means that the two values do

not have significant difference while the P-value of 0.4585 is obtained for which it is greater than 0.05. The

QoE-aware algorithm is faster than the Edgeward algorithm for 2.40%.

http://www.rsisinternational.org/

Page 3746 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

Table 5.6: Execution time for QoE-aware algorithm and proposed QoE-Aware Application Allocation

No of apps Scenario QoE-Aware algorithm

(ms)

QoE-Aware Application Allocation

(ms)

App 1 Scenario 1 1001 944

Scenario 2 936 1178

Scenario 3 1350 855

App 2 Scenario 1 55805 59530

Scenario 2 56838 56161

Scenario 3 56396 55052

App 3 Scenario 1 658386 722175

Scenario 2 635081 740840

Scenario 3 671802 758792

App 4 Scenario 1 1124034 441877

Scenario 2 1213788 444978

Scenario 3 1203488 336939

App 5 Scenario 1 862431 576487

Scenario 2 825641 566645

Scenario 3 856733 554598

Total 8223710 5317051

Mean 548247.3333 354470.0667

SSD (Sample Standard Deviation) 473105.1415 297481.5092

CI (Margin of Error) 239424.2356 150546.4150

T Test 0.1901

P Value 0.0383

The table 5.6 clearly shows the algorithm with better execution time is the QoE-Aware Application Allocation

in comparison with QoE-Aware algorithm. Next, the mean value is recorded and obtained where the QoE-

Aware Application Allocation has the mean value of 354470.0667 while the QoE-Aware algorithm has the

mean value of 548247.333. Hence, the mean value result indicates that QoE-Aware Application Allocation has

lower value which means it performs better than the previous QoE-Aware algorithm. Validation on the results

are performed where T-test and P-value is calculated and computed. Furthermore, a value of 0.1901 is

obtained for the T-test value and it means that the two values do have statistically significant difference while

the P-value of 0.0191 is obtained for which it is smaller than 0.05. The QoE-Aware Application Allocation is

faster than the QoE-Aware algorithm for 35.34%.

Table 5.7: Total energy consumption for QoE-aware algorithm and Edgeward algorithm

No of apps Scenario QoE-Aware algorithm (mj) Edgeward (mj)

App 1 Scenario 1 7746133 7584735

Scenario 2 7746133 7584101

Scenario 3 7746133 7577828

App 2 Scenario 1 7818652 7776270

Scenario 2 7819135 7782798

Scenario 3 7817990 7776927

App 3 Scenario 1 7845183 7907466

Scenario 2 7854322 7918060

Scenario 3 7856753 7906792

App 4 Scenario 1 8036149 7936682

Scenario 2 8071645 7894012

Scenario 3 8036254 7914793

App 5 Scenario 1 8036273 7974861

http://www.rsisinternational.org/

Page 3747 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

Scenario 2 8020127 7915943

Scenario 3 8036154 7963174

Total 118487036 117414442

Mean 7899135.7333 7827629.4667

SSD (Sample Standard Deviation) 124200.4070 141544.1795

CI (Margin of Error) 62854.0781 71631.2380

T Test 0.1525

P Value 0.00235

Other than execution time, the next test will be testing the total consumption of energy for both QoE-Aware

algorithm and Edgeward algorithm and the final result is being shown in table 5.7. As usual, there are a total

number of 15 experiments performed that are accompanied by three different scenarios. Based on the table, the

mean value for both algorithms have obtained and recorded which is 7899135.7333 for QoE-Aware algorithm

and 7827629.4667 for Edgeward alone and the difference in the values indicates that the algorithm with the

minimal or better at energy consumption is the Edgeward. Lastly, T-test and P value is calculated and obtained

in order to validate the results where the T-test value shows the value of 0.1525 and P value shows the value of

0.00235 that was a significant difference between the Edgeward and QoE-Aware algorithm which is less than

0.05 because their total energy consumption readings are very close to each other.

Table 5.8: Total Energy consumption for QoE-aware algorithm and proposed QoE-Aware Application

Allocation

No of apps Scenario QoE-Aware algorithm

(mj)

QoE-Aware Application Allocation

(mj)

App 1 Scenario 1 7746133 7746133

Scenario 2 7746133 7746292

Scenario 3 7746133 7747089

App 2 Scenario 1 7818652 7585916

Scenario 2 7819135 7585878

Scenario 3 7817990 7588085

App 3 Scenario 1 7845183 7884869

Scenario 2 7854322 7858449

Scenario 3 7856753 7883155

App 4 Scenario 1 8036149 7846451

Scenario 2 8071645 7842035

Scenario 3 8036254 7783430

App 5 Scenario 1 8036273 7881800

Scenario 2 8020127 7878346

Scenario 3 8036154 7883676

Total 118487036 116741604

Mean 7899135.7333 7782773.6

SSD (Sample Standard Deviation) 124200.4070 114107.3111

CI (Margin of Error) 62854.0781 57746.2668

T Test 0.0124

P Value 0.0007

Other than execution time, the next test will be testing the total consumption of energy for both QoE-Aware

algorithm and proposed QoE-Aware Application Allocation and the final result is being shown in table 5.8. As

usual, there are a total number of 15 experiments performed that are accompanied by three different scenarios.

Based on the table, the mean value for both algorithms have obtained and recorded which is 7899135.7333 for

QoE-Aware algorithm and 7782773.6 for QoE-Aware Application Allocation and the difference in the values

indicates that the algorithm with the minimal or better at energy consumption is the QoE-Aware Application

Allocation. Lastly, T-test and P value is calculated and obtained in order to validate the results where the T-test

http://www.rsisinternational.org/

Page 3748 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

value shows the value of 0.0124 and P value shows the value of 0.0007 that was a significant difference

between the for QoE-Aware Application Allocation and QoE-Aware algorithm which is less than 0.5. As a

nutshell, the QoE-Aware Application Allocation has a 1.47% improvement compared to previous QoE-aware

algorithm.

Table 5.9 shows the result of the Total Network Usage of the application with the QoE-Aware algorithm and

Edgeward tested.

Table 5.9: Total Network Usage for Edgeward and QoE-aware algorithm

No of apps Scenario QoE-Aware algorithm (kb) Edgeward (kb)

App 1 Scenario 1 14927.8 58963

Scenario 2 14775.6 58983.4

Scenario 3 14893 59057.8

App 2 Scenario 1 54263.8 86524.4

Scenario 2 53079.8 87207

Scenario 3 53409.2 85800.8

App 3 Scenario 1 47488 63762.2

Scenario 2 47558.8 64187.4

Scenario 3 47613.6 63394.8

App 4 Scenario 1 42967.3 53735.6

Scenario 2 43625.1 53750.8

Scenario 3 42381.2 53935.8

App 5 Scenario 1 41368.7 53648.2

Scenario 2 41253.2 53104

Scenario 3 41527 53973.7

Total 601132.1 950028.9

Mean 40075.4733 63335.26

SSD (Sample Standard Deviation) 13768.6751 12615.4170

CI (Margin of Error) 6967.9110 6384.2819

T Test < 0.0001

P Value < 0.00001

Table 5.9 shows the results of total network usage of QoE-Aware algorithm and Edgeward for a total of 15

experiments with three different scenarios. The results show that the QoE-Aware algorithm had a better total

network usage compared to Edgeward. The mean of total network usage for QoE-Aware algorithm is

40075.4733 and for Edgeward is 63335.26. It is also observed that the total network usage for the QoE-Aware

algorithm is lower than Edgeward. For validating the results, a T-test is used and the P value is calculated. The

T-test shows < 0.0001 that indicates statistical significant difference between the two values, and it is found

that the P value is < 0.00001 which is < 0.05. The QoE-aware algorithm will have lesser network usage for

36.72% while compared to Edgeward algorithm.

Table 5.10: Total Network Usage for QoE-Aware Application Allocation and QoE-aware algorithm

No of apps Scenario QoE-Aware algorithm

(kb)

QoE-Aware Application Allocation

(kb)

App 1 Scenario 1 14927.8 14836.6

Scenario 2 14775.6 15031.4

Scenario 3 14893 14896

App 2 Scenario 1 54263.8 52745

Scenario 2 53079.8 52440.6

Scenario 3 53409.2 52529.2

App 3 Scenario 1 47488 46089.2

Scenario 2 47558.8 46094.6

http://www.rsisinternational.org/

Page 3749 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

Scenario 3 47613.6 34267.8

App 4 Scenario 1 42967.3 38458.6

Scenario 2 43625.1 38779.2

Scenario 3 42381.2 30703.6

App 5 Scenario 1 41368.7 35471.6

Scenario 2 41253.2 35630.4

Scenario 3 41527 29696.8

Total 601132.1 537670.6

Mean 40075.4733 35844.7067

SSD (Sample Standard Deviation) 13768.6751 13215.6608

CI (Margin of Error) 6967.9110 6688.0471

T Test 0.3979

P Value 0.0017

Table 5.10 shows the results of total network usage of QoE-Aware algorithm and QoE-Aware Application

Allocation for a total of 15 experiments with three different scenarios. The results show that the QoE-Aware

Application Allocation had a better total network usage compared to QoE-Aware algorithm. The mean of total

network usage for QoE-Aware algorithm is 40075.4733 and for QoE-Aware Application Allocation is

35844.7067. It is also observed that the total network usage for the QoE-Aware Application Allocation is

lower than QoE-Aware algorithm. For validating the results, a T-test is used and the P value is calculated. The

T-test shows 0.3979 that indicates significant difference between the two values, and it is found that the P

value is 0.0017 which is < 0.05. QoE-Aware Application Allocation will have lesser network usage for

10.56% while compared to QoE-Aware algorithm.

Table 5.11: Rating Gain for QoE-Aware Application Allocation and QoE-aware algorithm

No. of apps QoE-Aware Application Allocation (s) QoE-Aware Algorithm (s)

1 35.30

2 43.47

3 43.47

4 43.47

5 43.40

Total 209.11

Mean 41.822

SD

CI

T Test

P Value

The final results for resource gain for both algorithms have been recorded and obtained in table 5.11. The

testing happens with 15 experiment counts. The scale can be explained in a way that as the mean value of the

resource gain increases, the lower the cost induced. For instance, the QoE-Aware algorithm has the mean value

of 1.95 which is greater than the Edgeward algorithm with the mean value of 1.396. Last but not least,

validation of the result is performed by obtaining the T-test and P value. The T-test value shows the value of

3.2624 while the P value shows the value of 0.011486 that indicates a significant difference between the two

values (QoE-Aware Application Allocation & Qoe-aware Algorithm) which is lower than 0.05.

Data Collection for performing Energy-aware Algorithm

The comparison of QoE-Aware with Energy-Aware algorithm and Edgeward happens in this section where

execution time is the main focus. First of all, we put QoE-Aware with Energy-Aware algorithm into a test and

three parameters are used for the comparison purpose which are the total usage of the network, total

consumption of power and lastly the total execution time. Based on table 5.8, the table shows the final result

between QoE-Aware with Energy-Aware algorithm and Edgeward algorithm in terms of execution time for a

http://www.rsisinternational.org/

Page 3750 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

number of applications. Table 5.11 shows the result of the execution time for Edgeward, QoE-aware algorithm

and QoE-aware with Energy-aware algorithm

Execution time for Edgeward, QoE-aware algorithm and QoE-aware with Energy-aware algorithm

No of apps Scenario QoE-Aware

algorithm (ms)

Edgeward (ms) QoE-Aware with Energy-Aware

algorithm (ms)

App 1 Scenario 1 612 1100 410

Scenario 2 597 1009 377

Scenario 3 518 925 325

App 2 Scenario 1 25912 38170 17773

Scenario 2 27600 39337 18147

Scenario 3 26714 44569 18069

App 3 Scenario 1 601284 771059 218135

Scenario 2 417536 455422 219815

Scenario 3 312293 546385 222914

App 4 Scenario 1 1452502 869310 838680

Scenario 2 1135091 870367 835160

Scenario 3 1017145 886419 777496

App 5 Scenario 1 819166 1502511 821211

Scenario 2 815274 1527898 819568

Scenario 3 819738 1567123 818300

Total 7471982 9121604 5626380

Mean 498132.1333 608106.9333 375092

SSD (Sample Standard Deviation) 489458.2852 591935.3413 383333.5582

CI (Margin of Error) 247700.0682 299560.6139 193993.5463

T Test 0.2111550168

P Value 0.0039895919

After numerous counts of testing with different scenarios, it can be concluded that the algorithm with the best

execution time than another is the algorithm of QoE-Aware with Energy-Aware compared to the Edgeward

where the mean value for the combination of QoE-Aware with Energy-Aware algorithm is 375092.0, QoE-

Aware algorithm is 498132.1 while Edgeward algorithm alone is 608106.9. Hence, the lower the mean value

of an algorithm, the better the performance of the specific algorithm. In this case, the algorithm with better

performance is the QoE-Aware algorithm with the Energy-Aware algorithm. Last but not least, the validation

on the results has to be performed in order to test its accuracy by obtaining the values of T-test and P value.

For instance, the T-test value and P value obtained are 0.2112 and 0.0039896 respectively. Furthermore, a

value of 0.2112 is obtained for the T-test value and it means that the two values do not have significant

difference while a value of 0.0039896 is obtained for which it is more than 0.05. However, QoE-Aware with

the Energy-Aware algorithm still has 6.7834% faster than Edgeward.

Table 5.13: Total energy consumption for QoE-aware with Energy-aware algorithm and Edgeward algorithm

No of apps Scenario QoE-Aware

algorithm (mj)

Edgeward (mj) QoE-Aware with Energy-

Aware algorithm (mj)

App 1 Scenario 1 7746133 7647869 7747072

Scenario 2 7746292 7648675 7746486

Scenario 3 7747089 7724308 7747192

App 2 Scenario 1 7817429 7775449 7889599

Scenario 2 7818065 7780717 7916164

Scenario 3 7820236 7838358 7877409

App 3 Scenario 1 7852352 7752522 8201050

Scenario 2 7856059 7763205 8127141

Scenario 3 7845164 7855144 8018881

http://www.rsisinternational.org/

Page 3751 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

App 4 Scenario 1 8038228 7849260 8227633

Scenario 2 8002331 7831765 8114234

Scenario 3 7980015 7861455 8423569

App 5 Scenario 1 8087449 7893617 8312432

Scenario 2 8077500 7867069 8346382

Scenario 3 8048200 7919988 8275659

Total 118482542 117009401 120970903

Mean 7898836.133 7800626.733 8064726.867

SSD (Sample Standard Deviation) 126024.9493 82692.6721 232740.9889

CI (Margin of Error) 63777.42388 41848.26601 117783.1913

T Test 0.000287444981

P Value 0.00002361104868

Other than execution time, the next test will be testing the total consumption of energy for both QoE-Aware

with Energy-Aware algorithm and the Edgeward algorithm and the final result is being shown in table 5.12. As

usual, there are a total number of 15 experiments performed that are accompanied by three different scenarios.

Based on the table, the mean value for both algorithms have obtained and recorded which is 8064726.867 for

QoE-Aware with Energy-Aware algorithm and 7800626.733 for Edgeward alone and the difference in the

values indicates that the algorithm with the minimal or better at energy consumption is the QoE-Aware with

Energy-Aware. Lastly, T-test and P value is calculated and obtained in order to validate the results where the

T-test value shows the value of 0.00028744 and P value shows the value of 0.00002361 that indicates a

significant difference between the Edgeward and QoE-Aware with Energy-Aware algorithm which is less than

0.05. Table 5.13 shows the result of the total network usage of the application with the QoE-Aware with

Energy-Aware algorithm, QoE Algorithm and Edgeward tested.

Table 5.14: Total network usage for Edgeward, QoE-aware algorithm and QoE-aware with Energy-aware

algorithm

No of apps Scenario QoE-Aware

algorithm (kb)

Edgeward

(kb)

QoE-Aware with Energy-Aware

algorithm (kb)

App 1 Scenario 1 14964.0 58952.8 14851.8

Scenario 2 14727.6 59014.4 14820.2

Scenario 3 14985.6 58920.6 14821.4

App 2 Scenario 1 53648.2 86150.4 53269.2

Scenario 2 53833.0 85887.4 53678.8

Scenario 3 54187.6 86966.8 53923.4

App 3 Scenario 1 47649.2 63653.8 46725

Scenario 2 47857.0 63374.8 47127.6

Scenario 3 47389.0 64161.6 47308.2

App 4 Scenario 1 42884.0 54315.0 43056.6

Scenario 2 43152.4 54050.6 42955.4

Scenario 3 100898.8 54412.0 99285.4

App 5 Scenario 1 41952.2 50807.8 42116.2

Scenario 2 41978.8 50928.6 41781

Scenario 3 42131.0 51595.2 41937.8

Total 662238.4 943191.8 657658

Mean 44149.2 62879.45333 43843.86667

SSD (Sample Standard Deviation) 20918.06221 12924.2293 20579.9974

CI (Margin of Error) 10586.00006 6540.562448 10414.91566

T Test 0.005166914852

P Value 0.002607611467

http://www.rsisinternational.org/

Page 3752 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

The last parameter that is going to test is the network usage. Based on the table 5.14, the network usage of both

algorithms are obtained and recorded through 15 times of experimentation accompanied by three different

scenarios. The algorithm with the least network usage is the Edgeward with Energy-Aware algorithm where

the mean value of it is 43843.86667 while the Edgeward algorithm alone has the mean value of 62879.45333.

In conclusion, the lower the mean value of network usage, the less network usage of the algorithm. Last but

not least, validation on the result is performed by obtaining the T-test and P value. The T-test value shows

0.0051669 while the P value shows 0.0026076 which is less than 0.05. It indicates a significant difference in

the network usage between Edgeward and QoE-Aware with the Energy-Aware algorithm.

Data Collection for performing QoE-Aware Algorithm

The purpose of this section is to compare the algorithm between QoE-aware, Energy-aware placement with

Computation Offloading and Edgeward algorithm alone. In summary, QoE-Aware with Energy-Aware

algorithm is being combined with the Computation Offloading and compared against the Edgeward algorithm

in order to obtain results of execution time, consumption of energy and lastly the usage of network. Table 5.15

shows the execution time for both algorithms.

Table 5.15: Execution time for Edgeward and QoE-aware with Energy-aware Placement with Enhanced

Offloading algorithm

No of apps Scenario QoE-aware with Energy-aware Placement with

Offloading algorithm

Edgeward (ms)

App 1 Scenario 1 519 1100

Scenario 2 552 1009

Scenario 3 544 925

App 2 Scenario 1 38345 38170

Scenario 2 38120 39337

Scenario 3 38529 44569

App 3 Scenario 1 410714 771059

Scenario 2 412652 455422

Scenario 3 415638 546385

App 4 Scenario 1 458394 869310

Scenario 2 437355 870367

Scenario 3 428320 886419

App 5 Scenario 1 656356 1502511

Scenario 2 681074 1527898

Scenario 3 667788 1567123

Total 4684900 9121604

Mean 312326.6667 608106.9333

SSD (Sample Standard Deviation) 264356.4314 591935.3413

CI (Margin of Error) 133782.8127 299560.6139

T Test 0.08811894506

P Value 0.002418735049

The results based on table 5.15 have been obtained and recorded for further analysis and observation. The

testing happened with 15 experiment counts accompanied by three different scenarios. Based on the

observation of the result obtained, the algorithm with better or efficient execution time is the Edgeward

algorithm where it has the mean value of 312326.6667. Last but not least, validation on the results are

performed where the T-test and P value is calculated and obtained. For instance, the T-test value shows

0.088118 and P value shows 0.0024187 which is less than 0.05. There is a significant difference between the

Edgeward (ms) and QoE-aware and Energy-aware Placement with proposed offloading algorithm (ms) since P

value less than 0.05 because their execution time’s readings are very distinct to each other.

http://www.rsisinternational.org/

Page 3753 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

Table 5.16: Total energy consumption for Edgeward and QoE-aware with Energy-aware Placement with

Enhanced Offloading Algorithm

No of apps Scenario QoE-aware with Energy-aware Placement with

Offloading algorithm

Edgeward (mj)

App 1 Scenario 1 7746681 7647869

Scenario 2 7747023 7648675

Scenario 3 7747806 7724308

App 2 Scenario 1 7893655 7775449

Scenario 2 7905772 7780717

Scenario 3 7875590 7838358

App 3 Scenario 1 8177893 7752522

Scenario 2 8185514 7763205

Scenario 3 8010110 7855144

App 4 Scenario 1 8325028 7849260

Scenario 2 8167156 7831765

Scenario 3 8110226 7861455

App 5 Scenario 1 8447283 7893617

Scenario 2 8494543 7867069

Scenario 3 8668019 7919988

Total 121502299 117009401

Mean 8100153.267 7800626.733

SSD (Sample Standard Deviation) 290290.1853 82692.6721

CI (Margin of Error) 146907.103 41848.26601

T Test 0.0006385919742

P Value 0.00009457846557

Moreover, the next parameter that is going to be recorded and observed is the total consumption of energy for

both comparison algorithms. The testing happens with 15 experiment counts accompanied by three different

scenarios. In conclusion, the algorithm with least energy consumption is Edgeward algorithm with the mean

value of 7882526.467 compared to QoE-Aware, Energy-Aware Placement with Computation Offloading

Algorithm which has the mean value of 8100153.267. Last but not least, validation on the results are

performed by obtaining the T-test and P value. For instance, the T-test shows 0.00063859 while the P value

shows 0.000094578 which is less than 0.05 but their total energy consumption readings are very close to each

other.

http://www.rsisinternational.org/

Page 3754 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

Table 5.17: Total network usage for Edgeward and QoE-aware with Energy-aware Placement with Enhanced

Offloading Algorithm

No of apps Scenario QoE-aware with Energy-aware Placement with

Offloading algorithm

Edgeward (kb)

App 1 Scenario 1 14934.8 58952.8

Scenario 2 14905 59014.4

Scenario 3 14920.2 58920.6

App 2 Scenario 1 53715.2 86150.4

Scenario 2 53866.2 85887.4

Scenario 3 54234.2 86966.8

App 3 Scenario 1 47372.8 63653.8

Scenario 2 47380.2 63374.8

Scenario 3 47278.4 64161.6

App 4 Scenario 1 42692.4 54315.0

Scenario 2 43275.8 54050.6

Scenario 3 43986.2 54412.0

App 5 Scenario 1 26019 50807.8

Scenario 2 25813 50928.6

Scenario 3 25875.2 51595.2

Total 556268.6 943191.8

Mean 37084.57333 62879.45333

SSD (Sample Standard Deviation) 14962.89276 12924.2293

CI (Margin of Error) 7572.268502 6540.562448

T Test 0.00002400455056

P Value 0.0000004875142624

Next, table 5.17 recorded the results of the total network usage for both algorithms in comparison. The testing

happened with 15 experiment counts accompanied by 3 different scenarios. From the results obtained, it can be

said that the algorithm with least usage of network is the Edgeward algorithm alone with the mean value of

62879.45333 compared to QoE-Aware, Energy-Aware Placement with proposed Offloading algorithm with

the mean value of 37084.57333. Last but not least, validation on the results are performed by obtaining the T-

test and P value. For instance, T-test has the value of 0.000024 and P value has the value of 0.00000048 which

is less than 0.05 because their total network usage readings are very distinct to each other. QoE-aware, Energy-

aware and offloading has lower network usage than edgeward. This is because fog devices are having a load

limit which is used to avoid the fog devices being overloaded. When the modules exceed the fog device’s load

limit, the module will pass to another fog device. Therefore, the module would not only process solely on that

fog device. Instead, the modules will pass to other fog devices for the sake of avoiding overload of fog devices.

That’s the reason why offloading ends up decreasing the network usage.

http://www.rsisinternational.org/

Page 3755 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

Chapter Summary And Evaluation

This chapter summarises the collection of data and using those data obtained to evaluate the proposed

offloading algorithm with the comparison of existing QoE-aware algorithm, QoE-aware with energy-aware

algorithm, and QoE-aware and energy-aware placement with computation offloading algorithm. The

evaluation criteria including execution time, power consumption and network usage are used to compare

between the proposed algorithm and existing algorithm. Other than that, the parameter of resource gain is used

to compare the QoE-aware and Energy-aware Placement with the proposed Offloading Algorithm.

In short, the comparison of QoE-aware with proposed Offloading Algorithm against Edgeward algorithm and

QoE-aware and Energy-aware Placement with proposed Offloading Algorithm has come to a conclusion where

the proposed QoE-aware with proposed Offloading Algorithm has better a performance in terms of execution

time, total network usage and resource gain than Edgeward algorithm.

RESULT AND DISCUSSION

This chapter compares and evaluates the performance of proposed algorithms including QoE, energy and

offloading solutions. Execution Time, Total Energy consumption and Total Network Usage are used to

evaluate the performance of the proposed algorithm. The purpose is to analyse the main objective of this

research which is to improve data processing time and service based on QoE-Aware application mapping

policy.

First, the data and results are collected from iFogSim simulation simulator. The result was analysed based on

the data to show the impact of the proposed algorithm. In the experiments, the algorithm runs in the eclipse

workspace. The three parameters include Execution Time, Total Energy consumption and Total Network

Usage are captured. This chapter also focuses on the comparison of the results among Edgeward, QoE-aware

algorithm, QoE-aware with energy-aware algorithm, QoE-aware with energy-aware and QoE, Energy-aware

and offloading algorithm.

This chapter includes four sections. Section 6.1 presents the analysis of the result related to execution time;

Section 6.2 presents the analysis of the result regarding total energy consumption; whereas Section 6.3

presents the analysis of result in terms of total network usage. Lastly, Section 6.4 concludes the chapter by

highlighting the prominence of QoE-Aware offloading algorithm.

Analysis of Algorithms in term of Execution Time

Figure 6.1 shows the execution time of nine algorithms including Edgeward, QoE-aware algorithm, QoE-

aware with energy-aware algorithm, QoE-aware with energy-aware and offloading algorithm, the energy-

aware only, proposed QoE-aware application allocation, proposed QoE-aware with energy-aware algorithm,

and proposed QoE-aware with energy-aware and offloading algorithm and the energy-aware only testing in

proposed QoE-aware application allocation algorithm. On the y-axis represents the total execution time to

complete the application’s tasks whereas on the x-axis indicates different types of scenarios. The value for

each of the algorithms is using the result of execution time of five applications.

Figure 6.1: Execution time of algorithms in Scenarios

http://www.rsisinternational.org/

Page 3756 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

According to Figure 6.1, In scenario 1, 2 and 3 the QoE-Aware algorithm shows improved performance with

reduced execution times compared to the Edgeward algorithm, but it still lags behind the more advanced

approaches. The Proposed QoE-Aware Application Allocation achieves substantially lower execution times in

all scenarios, demonstrating its effectiveness in optimizing task distribution. The QoE-Aware with Energy-

Aware Placement with Offloading Algorithm further enhances performance by incorporating energy-efficient

strategies, resulting in shorter execution times compared to the basic QoE-Aware algorithm. Among all

algorithms, the Proposed QoE-Aware Application Allocation with Energy-Aware Placement and Offloading

stands out, achieving the lowest execution times across all scenarios, making it the most efficient. The Energy-

Aware Only algorithms, both with and without QoE-awareness, show moderate improvements over the

Edgeward and basic QoE-Aware algorithms. However, their execution times are slightly higher compared to

the combined strategies of QoE-awareness and energy-aware placement, highlighting the importance of

integrating both strategies for optimal performance.

Analysis of Algorithms in term of Total Energy Consumption

Figure 6.2 shows the energy consumption of nine algorithms including Edgeward, QoE-aware algorithm, QoE-

aware with energy-aware algorithm, QoE-aware with energy-aware and offloading algorithm, the energy-

aware only, proposed QoE-aware application allocation, proposed QoE-aware with energy-aware algorithm,

and proposed QoE-aware with energy-aware and offloading algorithm and the energy-aware only testing in

proposed QoE-aware application allocation algorithm. On the y-axis represents the total energy consumption

needed to complete the application’s tasks whereas on the x-axis indicates different types of scenarios. The

value for each of the algorithms is using the result of energy consumption of four applications. Based on the

figure 6.2, QoE-aware with Energy-aware with offloading algorithm have the highest energy consumption

whereas energy-aware algorithms use the lowest energy consumption.

Figure 6.2: Total energy consumption of algorithms in Scenarios

Based on the scenarios, Edgeward has the fourth highest energy consumption among the others. It is caused by

the lower layer of the fog devices which the closest to the end devices cannot process the task, it will pass to

another that above them, the middle and upper layer fog devices. Therefore, the characteristics of Edgeward

that transfer the modules from one to upper fog device will slightly increase the power consumption. Since the

QoE, Energy-Aware and offloading algorithms have an extra process which is offloading newly arrived tasks

so it has the highest energy consumption. The energy-aware only algorithm has the second lowest energy

consumption because it executes the modules with barely sufficient energy so the energy usage of the fog

devices that implement the energy-aware only algorithm will have the lowest energy consumption. The QoE-

http://www.rsisinternational.org/

Page 3757 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

aware algorithm has energy consumption that is higher than the Edgeward because the QoE-aware algorithm

has to fulfil the user requirements via many calculations which has increased the energy consumption. While

for our proposed QoE-aware application allocation are having the least of energy consumption in all scenario.

Analysis of Algorithms in term of Total Network U

Figure 6.3: Total network usage of algorithms in Scenarios

Figure 6.3 shows the total network usage of nine algorithms including Edgeward, QoE-aware algorithm, QoE-

aware with energy-aware algorithm, QoE-aware with energy-aware and offloading algorithm, the energy-

aware only, proposed QoE-aware application allocation, proposed QoE-aware with energy-aware algorithm,

and proposed QoE-aware with energy-aware and offloading algorithm and the energy-aware only testing in

proposed QoE-aware application allocation algorithm. On the y-axis represents the total network usage needed

to complete the application’s tasks whereas on the x-axis indicates different types of scenarios. The value for

each of the algorithms is using the result of network usage of five applications.

Based on the figure 6.3, the Edgeward algorithm consistently shows the highest network usage in all scenarios.

The QoE-Aware algorithm and Proposed QoE-Aware Application Allocation demonstrate lower network

usage, indicating better optimization of resources. Among all algorithms, the Proposed QoE-Aware

Application Allocation with Energy-Aware Placement and Offloading achieves efficient network utilization,

balancing task execution with minimal data transfer requirements. This efficiency makes it suitable for

applications requiring reduced network overhead. The Proposed QoE-Aware Application Allocation optimizes

network usage by dynamically distributing tasks based on Quality of Experience (QoE) metrics such as latency

and bandwidth. This ensures effective data transmission and minimizes unnecessary network usage.

CONCLUSION

In this chapter, the experimental result is discussed to show the performance of the QoE, Energy-Aware and

proposed algorithm on the basis of the execution time, total energy consumption and total network usage. The

experiments were investigated based on comparison among algorithms such as Edgeward, QoE-aware

algorithm, QoE-aware with energy-aware algorithm, QoE-aware with energy-aware and offloading algorithm ,

energy-aware only algorithm, proposed QoE-aware application allocation, proposed QoE-aware with energy-

aware algorithm, and proposed QoE-aware with energy-aware and offloading algorithm and the energy-aware

only testing in proposed QoE-aware application allocation algorithm.

In summary, the proposed QoE-aware application allocation performs better as compared to other algorithms.

Moreover, the analysis of the results shows that the performance of the proposed algorithm needs lesser

execution time and lesser total network usage than the existing QoE-aware with energy-aware and computation

offloading algorithm.

http://www.rsisinternational.org/

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

Page 3758 www.rsisinternational.org

REFERENCES

1. Abdali, T.-A. N., Hassan, R., Aman, A. H., & Nguyen, Q. N. (2021). Fog computing advancement:

Concept, architecture, applications, advantages, and open issues. IEEE Access, 9, 75961–75980.

https://doi.org/10.1109/access.2021.3081770

2. Abkenar, F.S., Ramezani, P., Iranmanesh, S., Murali, S., Chulerttiyawong, D., Wan, X., Jamalipour, A.

and Raad, R., 2022. A Survey on Mobility of Edge Computing Networks in IoT: State-of-the-Art,

Architectures, and Challenges. IEEE Communications Surveys & Tutorials.

3. Abofathi, Y., Anari, B., & Masdari, M. (2024). A learning automata based approach for module

placement in Fog computing environment. Expert Systems with Applications, 237, 121607.

https://doi.org/10.1016/j.eswa.2023.121607

4. Akyıldız, O., Kök, İ., Okay, F. Y., & Özdemir, S. (2023). A P4-assisted task offloading scheme for Fog

networks: An intelligent transportation system scenario. Internet of Things, 22, 100695.

https://doi.org/10.1016/j.iot.2023.100695

5. Amit Kumar Vishwakarma, Soni Chaurasia, Kumar, K., Yatindra Nath Singh, & Renu Chaurasia.

(2024). Internet of things technology, research, and challenges: a survey. Multimedia Tools and

Applications. https://doi.org/10.1007/s11042-024-19278-6

6. Avgeris, M, Spatharakis, D, Dechouniotis, D, Leivadeas, A, Karyotis, V & Papavassiliou, S 2022,

‘ENERDGE: Distributed Energy-Aware Resource Allocation at the Edge’, Sensors, vol. 22, no. 2.

7. Azizi, S, Shojafar, M, Abawajy, J & Buyya, R 2022, ‘Deadline-aware and energy-efficient IoT task

scheduling in fog computing systems: A semi-greedy approach’, Journal of Network and Computer

Applications, vol. 201.

8. Baranwal, G., Yadav, R. and Vidyarthi, D.P., 2020. QoE aware IoT application placement in fog

computing using modified-topsis. Mobile Networks and Applications, 25(5), pp.1816-1832.

9. Bartosz Kopras, Bartosz Bossy, Idzikowski, F., Pawel Kryszkiewicz, & Bogucka, H. (2022). Task

Allocation for Energy Optimization in Fog Computing Networks With Latency Constraints. IEEE

Transactions on Communications, 70(12), 8229–8243. https://doi.org/10.1109/tcomm.2022.3216645

10. Bichi, BY, Islam, S ul, Kademi, AM & Ahmad, I 2022, ‘An energy-aware application module for the

fog-based internet of military things’, Discover Internet of Things, vol. 2, no. 1.

11. Bikas, S., & Sayıt, M. (2024). Improving qoe with genetic algorithm-based path selection for MPTCP.

IEEE Transactions on Network and Service Management, 1–1.

https://doi.org/10.1109/tnsm.2024.3411104

12. Bridges, D., Pitiot, A., MacAskill, M.R. and Peirce, J.W., 2020. The timing mega-study: comparing a

range of experiment generators, both lab-based and online. PeerJ, 8, p.e9414.

13. Carvalho, M., & Macedo, D. F. (2023). Container scheduling in co-located environments using Qoe

Awareness. IEEE Transactions on Network and Service Management, 20(3), 3247–3260.

https://doi.org/10.1109/tnsm.2023.3244090

14. Chang, Z., Liu, L., Guo, X., Chen, T. and Ristaniemi, T. 2020. Dynamic Resource Allocation and

Computation Offloading for Edge Computing System. Artificial Intelligence Applications and

Innovations. AIAI 2020 IFIP WG 12.5 International Workshops, 585(1868-422X), pp.61–73.

doi:10.1007/978-3-030-49190-1_6

15. Charaf, L. A., Alihamidi, I., Deroussi, A., Saber, M., Ait Madi, A., & Addaim, A. (2021). Proposed

access control architecture based on fog computing for IOT Environments. 2021 7th International

Conference on Optimization and Applications (ICOA).

https://doi.org/10.1109/icoa51614.2021.9442623

16. Chen, M., Xiao, Y., Li, Q. and Chen, K.C., 2020, June. Minimizing age-of-information for fog

computing-supported vehicular networks with deep Q-learning. In ICC 2020-2020 IEEE International

Conference on Communications (ICC) (pp. 1-6). IEEE.

17. Chen, X., Zhou, Y., Yang, L., & Lv, L. (2020). User satisfaction oriented resource allocation for fog

computing: A mixed-task paradigm. IEEE Transactions on Communications, 68(10), 6470–6482.

https://doi.org/10.1109/tcomm.2020.3008705

18. Cheng, Z., Gao, Z., Liwang, M., Huang, L., Du, X. and Guizani, M. 2021. Intelligent Task Offloading

and Energy Allocation in the UAV-Aided Mobile Edge-Cloud Continuum. IEEE Network, [online]

35(5), pp.42–49. doi:10.1109/MNET.010.2100025.

http://www.rsisinternational.org/

Page 3759 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

19. Chuang, YT & Hsiang, CS 2022, ‘A popularity-aware and energy-efficient offloading mechanism in

fog computing’, Journal of Supercomputing, vol. 78, no. 18, pp. 19435–19458.

20. Costa, B., Bachiega Jr, J., de Carvalho, L.R. and Araujo, A.P., 2022. Orchestration in fog computing: A

comprehensive survey. ACM Computing Surveys (CSUR), 55(2), pp.1-34.

21. Delgado, C & Famaey, J 2022, ‘Optimal Energy-Aware Task Scheduling for Batteryless IoT Devices’,

IEEE Transactions on Emerging Topics in Computing, vol. 10, no. 3, pp. 1374–1387.

22. Ding, Y., Liu, C., Zhou, X., Liu, Z. and Tang, Z. 2020. A Code-Oriented Partitioning Computation

Offloading Strategy for Multiple Users and Multiple Mobile Edge Computing Servers. IEEE

Transactions on Industrial Informatics, [online] 16(7), pp.4800–4810. doi:10.1109/TII.2019.2951206.

23. Evangeline, P., Chandrakasan, B., M, V. S., & Palanisamy, A. (2023b). A Fault Tolerant Multimedia

Cloud Framework to Guarantee Quality of Experience (QoE) in Live Streaming.

https://doi.org/10.21203/rs.3.rs-3144416/v1

24. Feng, J., Liu, L., Hou, X., Pei, Q., & Wu, C. (2023). QoE fairness resource allocation in digital twin-

enabled wireless virtual reality systems. IEEE Journal on Selected Areas in Communications, 41(11),

3355-3367. https://doi.org/10.1109/JSAC.2023.3313195

25. Feng, W, Zhang, N, Lin, S, Li, S, Wang, Z, Ai, B & Zhong, Z 2022, ‘Energy-Efficient Collaborative

Offloading in NOMA-Enabled Fog Computing for Internet of Things’, IEEE Internet of Things Journal,

vol. 9, no. 15, pp. 13794–13807.

26. Fog Computing Market Size, Share | CAGR of 52.1%. (n.d.). Market.us. Retrieved June 21, 2024, from

https://market.us/report/fog-computing-market/

27. Ghafari, R., & Mansouri, N. (2024). A novel energy-based task scheduling in fog computing

environment: an improved artificial rabbits optimization approach. Cluster Computing.

https://doi.org/10.1007/s10586-024-04396-5

28. Ghanavati, S, Abawajy, J & Izadi, D 2022, ‘An Energy Aware Task Scheduling Model Using Ant-

Mating Optimization in Fog Computing Environment’, IEEE Transactions on Services Computing, vol.

15, no. 4, pp. 2007–2017.

29. Ghasemi, A. (2024). MOHHO: multi-objective Harris hawks optimization algorithm for service

placement in fog computing. The Journal of Supercomputing. https://doi.org/10.1007/s11227-024-

06389-y

30. Gupta, A., Bhadauria, H.S. and Singh, A., 2021. Load balancing based hyper heuristic algorithm for

cloud task scheduling. Journal of Ambient Intelligence and Humanized Computing, 12(6), pp.5845-

5852.

31. Hajam, S. S., & Sofi, S. A. (2023). Resource management in fog computing using greedy and semi-

greedy spider monkey optimization. Soft Computing, 27(24), 18697–18707.

https://doi.org/10.1007/s00500-023-09123-7

32. Hashemi, S. M., Sahafi, A., Rahmani, A. M., & Bohlouli, M. (2024). A new approach for service

activation management in fog computing using Cat Swarm Optimization algorithm. Computing.

https://doi.org/10.1007/s00607-024-01302-0

33. He, Z. and Peng, L., 2020. Evaluation Of Fog Topologies In Fog Planning For Iot Task Scheduling.

New York: Association for Computing Machinery, pp.2177-2180.

34. Hossam, H. S., Abdel-Galil, H., & Belal, M. (2024). An energy-aware module placement strategy in

fog-based healthcare monitoring systems. Cluster Computing. https://doi.org/10.1007/s10586-024-

04308-7

35. Hosseinzadeh, M., Shankar, K., Apostolaki, M., Ramachandran, J., Adams, S. E., Sekar, V., & Sinopoli,

B. (2023). CANE: A Cascade Control Approach for Network-Assisted Video QoE Management. IEEE

Transactions on Control Systems Technology, 31(6), 2543-2553.

https://doi.org/10.1109/TCST.2023.3267716

36. Hung, L.-H., Wu, C.-H., Tsai, C.-H., & Huang, H.-C. (2021). Migration-based load balance of virtual

machine servers in cloud computing by load prediction using genetic-based methods. IEEE Access, 9,

49760–49773. https://doi.org/10.1109/access.2021.3065170

37. Idrees, A. K., Ali-Yahiya, T., Idrees, S. K., & Couturier, R. (2024). EDaTAD: Energy-Aware Data

Transmission Approach with Decision-Making for Fog Computing-Based IoT Applications. Journal of

Network and Systems Management, 32(3). https://doi.org/10.1007/s10922-024-09828-6

http://www.rsisinternational.org/

Page 3760 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

38. Idrees, AK, Ali-Yahiya, T, Idrees, SK & Couturier, R 2022, ‘Energy-efficient fog computing-enabled

data transmission protocol in tactile internet-based applications’, in Proceedings of the ACM

Symposium on Applied Computing, Association for Computing Machinery, pp. 206–209.

39. Iftikhar, S., Ahmad, M. M. M., Tuli, S., Chowdhury, D., Xu, M., Gill, S. S., & Uhlig, S. (2023).

HunterPlus: AI based energy-efficient task scheduling for cloud–fog computing environments. Internet

of Things, 21, 100667. https://doi.org/10.1016/j.iot.2022.100667

40. Islam, S., Ahammed, M., Siddique, N. A., Roy, P., Razzaque, Md. A., Hassan, M. M., & Saleem, K.

(2024). A hyper-heuristic approach for quality of Experience Aware Service placement scheme in 5G

Mobile Edge Computing. IEEE Access, 12, 72746–72765.

https://doi.org/10.1109/access.2024.3403721Malik, U.M., Javed, M.A., Zeadally, S. and ul Islam, S.,

2021. Energy efficient fog computing for 6G enabled massive IoT: Recent trends and future

opportunities. IEEE Internet of Things Journal.

41. Jain, V., & Kumar, B. (2023). QoS-Aware Task Offloading in Fog Environment Using Multi-agent

Deep Reinforcement Learning. Journal of Network and Systems Management, 31(7).

https://doi.org/10.1007/s10922-022-09696-y

42. Khan, S. A., Abdullah, M., Iqbal, W., & Butt, M. A. (2022). Efficient job placement using two-way

offloading technique over fog-cloud architectures. Cluster Computing, 26(6), 3503–3521.

https://doi.org/10.1007/s10586-022-03750-9

43. Khan, S., Shah, I. A., Aurangzeb, K., Ahmad, S., Khan, J. A., & Anwar, M. S. (2024). Energy efficient

task scheduling using fault tolerance technique for IoT applications in FOG computing environment.

IEEE Internet of Things Journal, 1. https://doi.org/10.1109/jiot.2024.3403003

44. Laghari, A. A., Zhang, X., Shaikh, Z. A., Khan, A., Estrela, V. V., & Izadi, S. (2023). A review on

quality of experience (QoE) in cloud computing. Journal of Reliable Intelligent Environments.

https://doi.org/10.1007/s40860-023-00210-y

45. Li, H., Zhang, X., Li, H., Duan, X., & Xu, C. (2024). SLA-based task offloading for energy

consumption constrained workflows in fog computing. Future Generation Computer Systems, 156, 64–

76. https://doi.org/10.1016/j.future.2024.03.013

46. Liu, C., Liu, K., Guo, S., Xie, R., Lee, V.C.S. and Son, S.H. 2020. Adaptive Offloading for Time-

Critical Tasks in Heterogeneous Internet of Vehicles. IEEE Internet of Things Journal, 7(9), pp.7999–

8011. doi:10.1109/jiot.2020.2997720.

47. Liu, W., Li, C., Zheng, A., Zheng, Z., Zhang, Z., & Xiao, Y. (2023). FOG Computing Resource-

Scheduling Strategy in IoT based on Artificial Bee colony Algorithm. Electronics, 12(7), 1511.

https://doi.org/10.3390/electronics12071511

48. Liu, W., Zhang, H., Ding, H., Yu, Z., & Yuan, D. (2024). Qoe-aware collaborative edge caching and

computing for adaptive video streaming. IEEE Transactions on Wireless Communications, 23(6),

6453–6466. https://doi.org/10.1109/twc.2023.3331724

49. Lu, H., Gu, C., Luo, F., Ding, W., Zheng, S. and Shen, Y. 2020. Optimization of Task Offloading

Strategy for Mobile Edge Computing Based on Multi-Agent Deep Reinforcement Learning. IEEE

Access, [online] 8, pp.202573–202584. doi:10.1109/ACCESS.2020.3036416.

50. Luxner, T. (2023, May 18). Cloud computing stats: Flexera 2023 State of the cloud report. Flexera

Blog. https://www.flexera.com/blog/cloud/cloud-computing-trends-flexera-2023-state-of-the-cloud-

report/

51. Mahmud, R., Srirama, S. N., Ramamohanarao, K., & Buyya, R. 2020. Quality of Experience (QoE)-

aware placement of applications in Fog computing environments. Journal of Parallel and Distributed

Computing. doi:10.1016/j.jpdc.2018.03.004

52. Manzoor, A., Shah, M.A., Khattak, H.A., Din, I.U. and Khan, M.K., 2022. Multi‐tier authentication

schemes for fog computing: Architecture, security perspective, and challenges. International Journal of

Communication Systems, 35(12), p.e4033.

53. Mazur, I., Rak, J. and Nowicki, K., 2021. Ensuring the QoE-Related Fairness to Reduce the User

Abandonment Ratio. Sensors, 21(21), p.7050.

54. Mirzapour-Moshizi, M., & Sattari-Naeini, V. (2022). QOE aware Application Placement in FoG

environment using SAW Game Theory Method. Research Square (Research Square).

https://doi.org/10.21203/rs.3.rs-2133563/v1

http://www.rsisinternational.org/

Page 3761 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

55. Mohammadzadeh, A., Zarkesh, M. A., Shahmohamd, P. H., Akhavan, J., & Chhabra, A. (2023).

Energy-aware workflow scheduling in fog computing using a hybrid chaotic algorithm. the Journal of

Supercomputing/Journal of Supercomputing, 79(16), 18569–18604. https://doi.org/10.1007/s11227-

023-05330-z

56. Mordacchini, M, Ferrucci, L, Carlini, E, Kavalionak, H, Coppola, M & Dazzi, P 2022, Energy and QoE

aware Placement of Applications and Data at the Edge, accessed from <http://ceur-ws.org>.

57. Mostafa, N. (2020). A dynamic approach for consistency service in cloud and fog environment. 2020

Fifth International Conference on Fog and Mobile Edge Computing (FMEC).

https://doi.org/10.1109/fmec49853.2020.9144792

58. Naha, R, Garg, S, Battula, SK, Amin, MB & Georgakopoulos, D 2022, ‘Multiple linear regression-

based energy-aware resource allocation in the Fog computing environment’, Computer Networks, vol.

216.

59. Nashaat, H., Ahmed, E. and Rizk, R, 2020, IoT Application Placement Algorithm Based on Multi -

Dimensional QoE Prioritization Model in Fog Computing Environment. IEEE Access, 8, pp.111253–

111264. doi:10.1109/access.2020.3003249.

60. Nazari Bu-Ali, A, Sohrabi Bu-Ali, S, Mohammadi, R, Nasiri Bu-Ali, M & Mansoorizadeh Bu-Ali, M

2022, ‘IETIF: Intelligent Energy-aware Task Scheduling Technique in IoT/Fog Networks’, accessed

from <https://doi.org/10.21203/rs.3.rs-1454775/v1>.

61. POTU, N., BHUKYA, S., JATOTH, C., & PARVATANENI, P. (2022a). Quality-aware energy

efficient scheduling model for fog computing comprised IOT Network. Computers & Electrical

Engineering, 97, 107603. https://doi.org/10.1016/j.compeleceng.2021.107603

62. Rahimikhanghah, A., Tajkey, M., Rezazadeh, B., & Rahmani, A. M. (2021). Resource scheduling

methods in cloud and fog computing environments: A systematic literature review. Cluster Computing,

25(2), 911–945. https://doi.org/10.1007/s10586-021-03467-1

63. Raza, M.R., Varol, A. and Varol, N., 2020, June. Cloud and fog computing: A survey of the concept

and challenges. In 2020 8th International Symposium on Digital Forensics and Security (ISDFS) (pp.

1-6). IEEE.

64. Reddy, P. B., & Sudhakar, C. (2023). An osmotic approach-based dynamic deadline-aware task

offloading in edge–fog–cloud computing environment. the Journal of Supercomputing/Journal of

Supercomputing, 79(18), 20938–20960. https://doi.org/10.1007/s11227-023-05440-8

65. Saif, F. A., Latip, R., Hanapi, Z. M., Alrshah, M. A., & Kamarudin, S. (2023). Workload allocation

toward Energy Consumption-Delay Trade-Off in Cloud-Fog computing using Multi-Objective NPSO

Algorithm. IEEE Access, 11, 45393–45404. https://doi.org/10.1109/access.2023.3266822

66. Saovapakhiran, B., Naruephiphat, W., Charnsripinyo, C., Baydere, S. and Ozdemir, S., 2022. QoE-

Driven IoT Architecture: A Comprehensive Review on System and Resource Management. IEEE

Access.

67. Sellami, B, Hakiri, A, Yahia, B & Berthou, 2022, P Energy-Aware Task Scheduling and Offloading

using Deep Reinforcement Learning in SDN-enabled IoT Network,.

68. Shaifali P. Malukani , C. K. Bhensdadia, 2021. Fog Computing Algorithms: A Survey and Research

Opportunities, vol. 26, no. 2, pp. 139–149

69. Sheikh Sofla, M., Haghi Kashani, M., Mahdipour, E., & Faghih Mirzaee, R. (2021). Towards effective

offloading mechanisms in fog computing. Multimedia Tools and Applications, 81(2), 1997–2042.

https://doi.org/10.1007/s11042-021-11423-9

70. Shukla, P., & Pandey, S. (2024). MOTORS: multi-objective task offloading and resource scheduling

algorithm for heterogeneous fog-cloud computing scenario. the Journal of Supercomputing/Journal of

Supercomputing. https://doi.org/10.1007/s11227-024-06315-2

71. Singh, J., Singh, P., Hedabou, M., & Kumar, N. (2023). An efficient Machine Learning-Based resource

allocation scheme for SDN-Enabled FOG computing environment. IEEE Transactions on Vehicular

Technology, 72(6), 8004–8017. https://doi.org/10.1109/tvt.2023.3242585

72. Singh, N & Das, AK 2022, ‘Energy-efficient fuzzy data offloading for IoMT’, Computer Networks, vol.

213.

73. Sreenivasu Mirampalli, Satish Narayana Srirama, Rajeev Wankar, & Raghavendra Rao Chillarige.

(2022). Hierarchical fuzzy‐based Quality of Experience (QoE)‐aware application placement in fog

nodes. Software: Practice and Experience, 53(2), 263–282. https://doi.org/10.1002/spe.3147

http://www.rsisinternational.org/

Page 3762 www.rsisinternational.org

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS)

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025

74. Suaad Hadi Hassan Al-Taai, Huda Abbas Kanber, & Waleed Abood Mohammed al-Dulaimi. (2023).

The Importance of Using the Internet of Things in Education. International Journal of Emerging

Technologies in Learning (IJET), 18(01), 19–39. https://doi.org/10.3991/ijet.v18i01.35999

75. Sulimani, H., Sulimani, R., Ramezani, F., Naderpour, M., Huo, H., Jan, T., & Prasad, M. (2024).

HybOff: a Hybrid Offloading approach to improve load balancing in fog environments. Journal of

Cloud Computing, 13(1). https://doi.org/10.1186/s13677-024-00663-3

76. Sumona, S. T., Hasan, S. S., Tamzid, A. Y., Roy, P., Razzaque, M. A., & Mahmud, R. (2024). A Deep

Q-Learning Framework for Enhanced QoE and Energy Optimization in Fog Computing. Proceedings

of the 2024 20th International Conference on Distributed Computing in Smart Systems and the Internet

of Things (DCOSS-IoT). IEEE. https://doi.org/10.1109/DCOSS-IoT61029.2024.00104

77. Swarnakar, S., Banerjee, C., Basu, J., & Saha, D. (2023). A multi-agent-based VM migration for

dynamic load balancing in Cloud computing cloud environment. International Journal of Cloud

Applications and Computing, 13(1), 1–14. https://doi.org/10.4018/ijcac.320479

78. Tariq, H, Javed, MA, Alvi, AN, Hasanat, MHA, Khan, MB, Saudagar, AKJ & Alkhathami, M 2022,

‘AI-Enabled Energy-Efficient Fog Computing for Internet of Vehicles’, Journal of Sensors, vol. 2022.

79. Tu, Y., Chen, H., Yan, L. and Zhou, X. 2022. Task Offloading Based on LSTM Prediction and Deep

Reinforcement Learning for Efficient Edge Computing in IoT. Future Internet, 14(2), p.30.

doi:10.3390/fi14020030.

80. Varshney, S., Sandhu, R. and Gupta, P.K., 2021, October. QoE-based Resource Management of

Applications in the Fog Computing Environment using AHP Technique. In 2021 6th International

Conference on Signal Processing, Computing and Control (ISPCC) (pp. 669-673). IEEE.

81. Wang, B., Wang, C., Huang, W., Song, Y. and Qin, X. 2020. A Survey and Taxonomy on Task

Offloading for Edge-Cloud Computing. IEEE Access, [online] 8(2169-3536), pp.186080–186101.

doi:10.1109/ACCESS.2020.3029649.

82. Wang, J., Hu, J., Min, G., Zhan, W., Zomaya, A.Y. and Georgalas, N. 2022. Dependent Task

Offloading for Edge Computing based on Deep Reinforcement Learning. IEEE Transactions on

Computers, [online] 71(10), pp.2449–2461. doi:10.1109/TC.2021.3131040.

83. Wang, L., Li, C., Dai, W., Li, S., Zou, J. and Xiong, H., 2022. QoE-Driven Adaptive Streaming for

Point Clouds. IEEE Transactions on Multimedia.

84. Xu, J., Gu, B. and Tian, G., 2022. Review of agricultural IoT technology. Artificial Intelligence in

Agriculture.

85. Yadav, R., & Baranwal, G. (2023). A study on integration of trust management and application

placement in Fog Computing. 2023 International Conference on Electrical, Electronics,

Communication and Computers (ELEXCOM). https://doi.org/10.1109/elexcom58812.2023.10370242

86. Yan, L., Chen, H., Tu, Y. and Zhou, X. 2022. A Task Offloading Algorithm With Cloud Edge Jointly

Load Balance Optimization Based on Deep Reinforcement Learning for Unmanned Surface Vehicles.

IEEE Access, [online] 10, pp.16566–16576. doi:10.1109/ACCESS.2022.3150406.

87. Yang, M., Zhu, H., Wang, H., Koucheryavy, Y., Samouylov, K. and Qian, H. 2021. An Online

Learning Approach to Computation Offloading in Dynamic Fog Networks. IEEE Internet of Things

Journal, [online] 8(3), pp.1572–1584. doi:10.1109/JIOT.2020.3015522.

88. Yang, Z., Zhang, Y., & Tian, J. (2022). The effect of QoS and QoE requirements for designing task

processing controller based on fuzzy logic on IoT environments. Cluster Computing, 26(2), 1267–1283.

https://doi.org/10.1007/s10586-022-03586-3

89. Zhao, H., Xu, J., Li, P., Feng, W., Xu, X., & Yao, Y. (2024). Energy minimization partial task

offloading with joint dynamic voltage scaling and transmission power control in fog computing. IEEE

Internet of Things Journal, 11(6), 9740–9751. https://doi.org/10.1109/jiot.2023.3324196

90. Zhao, T., He, L., Huang, X. and Li, F., 2021. QoE-Driven Secure Video Transmission in Cloud-Edge

Collaborative Networks. IEEE Transactions on Vehicular Technology, 71(1), pp.681-696

http://www.rsisinternational.org/

	INTRODUCTION
	Background
	Advantages & contributions
	Research Motivation
	Statement of the problem
	Statement of the Objectives
	Scope of the Research
	Chapter summary & evaluation

	LITERATURE REVIEW
	Project Background
	Review result
	Closed to User
	The centralization of the Cloud data centers has caused some drawbacks in the Cloud-IoT integration. The difference is that in the Fog Computing environment, Fog services hosted on Fog Nodes (FNs), are not only toward the network edge but also distrib...
	Fog computing overcomes the latency issue in Cloud Computing by carrying out data analytics near the source where data is collected so that the response times become predictable. This is an important attribute for lots of IoT applications. Besides tha...
	The amount of data exchanged and transmitted with a Cloud data centre can be reduced as some portion of the data is communicated with nearby fog nodes which act as agents between the IoT and the Cloud. Therefore, the volume of Big Data can be efficien...
	Fog computing has the attribute of providing improved privacy and security in IoT applications and addressing security issues. This is because the fog node locally stores and analyzes the sensitive data stored and only allows the Cloud to access part ...

	System-level Paradigm
	The Examples of Application of Fog Computing
	Advantages and Limitations in Fog Computing
	QoE Placement, Energy Aware, Task Offloading
	Quality of experience (QoE) Review
	Energy Aware Review
	Offloading Review
	Summary of Related Work
	CONCLUSION

	Research Methodology and Problem Analysis
	Approaches to Research
	Energy Aware Review
	Formulate Research Problem
	Challenges of Developing QoE-aware Application Mapping Policy
	Define Research Objectives
	Proposed QoE-aware Application Mapping Policy
	Proposed Energy-aware Module Placement
	Proposed Offloading
	Summary

	Research Methodology and Problem Analysis (1)
	System Architecture Design
	QoE-aware Application Mapping
	Energy-Aware Module Placement
	Analytical Modeling of Proposed Energy-aware Algorithm
	To place the modules, a minimum energy requirement by a module was estimated then placed into the fog device that can handle the modules.
	System Testing For Energy Efficiency
	Fig. 4.26: Execution time of application with and without QoE & Energy-aware
	Fig. 4.27: Execution time of application with and without Energy-aware only
	Figure 4.26 shows the execution time of the application with and without QoE & Energy-aware in different scenarios. In the figure, the x-axis represents the difference of scenarios while y-axis shows the execution time in milliseconds. The result show...
	Figure 4.27 shows the execution time of the application with and without Energy aware in different scenarios. In the figure, the x-axis represents the 6 differences of scenarios; the y-axis shows the execution time in milliseconds. As the graph above ...
	Fig. 4.28: Total energy consumption of application with and without QoE & Energy-aware
	Fig. 4.29: Total energy consumption of application with and without Energy-aware only
	Figure 4.28 shows the total energy consumption of application in 6 different scenarios by comparing QoE, Energy-aware with without Energy-aware. In the figure, the x-axis represents the 6 different scenarios while the y-axis shows the total energy con...
	Figure 4.29 shows the total energy consumption of application in 6 different scenarios by comparing Energy-aware only with without Energy-aware. In the figure, the x-axis represents the 6 different scenarios while the y-axis shows the total energy con...
	Fig. 4.30: Total network usage of application with and without QoE & Energy-aware
	Fig. 4.31: Total network usage of application with and without Energy-aware only
	Figure 4.30 shows the results of total network usage of application with and without QoE, Energy-aware in 6 different scenarios. In scenario 3 and 5, the total network usage with QoE and Energy-aware is lower compared to the network usage without QoE ...
	Figure 4.31 shows the results of total network usage of applications with and without Energy-aware only in 6 different scenarios. In all scenarios, the total network usage with Energy-aware only is lower compared to the network usage without Energy-aw...
	The result showed the parameter of the infrastructure and application that the team defined to run the stimulation of the energy algorithm in iFogsim. According to the figure, the result of the Energy-aware algorithm is shown. Through the result, the ...

	Proposed Offloading Algorithm
	The result showed the parameter of the infrastructure and application that the team defined to run the stimulation of the energy algorithm in iFogsim. According to the figure, the result of the Energy-aware algorithm is shown. Through the result, the ...
	In phase two of the proposed solution, the proposed Offloading Algorithm is implemented. It is assumed that the fog layer consists of large amounts of fog devices that can host the application for more than one instance. First, the MIPS of the fog dev...
	The distance between the fog device that is executing the job and the end user’s device determines the network usage. For instance, the further the fog device is located from the user, the higher the network usage due to the fact that the job has to t...
	The total number of modules to execute determines the execution time. For instance, the higher the number of modules to be executed on a fog device, the higher the execution time due to the fact that the job has to wait for resources from the resource...
	Fig. 4.32: Sequence diagram for offloading
	Figure 4.32 shows the sequence diagram for offloading. Firstly, the client will send a task execution request to the edge node and the task execution request will be forwarded to the fog node. The maximum job load for each fog node is determined. If t...
	1: function ResourceDiscovery(NF, FG, DEND, A)
	2: for each FD in NF do
	3: FOGmips = FOGmips + Dmips
	4: end for
	5: for each M in NM do
	6: APPmips = APPmips + Mmips
	7: end for
	8: Initialize MMAP
	9: NMP = QoEApplicationMapping(app)
	10: NFC = EnergyModulePlacement(NF, FG, DEND)
	11: while FOGmips > APPmips do
	12: FOGmips= MapDeviceLoop(NFC, NMP, MMAP)
	13: end while
	14: end function
	Fig. 4.33: Pseudocode of proposed Offloading algorithm
	System Testing for Proposed Offloading Algorithm
	The simulation parameters are similar with those in the system testing conducted for QoE-aware mapping which includes processing capacity of fog devices, RAM of fog devices, network latency, fog device upstream capability, fog device downstream capabi...
	Table 4.14: Simulation Parameters for Computation Offloading algorithm testing
	Fig. 4.34: Bar chart for comparison of execution time algorithm with and without QoE-aware & Energy-aware & Offloading
	Figure 4.34 shows the execution time of the solution with and without the proposed Offloading algorithm in 6 different scenarios. In the figure, the x-axis represents the difference of scenarios while the y-axis shows the execution time in millisecond...
	Fig. 4.35: Energy consumption of algorithm with and without QoE & Energy-aware & Offloading
	Figure 4.35 shows the total energy consumption of application in 6 different scenarios by using the proposed offloading algorithm and without the proposed offloading algorithm. In the figure, the x-axis represents the difference of scenarios while the...
	Fig. 4.36: Bar chart for comparison of network usage for solution with and without enhanced Offloading algorithm
	Figure 4.36 shows the total network of the solution with and without QoE, Energy-aware and proposed offloading algorithm in 6 different scenarios. In the figure, the x-axis represents the difference of scenarios while the y-axis shows the total networ...
	Chapter Summary and Evaluation
	In this chapter, the QoE-aware application mapping implemented has proven able to reduce the execution time and network usage but will increase the energy consumption. The implementation of QoE-aware application mapping with energy-aware module placem...

	Evaluation
	In this chapter, the QoE-aware application mapping implemented has proven able to reduce the execution time and network usage but will increase the energy consumption. The implementation of QoE-aware application mapping with energy-aware module placem...
	Data Collection for performing QoE-Aware Algorithm

	RESULT AND DISCUSSION
	Analysis of Algorithms in term of Total Network U
	CONCLUSION
	REFERENCES

