
INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS) 

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025 

Page 3668 www.rsisinternational.org 

 

    

 

 

Improvement QoE-Driven Application Deployment and Energy 

Module Arrangement in Fog Environments with Offloading 

Low Choon Keat, Chew Zheng Hing, Ng Yen Phing and Tew Yiqi 

Tunku Abdul Rahman University Management and Technologies, Malaysia 

DOI: https://dx.doi.org/10.47772/IJRISS.2025.9010293 

Received: 13 January 2025; Accepted: 17 January 2025; Published: 20 February 2025 

ABSTRACT 

The Internet of Things (IoT) and other rapidly evolving technologies have profoundly affected daily life and 

created an exponential rise in the amount of data generated and processed. By extending cloud capabilities to 

the network edge, fog computing lowers latency and boosts the effectiveness of data processing. But it also 

brings with it new difficulties, especially regarding resource management and energy usage. This study starts 

with a thorough analysis of the current state of fog computing systems, pointing out weaknesses and areas for 

improvement. We suggest enhancing current QoE-Aware application allocation algorithm, energy-aware 

module allocation methods, and task-offloading approaches to maximize resource efficiency in light of our 

research. Experiments in simulated fog computing environments are used to assess these methods, with an 

emphasis on performance measures including energy-aware module allocation metrics, QoE-aware application 

allocation enhancement, and offloading applications developing. 

Keywords: Edge Computing, Fog Computing, Internet-of-Things, Internet-of-Things, Quality-of-Experience, 

Energy Comsumption 

INTRODUCTION 

Over the past few decades, technology has evolved at an unprecedented rate, reshaping the way we live and 

work. One of the most transformative advancements is the Internet of Things (IoT), which has become an 

essential part of our daily lives. “Thing” in IoT can refer to any item that possesses the necessary processing 

power, Internet connectivity, and network collection and transmission capabilities without aid or manual 

intervention. For example, the automobile equipped with sensors that can transmit a real-time alert about any 

malfunction, a human with an implanted health monitor, an animal farm with transponders in every animal, or 

anything in the world with an IP address and the capacity to transfer data over the internet can all be 

considered "things" in the context of the Internet of Things and all these devices equipped with advanced 

processors and ample memory which can help in handle multiple tasks efficiently. However, in order to 

provide the efficiency and stability that IoT promise, cloud computing plays a vital role. It can be shown the 

cloud computing are able to offer a robust infrastructure that supports the massive amounts of data generated 

by IoT devices and it provides us the scalable storage solutions and computational power, which are essential 

to help in processing and analyzing data in real-time. Thus, this capability ensures that IoT applications can 

function smoothly without the need for extensive on-premises hardware. 

Despite these advantages, cloud computing is not without its limitations, particularly in the context of Industry 

4.0. According to Potu et al. (2022), issues such as unstable internet connections and limited bandwidth pose 

significant obstacles to efficient data transmission, real-time processing, and analysis. Additionally, industrial 

sensors and controllers often require more computing power than cloud systems can directly support, and 

security and privacy concerns add further complications. 

To address these challenges, fog computing has emerged as a viable solution, bridging the gap between cloud 

servers and IoT devices. As noted by Rahimikhanghah et al., (2021), fog computing introduces an intermediate 

layer that brings computing and storage resources closer to the end users.  This proximity helps alleviate 

network congestion and reduce latency, providing more efficient data processing. However, fog computing is 
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not without its own challenges. For example, the process of managing a large number of fog nodes can be 

complex, and issues related to Quality of Experience (QoE), energy consumption, and task offloading need 

careful consideration for a lot of reasons. 

It can be demonstrated that a low Quality of Experience (QoE) will significantly contribute to user 

dissatisfaction. Therefore, the QoE-driven application deployment are aims to enhance the overall user 

experience by optimizing the placement of applications based on the capabilities of fog nodes and user 

requirements (Chen et al., 2020). By improving QoE, we can ensure that users receive timely and reliable 

services, which is essential for maintaining the efficiency and effectiveness of IoT systems. 

Next, energy consumption in fog computing is a significant concern, as the increased number of fog nodes can 

lead to higher energy usage. Optimizing energy consumption involves dynamically adjusting the processing 

power of fog nodes to match the demands of tasks, thereby reducing unnecessary energy expenditure. This not 

only helps in lowering operational costs but also contributes to environmental sustainability by minimizing the 

carbon footprint of computing activities. 

Besides, computation offloading plays a vital role in preventing the overloading of individual fog nodes by 

strategically redistributing tasks from heavily loaded nodes to those with available resources, computation 

offloading ensures a balanced workload across the network. This approach helps in maintaining the 

performance and reliability of fog computing systems, allowing for more efficient data processing and 

resource utilization (Sheikh Sofla et al., 2021). 

In response to these issues, research has focused on developing effective strategies for task scheduling and 

resource management in fog computing environments. By implementing QoE-driven application deployment 

policies, optimizing energy consumption, and employing computation offloading techniques, we can enhance 

various performance metrics such as latency, cost, and energy efficiency. These approaches aim to improve 

user service quality, minimize data processing times, and reduce network congestion. 

This project explores improvement of existing solutions to enhance fog computing performance, focusing on 

QoE-aware application deployment, energy-efficient module arrangement, and strategic computation 

offloading. The goal is to ensure a seamless and efficient integration of fog computing within IoT ecosystems, 

ultimately providing better services to end users. Lastly, this research aims to advance the capabilities of fog 

computing, making it a more reliable and effective component of the modern technological landscape by 

addressing these critical aspects. 

Background 

Fog computing, also known as edge computing, is a decentralized computing infrastructure that brings 

computational resources and services closer to the data sources, at the edge of the network. This approach 

addresses the limitations of traditional cloud computing, especially in scenarios requiring real-time data 

processing and low-latency responses. 

Then, fog computing architecture is generally divided into three layers. The first layer, known as the IoT 

Devices Layer (End Tier), includes various Internet of Things (IoT) devices such as sensors, actuators, and 

user devices. These devices generate and collect data from their environment, serving as the entry point for 

data into the fog computing system. The second layer, termed the Fog Layer, acts as an intermediary and 

consists of fog nodes or gateways equipped with storage, computing, and networking capabilities. These fog 

nodes perform local data processing, storage, and preliminary analysis. Examples of fog nodes include routers, 

switches, gateways, and even devices like surveillance cameras and micro data centers’. By handling tasks that 

require quick response times, the fog layer reduces the amount of data that needs to be sent to the cloud.  At 

the top of this architecture is the Cloud Layer, which consists of centralized cloud data centers’. This layer is 

responsible for extensive data storage, aggregation, and complex data analysis, leveraging the massive 

computational power and scalability of cloud resources (Charaf et al., 2021). 
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Fig. 1. Fog cloud Architecture 

Advantages & contributions  

Fog computing offers several significant advantages that can greatly enhance the performance and efficiency 

of various applications and systems (Abdali et al., 2021). 

One key advantage is its ability to reduce latency. By processing data closer to the source, fog computing 

minimizes the physical distance data must travel. This proximity enables quicker data processing and reduces 

latency, which is crucial for applications requiring real-time responses, such as online gaming, video 

conferencing, and VoIP. With data being processed locally, these applications can achieve faster response 

times and improved user experiences. 

Another important benefit is bandwidth efficiency. Local data processing at fog nodes means that less data 

needs to be transmitted to the cloud. This reduction in data transmission alleviates network congestion and 

optimizes bandwidth usage. As a result, network resources are used more efficiently, which is particularly 

beneficial in large-scale IoT deployments where vast amounts of data are generated. 

Enhanced security is also a significant advantage of fog computing. Since data is processed locally at fog 

nodes, the exposure of sensitive information during transmission to distant cloud servers is reduced. This 

localized processing can implement security measures closer to the data source, thereby enhancing the overall 

security of the system and reducing the risk of data breaches. 

Moreover, fog computing contributes to energy efficiency. Fog nodes can offload energy-intensive tasks from 

resource-constrained IoT devices. By handling these tasks locally, fog nodes help optimize energy 

consumption and can extend the battery life of IoT devices. This is particularly important for devices that 

operate in remote or inaccessible locations where battery replacement or recharging is challenging.  
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Therefore, the advantages of fog computing become even more apparent when considering its role in 

addressing the limitations of traditional cloud environments. The diagram in Figure 1.1 illustrates the growing 

trend of organizations embracing multi-cloud architectures. According to the Flexera 2023 State of the Cloud 

Report, 87% of organizations are adopting multi-cloud strategies, combining various cloud services to meet 

their diverse needs (Luxner, 2023). 

 

Fig. 1.2 Usage of Fog cloud in 2023 

This widespread adoption of multi-cloud architectures demonstrates the shift towards more flexible and 

efficient computing solutions. Multi-cloud environments typically involve a combination of public, private, 

and hybrid clouds, allowing organizations to optimize their operations by leveraging the strengths of each 

cloud type. In this context, fog computing plays a crucial role in enhancing the overall efficiency and 

performance of these multi-cloud setups. 

Research Motivation 

With the rapid expansion of the Internet of Things (IoT), the demand for cloud computing has surged, 

reflecting its integral role in handling the vast amounts of data generated by countless IoT devices. As more 

sensors and smart devices come online, they continuously collect and transmit data to cloud servers, enabling a 

wide range of applications from smart homes to industrial automation. However, this escalating demand has 

revealed significant challenges within cloud computing infrastructures (Swarnakar et al., 2023). Issues such as 

increased latency, network congestion, and bandwidth limitations have become critical concerns, highlighting 

the need for more efficient and responsive solutions. 

Fog computing has emerged as a promising approach to address these limitations by extending cloud 

capabilities to the edge of the network. This intermediary layer, situated between cloud data centers and IoT 

devices, brings computational resources closer to where data is generated. Current fog computing technologies 

leverage advanced techniques such as edge analytics, real-time data processing, and decentralized storage to 

mitigate the drawbacks of centralized cloud computing. For instance, the implementation of fog computing in 

smart grid systems has enhanced energy management by enabling real-time monitoring and control. 

Additionally, autonomous vehicles rely on fog computing to process data locally, reducing latency and 

improving safety. 

The adoption of fog computing is gaining momentum across various sectors. According to Figure 1.3, the 

global fog computing market is expected to grow from USD 162.3 million in 2022 to USD 9698.2 million by 

2032, driven by the increasing deployment of IoT devices including software and hardware (Fog Computing 

Market Size, Share | CAGR of 52.1%, n.d.). In healthcare, fog computing is utilized to support telemedicine 

services and patient monitoring systems, ensuring timely and reliable data transmission. Similarly, in smart 
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cities, fog computing facilitates efficient traffic management, environmental monitoring, and public safety 

initiatives. 

 

Fig. 1.3 Global Fog Computing market from year 2022-2032 

Our motivation for this research is to explore ways to enhance current fog computing technologies. By 

focusing on Quality of Experience (QoE)-driven application deployment and energy-efficient module 

arrangement, coupled with strategic task offloading, we aim to optimize the performance and sustainability of 

fog computing systems. The effective adoption of these techniques will assure fog computing service providers 

a competitive advantage and operational sustainability, allowing them to meet the increasing demands of 

modern applications. This will have a significant impact on various industries, including smart cities, 

healthcare, and industrial IoT, ensuring continuous, efficient, and tailored service delivery. 

By advancing fog computing technologies, we hope to contribute to the development of more resilient and 

adaptive systems that can better support the dynamic needs of today’s digital world. This research aims to not 

only improve technological capabilities but also deliver tangible benefits to society by enhancing the efficiency 

and effectiveness of critical services. 

Statement of the problem 

Fog computing, as an extension of cloud computing, promises to address some of the inherent limitations of 

the cloud, such as high latency and network congestion, by bringing data processing closer to the edge devices. 

This architecture, designed to bridge the gap between cloud data centers and edge devices, offers significant 

improvements for latency-sensitive Internet of Things (IoT) applications, including healthcare services and 

real-time analytics. Despite these advantages, fog computing present’s new challenges, particularly in terms of 

energy consumption and resource management (Mostafa, 2020). 

The primary problem addressed in this project is the high energy consumption and sustainability concerns 

associated with current fog computing architectures. With the growing proliferation of IoT devices and the 

increasing demand for real-time data processing, there is a critical need for energy-efficient scheduling and 

offloading strategies. Modern server hardware in fog environments often consumes a substantial amount of 

power, even when idle, contributing to increased operational costs and environmental impact. Moreover, the 

dynamic and distributed nature of fog computing complicates the allocation of computing resources, making it 

challenging to maintain high Quality of Experience (QoE) for end-users. 
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Statement of the Objectives 

Our project aims to develop advanced offloading strategies to maximize Quality of Experience (QoE) and 

energy efficiency in fog computing environments. Our objectives is to: 

1. To find the way of improve the existing QoE-aware application mapping policy for enhancing the user 

satisfaction.  

2. Design and implement energy-efficient module arrangement strategies in fog environments to 

minimize energy consumption. 

3. Develop and implement effective task offloading strategies in fog computing to optimize resource 

utilization and improve overall system performance. 

4. To evaluate the suggested solution and compare the work with the existing solutions. 

Scope of the Research  

This research focuses on enhancing the performance and efficiency of fog computing systems through the 

improvement of QoE-driven application deployment, energy-efficient module arrangement, and effective task 

offloading strategies. The scope of this study includes: 

1. Comprehensive Understanding: 

The research will start with a comprehensive review of existing solutions and approaches in fog computing and 

include an analysis of current challenges, limitations, and opportunities for improvement in QoE, energy 

efficiency, and task offloading for the basic understanding. 

2. Review of Existing Solutions:  

A thorough review of existing solutions will be conducted to identify gaps and areas for enhancement. This 

will involve analyzing the effectiveness and shortcomings of current approaches in addressing QoE, energy 

consumption, and resource management issues in fog computing. 

3. Development of Enhancement Mechanisms:  

Based on the review and analysis, the research will develop enhancement mechanisms for QoE-driven 

application deployment, energy-efficient module arrangement, and effective task offloading in fog computing 

systems. These mechanisms will aim to address the identified gaps and improve the overall performance and 

efficiency of fog computing systems. 

4. Experimental Evaluation: 

The proposed mechanisms will be evaluated through experiments in simulated fog computing environments. 

This will include implementing the mechanisms and conducting tests to assess their effectiveness in improving 

QoE, reducing energy consumption, and optimizing resource utilization. 

5. Performance Metrics: 

The evaluation will focus on performance metrics such as QoE improvement, energy consumption reduction, 

and system performance enhancement. These metrics will be used to quantify the impact of the proposed 

mechanisms and compare them with existing solutions. 

Chapter summary & evaluation 

Our research focuses on enhancing the performance and efficiency of fog computing systems through the 

improvement of QoE-driven application deployment, energy-efficient module arrangement, and effective task 

offloading strategies. The chapter begins by discussing the evolution of technology, particularly the Internet of 

Things (IoT), which has become integral to modern life. As the number of IoT devices grows, cloud 
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computing faces challenges such as increased latency and network congestion. Fog computing emerges as a 

solution, offering local processing and networking functions to reduce latency and improve data processing 

efficiency. 

The research motivation stems from the escalating demand for cloud computing due to the proliferation of IoT 

devices, highlighting the need for more efficient and responsive solutions. Fog computing addresses these 

challenges by extending cloud capabilities to the edge of the network. However, fog computing presents new 

challenges, particularly in terms of energy consumption and resource management. 

The primary problem addressed in this project is the high energy consumption and sustainability concerns 

associated with current fog computing architectures. This problem is exacerbated by the growing number of 

IoT devices and the increasing demand for real-time data processing. To address these challenges, the research 

aims to improve the existing QoE-aware application mapping policy, design energy-efficient module 

arrangement strategies, and develop effective task offloading strategies in fog computing. 

The scope of the research includes a comprehensive understanding of fog computing, a review of existing 

solutions, and the development of enhancement mechanisms. Experimental evaluation will be conducted to 

assess the effectiveness of the proposed strategies in improving QoE, reducing energy consumption, and 

optimizing resource utilization. Performance metrics such as QoE improvement and energy consumption 

reduction will be used to evaluate the proposed mechanisms. 

In summary, our research seeks to advance fog computing technologies to provide better services to end users 

and meet the increasing demands of modern applications. By enhancing QoE-driven application deployment, 

energy-efficient module arrangement, and effective task offloading strategies, we aim to optimize the 

performance and sustainability of fog computing systems. 

LITERATURE REVIEW 

There are several primary fog computing challenges such as placement, energy and offloading to be focused 

on and reviewed in this section. There are various relevant research papers that have been analyzed and 

reviewed for the purpose of achieving high efficiency in module placement, optimization of energy 

consumption, and great offloading performance in the past. Next, based on these various research papers, there 

are some obstacles and shortcomings found in the fog-cloud environment. In short, a new algorithm is able to 

be proposed for solving the obstacles and shortcomings.  

There are four sections in this chapter which include the project background, literature review, QoE placement, 

Energy-aware, task offloading and a conclusion. 

Project Background 

The technologies to be focused on in this chapter are the Internet of Things (IoT) in which is evolving at a 

rapid speed and is treated as a crucial source of big data. According to (He, 2020), IoT is embedded in a 

network and an example of an IoT object can include electronics hardware, software, sensors and network 

connectivity. IoT also further allows data to be gathered and interchanged by these physical objects. IoT 

consists of three crucial parts that play an important role in completing the whole picture of IoT. The parts of 

“things” (objects), the part of the computer system that uses data streaming to and from objects and the part of 

communication networks that is used to form a connection between them. Based on Xu et.al (2022), the rise of 

the IoT as the main connectivity medium for billions of industrial sensors, smart home appliances, and 

consumer wearable devices is paving the way for novel communication and computation paradigms that can 

assist in scaling such unexpected new communications. The realization of ICT is brought through algorithms 

and applications based on different aspects. 

Research by Raza (2020) stated that cloud computing is able to handle a large volume of storage without 

affecting the performance of the service. Besides, according to Yan et.al (2022), cloud computing has been 

recognized as a paradigm for big data storage, analytics and it offers better solutions for the implementation of 

http://www.rsisinternational.org/


Page 3675 www.rsisinternational.org 

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS) 

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025 

 

    

 

 

loT applications by developing its degree to manage things in a distributed environment. Therefore, IoT with 

cloud computing has emerged in industry and life. According to Chen. et.al., (2020), the combination of cloud 

computing and IoT enables widespread sensing services and powerful processing of sensing data streams. 

Significant advances in core technologies, processing, and communication algorithms are leading to new 

intelligent IoT services in our lives such as smart cities, smart industries, smart grids, smart healthcare, and so 

on to improve all aspects of life.  

On-demand self-service, widespread network access, resource pooling, quick elasticity, and measured service 

are attributes of the cloud. Despite its advantages (cost savings, efficiency, scalability, and reliability), cloud 

computing faces significant difficulties when dealing with large amounts of data. Additionally, because the 

cloud is a centralized computing paradigm, the majority of computations take place there directly. However, 

the current cloud computing services still contain limitations with large amounts of data transferring which 

will cause latency and limited resources to be computed at the same time. In other words, Cloud Computing 

has the limitations of ultra-low latency, high bandwidth, security, and real-time analytics. 

Thus, the survey by Costa et.al. (2022) stated that fog computing was proposed to overcome the limitations of 

cloud computing by bringing the computation closer to the edge of the network. The purpose of fog computing 

is to process what is to be done by the cloud in the fog layer to reduce the workload between the end devices 

and the cloud centre. Manzoor et.al. (2022) demonstrated that the fog nodes are located close to the end users 

and these nodes offer resources such as computing, storage, and networking to the applications operating under 

this infrastructure unlike cloud computing which has a centralized data centre to manage resources. It is thus 

very important to make reasonable resource scheduling decisions to ensure the quality of service and reduce 

resource waste. Fog computing provides advantages due to the geographically distributed fod nodes, real -time 

data processing and low latency. With these characteristics, fog computing is suitable to be deployed for 

applications that are very sensitive to delay. The applications can include smart cities, smart vehicles, smart 

traffic lights, etc. While the fog provides localization, enabling real time interaction and low latency at the 

network edge, the cloud provides centralization, the integration of which inspires applications that require the 

interplay and cooperation between the edge (fog) and the core (cloud), particularly for big data and the Internet 

of Things. Moreover, an emerging wave of Internet deployments, which is the Internet of Things (IoTs), 

requires mobility support and low latency and a new platform is needed to meet these requirements which is 

fog computing (Abkenar et.al., 2022). The coming trend in the world will be the Internet of Things (IoTs) that 

use the internet and smart devices in our daily life such as connected vehicles, smart grid, smart campuses, 

smart homes and wireless sensor and actuator networks. Therefore, our potential markets can be the users of 

IoTs and the users of cloud computing. 

Review result 

Closed to User 

The centralization of the Cloud data centers has caused some drawbacks in the Cloud-IoT integration. The 

difference is that in the Fog Computing environment, Fog services hosted on Fog Nodes (FNs), are not only 

toward the network edge but also distributed everywhere along the continuum from the Cloud-IoT. Any device 

can become a fog node as long as it has enough storage, computing, and networking resources to process 

advanced services. Therefore, fog nodes can be either (i) end devices with rich resources (for example, smart 

traffic lights, vehicles, video surveillance cameras and industrial controllers) (ii) edge nodes (for example, 

switches, wireless access points and cellular base stations) and (iii) specialized “core” network routers. 

Fog computing overcomes the latency issue in Cloud Computing by carrying out data analytics near the source 

where data is collected so that the response times become predictable. This is an important attribute for lots of 

IoT applications. Besides that, since the fog nodes are located closer to IoT devices, it helps to overcome the 

limitation of context awareness. This is because exploiting context information allows service improvement 

and resource utilization optimization.  

The amount of data exchanged and transmitted with a Cloud data centre can be reduced as some portion of the 

data is communicated with nearby fog nodes which act as agents between the IoT and the Cloud. Therefore, 

the volume of Big Data can be efficiently processed, thus reducing bandwidth consumption.  
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Fog computing has the attribute of providing improved privacy and security in IoT applications and addressing 

security issues. This is because the fog node locally stores and analyzes the sensitive data stored and only 

allows the Cloud to access part of the sensitive data. In this scenario, Fog will process data for privacy 

enforcement that is not applicable for resource-constrained IoT devices (such as the extraction and 

transmission of metadata, complex encryptions). Fog Computing helps to provide connection availability even 

in a Hostile environment. When IoT devices experience no connectivity or discontinuous connectivity to the 

Cloud, a nearby fog node is able to provide the IoT device with critical services. Sample Heading (Third 

Level). Only two levels of headings should be numbered. Lower level headings remain unnumbered; they are 

formatted as run-in headings. 

System-level Paradigm 

Fog Computing is a system-level paradigm, where a single resource-rich computer could not provide the 

overall service; this is because the service is decomposed and provided by different  fog nodes which process a 

specific service at the same time cooperating with other fog nodes (Shaifali et al, 2021). One of the guiding 

principles of the OpenFog Reference Architecture (OFRA) is the pyramid-like organisation as shown in Figure 

2.1. 

 

Fig. 2.1 Fog Computing pyramid-like hierarchical organization 

The lowest layer hierarchy contains the IoT (end devices or Things), in which rich-resources IoT might 

themselves act as fog nodes. The higher layers of the hierarchy numbers and composition depend on the actual 

application domain and purpose from the network edge up to the core. The Cloud is at the highest layer. Fog 

Computing is the expansion of Cloud in providing services within the same layer or among nodes belonging to 

different layers. The role of each fog node depends on its position in the pyramid.  

In short, fog computing can be said to consist of three main layers, IoT devices layer (End Tier), Fog layer 

(Fog Tier), and Cloud layer (Cloud Tier). The IoT devices layer is the layer where the sensors gather all the 

users’ requests from the application. The fog layer behaves as intermediary between IoT end devices layer and 

cloud layer and helps in QoE, efficiency energy consumption and calculation offloading. Fog nodes are 

devices with computing capability, storage and network connectivity such as switches, routers and video 

surveillance cameras. Cloud layer is the highest layer in this fog computing architecture which receives 

information from fog nodes and then conducts analysis. 
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The Examples of Application of Fog Computing 

Smart Utility Service 

The primary goal of smart utility services is to reduce costs and save time by saving energy. In order to enable 

analysis of data from the application at every minute for real time update and to address the difficulty in 

transmitting other data-heavy traffic caused by IoT applications, fog computing is advantageous. 

Smart Cities 

Traffic regulation is one of the most important uses of fog computing in smart cities. To gather information on 

how vehicles move on the road, sensors are embedded in the traffic lights and road barriers. Real -time data 

analysis made possible by fog computing enables the traffic signal to change quickly in response to the flow of 

traffic. 

Healthcare 

The evolution of wearables is introduced by technological progress and IoT. From a watch that tells the time 

and date to a smartwatch that does more than that by providing users with other data, such as their health 

status. The wearables are also used on hospital patients to continuously provide information on their vital 

signs, blood sugar levels, and other things. These devices benefit from fog computing because it guarantees 

timely data delivery in emergency situations. 

Video Surveillance 

In order to give video footage of public behaviour, surveillance cameras are typically mounted in shopping 

malls and other public areas. A large amount of data is gathered by surveillance cameras in the form of video. 

Fog computing is crucial in identifying anomalies in crowd dynamics and promptly alerting authorities to the 

issue in order to avoid lag. 

Autonomous Vehicles 

Autonomous vehicles rely on rapid data processing for navigation and safety. Fog nodes within the vehicle or 

nearby infrastructure process data from various sensors, enabling real-time decision-making. This minimizes 

latency and ensures the vehicle can respond swiftly to changing conditions.t the top, the Cloud layer includes 

centralized data centers and cloud servers with extensive computing and storage capabilities. It receives 

processed information from fog nodes for further analysis and long-term storage, focusing on large-scale data 

management and complex analytics. The hierarchical organization of fog computing allows efficient data 

management, reduces latency, and enhances real-time processing, making it a scalable and effective solution 

for handling the massive data generated by IoT devices. 

Advantages and Limitations in Fog Computing 

Fog computing utilises computing components at the network edge to serve as an intermediary layer between 

end devices and Cloud data centres. Fog nodes are computing components such as computers, Raspberry Pi, 

micro-data centres, and gateways used in fog environments.  

Delayed Consciousness 

Fog computing utilises computing components at the network edge to serve as an intermediary layer between 

end devices and Cloud data centres. Fog nodes are computing components such as computers, Raspberry Pi, 

micro-data centres, and gateways used in fog environments.  

Location Awareness  

Most IoT apps are context-aware, which means they prepare themselves based on the surrounding environment 

and other apps. Sending all of these context-aware application queries to the cloud isn't realistic (Bridges et.al., 

2020) but realistic if sent to a fog device. 
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Limitation of Fog computing 

The limitation of fog computing in QoE is that the different applications have different application placement 

policies in order to achieve a certain service level. Furthermore, QoE is frequently changing so proposing a 

variety of real-time requirements for fog environments. 

Introduction of fog computing does successfully solve the problem of cloud such as delay issue and location 

awareness issue. However, it greatly increases the energy consumption in the computing environment which 

contrasts with the “green computing” concept. 

Fog computing is facing difficulty in evenly distributing tasks to different fog devices. This issue will cause 

some of the fog devices to face overhead problems while some fog devices are having nothing to handle. 

As a result, solving the QoE, energy and offloading limitations in the fog computing are required. Hence, 

understanding what other people have researched on QoE, energy and offloading are important.  

QoE Placement, Energy Aware, Task Offloading 

Quality of experience (QoE) Review 

The QoE is primarily connected to the general customer satisfaction level with a vendor. Additionally, QoE 

can be applied to any customer-related service or business and is frequently used in information technology 

(IT) and consumer electronics. Nevertheless, the evolution of IoT devices has required the IoT devices to 

exchange data or information between themselves and also with the cloud data centre. The obstacle is that the 

cloud data centre or cloud storage does not have enough computational resources to support this huge amount 

of information, which will lead to latency issues. As a result of latency issues, the QoE delivered by cloud 

computing will be decreased (Saovapakhiran et.al., 2022). Hence, this is the reason why fog computing is 

necessary for extending cloud computing. 

Fog computing is a decentralized computing infrastructure, where the location of data, computers, storage, and 

applications is in between the data source (IoT devices) and the cloud. By doing so, fog computing could 

execute some workload of cloud computing because of its structure, which could decrease the length of 

transmission of data and the overall bandwidth needed (Bartosz Kopras et al., 2022). To fulfill QoE for cloud 

services, fog computing has been developed. Cloud storage is utilized in many real-world applications, such as 

cloud gaming, video and image processing which require weighty processing power to analyze and evaluate 

data in a limited time. Fog computing offers essential services such as processing data locally instead of in the 

cloud. Consequently, there will be a decrease in latency and network bandwidth as a huge amount of time-

sensitive data from applications or IoT devices is processed locally. 

In short, as justified by Mazur et al (2021), QoE is an important measurement of the level of customer 

satisfaction in order to retain them. QoE is an assessment of customers including expectations, perceptions, 

cognition, feelings and satisfaction when prescribing a service, application or product. Hence, it can be said 

that QoE assists fog computing in enhancing user satisfaction when using a service. 

QoE Related Work 

The placement policy of QoE-aware applications introduced by Mahmud et al (2020) contains various fuzzy 

logic-based methods that prioritize many application placement requests and categorize fog computational 

instances in line with user expectations and the instances' current status, respectively. To allow low latency 

response requirements in IoT applications, Cloud-like services will be provided by fog computing at the 

network edge. The reason that application deployment in fog is a burdensome problem is because of the nature 

of computing instances which are hierarchical, dispersed, and heterogeneous. Each of the fog nodes has 

distinctive network round-trip time, data processing speed, and resource accessibility which cause the 

difficulty in putting applications in fog. However, to meet certain service level targets, different application 

placement policies are mandatory in fog. Therefore, application placement in fog has utilized QoS, resource, 

and situation-aware features. Additionally, in the computer environment, the deployment of applications to 
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applicable fog instances is able to fully utilize the user QoE in resource usage, utility access, and service 

delivery (Laghari et al., 2023). Based on Mahmud et al (2020) experimental findings, this approach can 

significantly minimize data processing times, network congestion, resource costs, and service quality.  

By using modified TOPSIS, Baranwal et al. (2020) have come up with a lightweight QoE aware application 

placement policy in fog computing. According to Gaurav and his team's relative presumption and 

computational capabilities for the placement policy, this approach precedes the applications and fog instances. 

Applications with distinctive values of dependent metrics were found to receive the same precedence when 

fuzzy logic was deployed in previous research. Fog computational instances may have the same precedence 

even with numerous levels of computing competence. However, the downside of this approach is that it 

requires complex computing. The modified TOPSIS not only inherits all the strengths of the classical TOPSIS 

but also removes the rank reversal problems which successfully get rid of the downsides of the approach. For 

comparative research, simulation experiments indicate that the proposed model greatly lessens the time for 

application placement as compared to the state-of-the-art. In the meantime achieving the targeted resource 

usage, processing time, and reduced network congestion.  

Based on the Multi-Dimensional QoE (MD-QoE) model, H.Nashaat et al. (2020) have introduced an IoT 

application placement technique. Conventional methods are used to define the user QoE expectations of 

subjectively evaluating QoE, for instance, feedback-based approaches like Mean Opinion Scores (MOS) and 

Net Promoter Score (NPS). Nevertheless, the previous assessment methodologies might not be suitable for the 

IoT environment because they measure QoE subjectively. For example, real-time events frequently occur in 

the IoT, delivering feedback at each dedicated interval to govern QoE has led to an increase in network latency 

and slower application response times. To satisfy the QoE influence factors (IFs), resource distribution of 

application placement requests is required in fog environments. The approach has been divided into two main 

sections. In the first stage, divergent IoT application placement requests are prioritized based on the 3 main IFs 

which are (i) environment runtime context, (ii) application use, and (iii) user expectations. Feedback will be 

given through QoS violations. In the second stage, mapping and routing the request to the suitable fog node 

instance depends on its position, processing capability, and expected response time. In short, the proposed 

technique has enhanced overall system performance but will increase power consumption. 

A resource management strategy has been created in the Varshney et al. (2021) study that implements the AHP 

technique and controls the various Fog resources by assessing the values of chosen QoE criteria in the Fog 

computing environment. The suggested strategy takes into account an experimental study for analyzing the 

various outcomes. The suggested experiment's performance is assessed based on QoE metrics such as network 

bandwidth, typical latency, storage capacity, and processing speed. The fog computing environment can 

allocate resources to smart applications in accordance with their needs.  

In Zhao et .al (2021) paper, they proposed a QoE-driven cross-layer optimization scheme for secure video 

transmission over the backhaul links in cloud-edge networks. They developed a secure transmission model 

based on video encoding and edge caching. They formulated a joint optimization problem of video encoding 

parameters and an edge caching strategy to improve QoE. Then, a near-optimal algorithm was designed to 

solve the joint optimization problem. Furthermore, a greedy algorithm with low complexity to obtain the 

suboptimal solution was proposed too and has proven to improve video encoding quality and reduce 

transmission latency and be more robust for caching capacity and could ensure secure transmission for more 

videos with the limited caching capacity of edge caching servers.  

Wang et.al (2022) have proposed a QoE metric that integrates the bitrate of a tile’s representation, the 

relationship between the tile and the user's viewport, the user's distance to the tile, the occlusion between tiles 

and the resolution of the display screen based on perspective projection in projective geometry. Furthermore, 

they have developed a greedy-based rate adaptation algorithm. They have demonstrated that their proposed 

solution has near-optimal performance with low execution time, has outperformed existing tile-based 

algorithms and non-tiling schemes in transmission efficiency and achieved the highest peak-signal-to-noise 

ratio (PSNR) under limited bandwidth, whereas other non-tiling approaches held the highest PSNR for a 

sufficiently large bandwidth.   
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Saovapakhiran et.al. (2022) reviewed QoE metrics and QoE optimization objectives for various kinds of 

problems such as prediction models, optimization and control, and resource management respectively. The 

paper categorized emerging IoT architecture problems as QoE-aware offloading problems, QoE-aware 

placement problems and QoE-aware data caching problems. Their paper discovered that ML-based approaches 

were used to predict QoE and solve resource allocation problems which requires a novel concept of AI-based 

layers for managing QoE. The drawback of the proposed model based on QoE is that it does not take 

completion time into consideration. 

Sreenivasu Mirampalli et al. (2022) proposed a resource allocation strategy for fog-enabled mission-critical 

IoT applications using the Hungarian Maximization Algorithm and a fuzzy-based approach. This method 

optimizes the matching of IoT applications to fog instances, maximizing user Quality of Experience (QoE) 

while meeting Quality of Service (QoS) constraints. The findings indicate that this approach significantly 

reduces data processing times, network congestion, and resource costs, enhancing overall service quality.  

According to Mirzapour-Moshizi and Sattari-Naeini (2022) paper, they proposed a QoE-aware application 

placement framework for fog computing environments using the Simple Additive Weighting (SAW) method 

combined with game theory. This framework aims to optimize the placement of IoT applications by 

considering user expectations and various QoE parameters, such as processing speed, proximity to gateways, 

and cost. The proposed approach divides the fog environment into multiple domains, each managed by a 

gateway that oversees several nodes. Using game theory and the SAW method, the framework determines the 

most suitable domain to handle each application, and then applies the Particle Swarm Optimization (PSO) 

algorithm to select the most appropriate node within that domain. Simulations conducted in iFogSim show that 

the framework significantly reduces service response times compared to existing methods, particularly for real -

time applications, while also improving resource utilization and reducing network congestion. By integrating 

user expectations into the placement process, the framework enhances the overall Quality of Experience (QoE) 

for users. The study concludes that the proposed method outperforms traditional approaches in terms of 

performance, response times, and resource efficiency, making it a robust solution for IoT application 

placement in fog environments. Future research will focus on incorporating mobility and additional parameters 

to further enhance the framework's performance in more dynamic settings. 

Z. Yang et al. (2022) presents a QoE-aware task processing controller based on fuzzy logic to optimize task 

allocation in IoT edge computing systems. This mechanism efficiently manages task distribution by 

considering multiple QoE and QoS parameters, such as network congestion, resource availability, and service 

quality, to prioritize and allocate tasks effectively. The controller uses fuzzy logic to make informed decisions 

about task placement, enhancing resource utilization and network performance. Simulations conducted in 

iFog-Sim show that the proposed mechanism significantly reduces network congestion, minimizes latency, and 

lowers energy consumption at the IoT network edge, making it more efficient for handling tasks with limited 

resources. Overall, the fuzzy-based approach outperforms traditional methods, proving to be an effective 

solution for managing task allocation in IoT environments. 

Yadav & Baranwal (2023) introduced a novel QoE-aware mechanism based on fuzzy logic for task allocation 

in IoT edge computing systems. The research focuses on optimizing network usage, reducing latency, and 

lowering energy consumption by considering multiple QoE parameters in task allocation decisions. The 

proposed fuzzy task allocation mechanism effectively improves resource management and network 

performance in IoT edge environments. 

Carvalho & Macedo (2023) propose a QoE-aware container scheduling algorithm that extends the Kubernetes 

scheduler to improve user experience in cloud environments. The key contribution of their research is the use 

of deep learning models, specifically Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU), to 

estimate the Quality of Experience (QoE) that the cloud can offer. The proposed algorithm monitors cloud 

resource usage and employs these estimations to schedule and reschedule containers based on QoE objectives. 

Experimental results demonstrate that their scheduler improves average QoE by at least 61.5% compared to 

other schedulers, and the proposed rescheduling method enhances QoE by up to 119%. The evaluation 

considered two QoE-aware applications: live classroom and video on demand. This study highlights the 

significant impact of integrating QoE objectives into container scheduling to enhance user experience.  
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Evangeline et al. (2023) proposed a fault-tolerant multimedia cloud framework to ensure Quality of 

Experience (QoE) in live streaming. The key contribution of the research is to address issues related to 

resource allocation, bandwidth sharing, and fault tolerance in a cloud multimedia environment. The proposed 

framework incorporates novel algorithms for efficient queuing, resource allocation, bandwidth allocation, and 

fault tolerance to guarantee the desired level of QoE. Their findings suggest that the proposed approach 

significantly improves the prediction accuracy and fault tolerance in live streaming applications.  

Feng et al., (2023) propose a framework that utilizes digital twin technology to optimize resource allocation, 

including model selection, transmit power, computation time, and GPU-cycle frequency. The study 

specifically employs the generalized fractional programming theory, Lagrangian dual decomposition, and an 

adaptive modified harmony search algorithm to solve these optimization problems, ensuring fairness in QoE 

across users. The results show that these algorithms effectively balance the QoE of worst -case clients, 

improving overall system performance Jain & Kumar, (2023) used to optimize Quality of Experience (QoE) by 

addressing resource utilization and task offloading in fog computing environments. The paper formulates the 

task offloading problem as a Markov Decision Process (MDP) and employs Deep Reinforcement Learning 

(DRL) methods like Deep Q-Network (DQN), Deep Deterministic Policy Gradient (DDPG), and Soft Actor-

Critic (SAC). These methods aim to maximize resource utility, balance service latency, energy consumption, 

and ensure task deadlines and priorities are met, thus improving QoE in fog environments.  

Hosseinzadeh et al., (2023) discusses the use of control-theoretic approaches, specifically model predictive 

control (MPC), to optimize QoE in video streaming by managing bandwidth allocation among multiple 

competing video players. The CANE framework focuses on improving QoE fairness by considering the 

player's algorithm, state, and overall network conditions. It uses machine learning techniques to model the 

behavior of video players and allocates bandwidth to balance both efficiency and fairness across players, 

demonstrating significant improvements in QoE fairness over client-side adaptive bitrate (ABR) algorithms. 

Ghasemi (2024) introduces the Multi-Objective Harris Hawks Optimization (MOHHO) algorithm for service 

placement in fog computing environments, aiming to optimize the placement of services by balancing multiple 

objectives, specifically reducing end-to-end delay and energy consumption. The algorithm addresses the 

challenges of multi-objective optimization by converting them into single-objective problems, using two sets 

of solutions: one focused on minimizing delay and the other on minimizing energy consumption. The best 

solutions from each set are then compared using non-dominant sorting, and the optimal global solution is 

selected. Simulation results in the CloudSim environment show that the proposed MOHHO algorithm 

outperforms existing methods such as Random Mapping, Genetic Algorithm (GA), Modified Genetic 

Algorithm and Particle Swarm Optimization (MGAPSO), and Teaching Learning-Based Optimization 

(TLBO). It achieved up to 44% reduction in energy consumption compared to random mapping and 14% less 

than TLBO, reduced end-to-end delay by up to 34% compared to random mapping and 10% compared to 

TLBO, and improved network utilization efficiency by up to 43% compared to random mapping and 12% 

compared to TLBO. Although the execution time of MOHHO is slightly higher than GA, it is lower than 

MGAPSO and TLBO due to the complexities involved in optimization. The study concludes that the MOHHO 

algorithm effectively optimizes service placement in fog computing, enhancing energy efficiency and reducing 

latency. It demonstrates superior performance compared to current algorithms and has potential applications in 

other cloud computing challenges like scheduling and load balancing. Future work will explore integrating 

additional meta-heuristic algorithms to further improve performance in dynamic computing environments.  

Abofathi et al. (2024) introduced a novel method for optimizing service placement in fog computing 

environments using a Distributed Learning Automata (DLA) algorithm. The study focuses on improving 

energy consumption and delay in IoT applications by efficiently distributing modules across fog nodes. Results 

indicate that the DLA-FMP algorithm outperforms other optimization techniques in terms of energy efficiency 

and delay reduction.  

Bikas and Sayıt (2024) proposed a genetic algorithm-based path selection approach for Multipath TCP 

(MPTCP) to maximize the Quality of Experience (QoE) in adaptive HTTP streaming systems. The key 

contribution of the research is to jointly consider bandwidth and delay differences, as well as the disjointness 
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of paths, in the selection process. The findings suggest that this approach significantly improves QoE metrics 

compared to methods that consider bandwidth or delay differences individually. 

Liu et al. (2024) propose a novel framework for QoE-aware collaborative edge caching and computing tailored 

for adaptive video streaming. The primary contribution of this research is to optimize video quality and 

minimize latency by intelligently distributing computational and caching tasks across edge devices. The 

findings demonstrate that the proposed approach significantly enhances user experience by reducing buffering 

time and improving video quality. 

Islam et al. (2024) introduced the HPSP algorithm design, utilizing Tabu Search Algorithm as a meta -heuristic 

to improve QoE over POPP by proactively deploying service instances. The study analyzed QoE and 

deployment cost, showing that QoE enhances with HPSP due to the Hyper-Heuristic strategy, while 

deployment cost decreases with task size but rises with the number of ENs. The optimization formulation 

focused on QoE-based optimization for service instance deployment, reducing it to an MKP problem and 

considering user QoE and deployment costs in the MEC environment.  

Our proposed QoE-aware application placement policy for Fog differs from the aforementioned works since 

we have considered multiple user expectation parameters such as service access, resource requirement, 

processing time, response rate, resource availability, processing speed, decentralized management, prioritized 

placement, deadline and compound QoE gain. The policy is developed in a decentralized manner so that it is 

less susceptible to single points of failure and management overheads. Application placement and met requests 

are prioritized based on users’ expectations and the compound QoE of users is maximized through the policy.  

Energy Aware Review 

To enhance fog computing performance, load balancing and processing power are shared among fog nodes. 

For boosting performance, offloading has to take into consideration energy usage, task load, waiting time and 

network situations. As a result to design an energy-saving compute offloading strategy according to deep 

learning that can fulfill the optimum offloading selection. Even though the aforesaid technique might greatly 

enhance latency and energy consumption, the problems of data transmission and processing security are not 

included in the aforesaid solution.  

Bichi et.al. (2022), proposed that the Internet of Things enables sensors and devices to examine their 

surroundings and make autonomous decisions. Innovative surveillance technologies have cleared the ground 

for the military-based IoT to emerge. However, these high-security conditions are harsh and unpredictable, and 

the devices deployed in such situations must operate constantly for an extended period of time. The new IoT -

Fog architecture paradigms, which encompass key sectors, are becoming possible for real-time decision 

making, and optimal energy conservation in IoT-based application data processing is crucial. As a result, it is 

critical to select an effective application architecture for operation that may conserve energy over the 

application's lifetime.   

(Malik et al., 2022) stated that offloading tasks saves energy. However, if task offloading is used in 

conjunction with device control-based energy saving strategies, the amount of energy saved can be increased 

even further. These strategies govern some functionalities or features of devices in order to improve 

performance and conserve energy. Local devices and task helper nodes can use device control to change 

parameters such as transmission power, on/off switching time, battery supply voltage, battery supply 

frequency, and modulation scheme. 

One key purpose of offloading is to lower the energy consumption of mobile devices when performing tasks 

that require more energy. A mobile gadget that tries to handle everything on its own may quickly exhaust its 

battery due to space limits. As a result, while passing tasks to the server for execution, performance in terms of 

energy usage must be addressed. (Chuang & Hsiang, 2022) 

Energy Consumption Work 

Two semi-greedy based algorithms, (i) priority-aware semi-greedy (PSG) and (ii) PSG with multi start process 

(PSG-M) were proposed by Azizi et al. (2022) to map IoT tasks to fog nodes effectively. They have also 

http://www.rsisinternational.org/


Page 3683 www.rsisinternational.org 

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS) 

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025 

 

    

 

 

developed task scheduling to satisfy the need for QoS in IoT jobs while at the same time reducing the overall 

energy consumption of fog nodes. The primary purpose was to meet the job deadlines while fully utilizing the 

overall energy usage of the system. If it has exceeded a job's deadline, it is dedicated to a fog node that enables 

the slightest deviation from the job’s time limit requirements. The two effective precedence aware semi-greedy 

algorithms are recommended to meet these objectives. Extensive experiments are used to assess the efficiency 

of the suggested algorithms. The findings describe that the proposed algorithms greatly suppress previous 

algorithms in terms of the proportion of IoT tasks that met their time limit requirements, the overall energy 

consumption and system lifespan, and the aggregate amount of the deadline violation time. 

A scheduling algorithm is a technique that assigns jobs to available system resources (Nazari Bu-Ali et al., 

2022). It should be noted that incompatible scheduling algorithms may result in hardware inefficiencies or 

application slowdowns. Using a suitable algorithm, on the other hand, reduces energy usage and response time. 

The recommended solution employs a genetic algorithm with Non-dominated sorting and a Simulated 

Annealing algorithm. The research's primary innovations and points are described as (i) obtaining priority 

tasks in the form of a DAG graph, with graph construction and weighting determined by network 

communication and transmission latency, and dynamically allocating priority jobs. (ii) Create inventive first 

solutions for the suggested algorithm. (iii) Consider how communication delays affect system response times. 

(iv) Using a multiobjective algorithm to optimize both energy usage and reaction time. (v) Select the best 

option from the list of possibilities using the DVFS method.  

Naha et al.(2022) answered a problem statement and proposed energy-aware resource allocation to make the 

Fog environment sustainable when satisfying time sensitive application requirements while available resources 

in the devices are changing dynamically. Naha and the team determine which resources are suited for energy-

aware resource allocation. As a result, multiple linear regression is used to govern application execution in an 

energy-conscious manner. The linear regression-based strategy is used to construct an energy-aware resource 

allocation algorithm and to determine how all the independent factors affect the dependent variables using 

linear regression.  

In the paper by (Mordacchini et al., 2022), it offers a decentralized, self-organizing, and QoE-centric scheme 

for optimizing the system's energy consumption. The technique allows Edge entities to interact with one 

another in order to exchange information and decide whether the users of each application may be served with 

fewer instances. This behavior allows you to limit the number of instances running in the system, which saves 

energy and resources. When deciding whether to shut down a potentially redundant instance, the entities use 

the data they have communicated to determine whether this decision is consistent with the QoE of the services 

and the computational limits of Edge resources. The simulation results suggest that the proposed method can 

lower the energy consumed by the system by about 40%. 

In this paper by (Feng et al., 2022), it presents a novel transmission strategy-based NOMA transmission in a 

multi-IoT cooperative fog computing system with one task node and numerous nearby fog nodes. To reduce 

energy consumption, processing tasks from the task node can be offloaded to IoT devices using partial 

offloading. To formulate an energy consumption minimization problem for the complete IoT fog computing 

system, the study will consider fog node selection, duration allocation, offloading workload, and local 

computation resources. In addition, to acquire the fog node selection, the paper will reformulate an assignment 

problem by constructing a bipartite graph. Due to the coupling of local computing resource allocation and 

offloading burden, it divided the origin nonconvex problem into two comparable subproblems and presented 

the MCTC algorithm to solve it. To obtain the closed-expression solution of computation time and local CPU 

frequency, solve the first subproblem. The second subproblem can then be proven to be convex and effectively 

addressed. The simulation results demonstrate that the proposed algorithm outperforms other benchmark 

techniques by at least 56.88%. 

In the paper by (Delgado & Famaey, 2022), it is shown that energy-aware scheduling mechanisms are needed 

to improve the performance of successful application execution on batteryless devices. These tiny gadgets 

often turn on and off, so knowing how much energy will be spent and how much energy may be recovered is 

critical. As a result, the paper presents theoretical insights into the attainable performance increase of energy-

aware task scheduling when compared to state-of-the-art non-aware batteryless application task schedulers in 
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this study. Furthermore, as a first step toward constructing a workable scheduling heuristic that can run on 

batteryless devices, the paper also investigates the effect of the size of the look-ahead energy prediction 

window. To accomplish this, Delgado & Famaey proposed a new optimal energy-aware scheduling algorithm 

that takes into account the energy available in the capacitor as well as the expected energy to be harvested in 

order to optimally schedule the tasks, which are defined by their priority, arrival time, execution time, energy 

consumption, and set of task parents that must be executed beforehand. 

The article by (Avgeris et al., 2022) introduced the ENERDGE framework, which addresses full task 

offloading and resource allocation issues in a multi-site environment. Avgeris suggested a holistic energy-

aware resource optimization method based on VM flavor design and supplemented with a unique load 

redistribution technique based on MRFs, together with the ultimate goal of minimizing total energy usage 

without losing QoS in terms of latency. ENERDGE examines the dynamic wireless conditions of the access 

network and enables a mobility prediction system to better guide the allocation solution during task offloading 

to minimize the inverse impact of dynamic user presence. The prediction mechanism accurately forecasts 

users' mobile behavior, according to numerical studies, and the ENERDGE resource optimizer surpasses two 

well-established load balancing algorithms in terms of latency and energy usage. Finally, the article 

demonstrated that the MRF technique rapidly converges to minimal energy solutions, allowing for efficient 

future energy optimizations. 

Using Deep Reinforcement Learning, (Sellami et al., 2022) demonstrated the feasibility of establishing task 

assignment and scheduling algorithms for SDN-enabled IoT networks. It is devised as a task assignment and 

scheduling issue that reduces network latency while maintaining energy efficiency. The solution outperforms 

deterministic placement algorithms, random algorithms, and A3C strategies in determining optimal allocation 

decision policies for task assignments and scheduling in real-time. In addition, Sellami et al. technique enabled 

both local and global optimization, resulting in lower-latency communication and increased energy efficiency. 

Thus, it claims that it can extend the DRL method to provide intelligent multi-access Ultra-Dense Edge 

Computing (UDEC) to more efficiently utilize multiple 5G resources. 

The protocol for Energy-efficient Fog Computing-enabled Data Transmission (EFoCoD) in Tactile Internet-

based Applications is proposed by (Idrees et al., 2022). In the Tactile Internet-based fog computing 

architecture, the protocol operates at the sensor device level. To decrease data reading redundancy in this 

device, the EFoCoD protocol employs the LiDaRE algorithm at the sensor devices. Several studies have been 

carried out to demonstrate the efficacy of the proposed strategy. When compared to PFF and ATP, the 

EFoCoD protocol reduces the quantity of transferred data and reduces the sensor device's energy usage from 

87.23% to 87.94% and from 84.60% to 86.37% when compared to the PFF and ATP methods, respectively.  

(Azizi et al., 2022) investigated the scheduling of IoT tasks in a heterogeneous fog network in the research. 

The main goal of this research was to minimize the system's total energy consumption while fulfilling the task 

deadlines. If a given task's deadline is not reached, it is assigned to a fog node that delivers the smallest 

deviation from the task's deadline requirement. Two efficient priority-aware semi-greedy algorithms are 

developed to fulfill these goals. Extensive experiments are used to assess the effectiveness of the presented 

algorithms. The results showed that the suggested algorithms outperformed existing algorithms in terms of the 

proportion of IoT tasks that met their deadline requirement, overall energy consumption and system lifespan, 

and total amount of deadline violation time. 

(Singh & Das, 2022) describe a four-tier cloud-fog-IoMT architecture paradigm based on the dependable 

MQTT protocol, which allows network scalability at both the edge and fog layers. It implements a dynamic 

gateway selection mechanism based on the idea of a principal actuator node. Singh's paper proposed the design 

of a message transfer mechanism using the MQTT protocol for improved medical data delivery, appropriate 

categorization of medical data using fuzzy logic, and offloading of these classified data using adaptive 

scheduling combined with dynamic clustering of fog nodes. Load balancing technologies reduce network 

energy usage and delay. Data offloading was accomplished in three stages: fuzzy based medical data 

classification, computational capacity and energy-aware fog node clustering, and a storage capacity based 

adaptive scheduling approach. 
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(Ghanavati et al., 2022) presented a work scheduling algorithm for fog computing with makespan and energy 

consumption optimization. The paper demonstrated that the proposed strategy outperforms the baseline 

approaches significantly.  

In the paper by (Tariq et al., 2022), an optimal energy-aware job offloading strategy for the Internet of 

Vehicles is presented in this research. They proposed offloading that can ensure stability in order to make the 

Internet of vehicles more dependent. In this research paper, they proposed task offloading as a semi-Markov 

decision process. The drawback of the proposed strategy based on energy is that it does not take scalability and 

bandwidth into consideration.  

Iftikhar et al., (2023) create a new method known as HunterPlus by adding a Bidirectional Gated Recurrent 

Unit (GRU) to HUNTER so that it may assess graph inputs both forward and backward. HunterPlus is 

implemented using an organized methodology that includes training, simulation, assessment, data collecting, 

model development, and system architecture design. The resource layers, management, and Internet of Things 

make up the system architecture. The DeFog benchmark is used to collect metrics such as CPU, RAM, disk 

I/O, response time, energy consumption, and SLA breaches to obtain data for testing and simulation. 

Furthermore, to improve task scheduling and estimate Quality of Service (QoS) parameters, a Convolutional 

Neural Network (CNN) model is created and trained. The CNN model generates scheduling decisions based on 

a matrix that represents the current condition of the cloud-fog environment. Azure virtual machines are used 

for testing and simulation using the COSCO framework. The result demonstrates that HunterPlus outperforms 

the state-of-the-art baselines in terms of energy consumption and task completion rates by at least 17% and 

10.4%, respectively. In addition, the model's performance variability is smaller than that of other models. 

Saif et al. (2023) proposed a new algorithm called Non-dominated Particle Swarm Optimization (NPSO). They 

are using a mutation operator to broaden the particle population's range and prevent it from entering the local 

optimal search.  At the same time, can enhance the Particle Swarm Optimization (PSO)'s constraint and make 

it easier to discover the Multiple-objective Problems (MOP) solution. First, they did a quantitative comparison 

of a set of jobs organized by the FCFS, STML, LLF, and MLLF algorithms in terms of delay. They also do 

another comparison to find the decrease in all techniques' maximum delays for ten task groups, each group has 

been assigned with 10 tasks. They found out that in comparison to the other algorithms, MLLF performed best  

in minimizing the maximum delay by about 11% which a stable decrease in delay when the number of jobs 

conducted increased. After that, they did a performance comparison of the MOPSO-CD, NSGA-II, and NPSO 

algorithms with a non-linear optimization method in terms of delay where upper bound of the delay threshold 

(D_max) is set to 100. It is the MLLF's average delay threshold. There were five groups which are 30, 50, 90, 

150, and 200 for the workload. The result shows that NPSO algorithm can use less energy than others 

algorithm, lowering the delay threshold and helps to lower the transmission latency. 

Liu et al. (2023) applied particle swarm optimization (PSO) to get the best computation time and energy 

consumption in a single fog cluster as well as the best load balance among fog nodes. Then, they are using the 

time and energy savings from load balancing and created the particle swarm genetic joint optimization 

artificial bee colony method (PGABC) to optimize work scheduling across fog clusters. In comparison to 

GABC, ABC, and PSO, the experimental findings demonstrate that the time delay that was computed using the 

suggested PGABC method in the provided model was decreased by 1.04%, 15.9%, and 28.5%. Not only that, 

but there was also a 3.9%, 6.6%, and 12.6% reduction in energy consumption, respectively. Due to PSO being 

able to handle the issue of optimum load balancing for every task in a single fog cluster, a resource-scheduling 

strategy based on the PSO and the PGABC algorithm (PGABC–PSO) is intended by them also. This strategy 

has decreased the energy consumption by roughly 9.7%, 33.3%, 32%, and 29.6%, and the delay by 

approximately 31.25%, 27.8%, 27.8%, and 25.4% when compared to SJF–PSO, PGABC-R, HSF.ABC&PSO, 

and MFO, respectively. 

Singh et al. (2023) provides a resource allocation method using collaborative machine learning (CML) for fog 

computing enabled by SDN. The resource allocation strategy for the SDN-enabled fog computing environment 

is linked with the suggested CML model. The outcomes of the suggested technique are tested using the 

FogBus and iFogSim, utilizing a variety of performance evaluation parameters such execution time, power 

consumption, latency, and bandwidth utilization. Using the previously described performance evaluation 
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metrics, the resulting findings are compared with other state-of-the-art methods currently in use. According to 

the data, the suggested method cuts down on 19.35% of processing time, 18.14% of response time, and 

25.29% of time delay. Additionally, it saves 21% execution time, 9% network utilization, and 7% energy 

consumption over the current methods. 

Mohammadzadeh et al. (2023) proposed HDSOS-GOA, which is a discrete hybrid version of the SOS and 

GOA algorithms that randomly runs one of the Symbiotic Organisms Search (SOS) and Grasshopper 

Optimization Algorithm (GOA) algorithms. It uses learning automata to decide which algorithm to run more 

frequently. The DVFS-based scientific workflow scheduling problem in the fog computing platform was then 

resolved using the HDSOS-GOA approach. The workflow's tasks are assigned to the most appropriate virtual 

machines (VMs) based on the HEFT approach. The optimal DVFS-level VMs are then assigned using the 

suggested HDSOS-GOA methodology. For the result, they aim to cutting down on scheduling time and 

minimize workflow scheduling's energy consumption. Four different sizes of scientific procedures are used to 

execute extensive simulations. The results shown that their methodology beat many optimization methods 

algorithms, including SPEA2, PSO, SOS, SOA, GWO, ALO, HHO, GOA, PSO-GWO, and GA-WOA 

algorithm, in terms of energy utilization and the number of VMs employed. 

Hajam and Sofi (2023) recommend the enhanced version of the spider monkey optimization (SMO) meta -

heuristic algorithm which are semi-greedy task scheduling SMO (sgTS-SMO) and greedy task scheduling 

SMO (gTS-SMO) for creating effective task scheduling in a fog computing environment. The primary goal is 

to reduce energy usage and delays while taking deadline and time-violation restrictions into account. The 

parameters of deadline violation time, makespan, energy consumption, overall cost, and degree of imbalance 

are used to evaluate the system. According to the data, when gTS-SMO is compared to sgTS-SMO and particle 

swarm optimization (PSO), it decreases the violation time by 13.86% and 88.38%, respectively. Additionally, 

the results show that gTS-SMO outperforms in terms of makespan and energy usage. In comparison to sgTS-

SMO and PSO, makespan is decreased by 6.28% and 57.75%, while energy consumption is decreased by 

5.74% and 53.65%. 

Zhao et al. (2024) proposed EOPCO-S algorithm to solve the issue of partial task offloading under known 

matching between the fog server and terminal device while maintaining optimal energy consumption. Another 

algorithm called Kuhn–Munkres-based EOPCO-M algorithm is used to solve the best matching issue 

involving fog servers and terminal devices. The result showed that EOPCO-S can always achieve the lowest 

energy use when comparing to others scheme. Then, another result proves that when it comes to optimizing 

task offloading success rate and lowering task processing energy consumption, EOPCO-M performs best 

compared to other baseline methods such as Hungarian method, random generate and Euclidean distance-

based partial task offloading (DPTO). 

The metaheuristic algorithm CSO (Cat Swarm Optimization) is employed to manage service activation and 

resource allocation more effectively Hashemi et al., (2024). A request evaluator receives user requests, sorts 

them according to priority, and uses the container live migration approach on fog resources to execute them 

quickly and effectively. By using the container live migration technique, services are moved and positioned 

more optimally on fog resources and preventing the needless activation of physical resources. To ascertain the 

initial capacity of physical fog resources, this method makes use of a resource manager to locate and 

categorize accessible resources. This approach's effectiveness has been evaluated by the application of six 

metaheuristic algorithms which are Particle Swarm Optimization (PSO), Ant Colony Optimization, 

Grasshopper Optimization, Genetic, Cuckoo Optimization, and Gray Wolf Optimization in iFogSim simulator. 

The suggested method outperformed the other six options in terms of various evaluation parameters, including 

execution time, energy consumption, imbalance, SLA violation, and network life, according to the simulation 

findings. Based on the result, it is outperformed the other six options in terms of various evaluation parameters, 

including execution time, energy consumption, imbalance, SLA violation, and network life.  

Khan et al. (2024) suggested a novel reactive fault tolerance technique that includes the resubmission of tasks 

and their execution on processing nodes in the event of a node failure. The monitoring module, which serves as 

a resource use statistic for submitting, processing, and receiving nodes, resubmits the failed tasks to other 

executable nodes. The suggested method combined with a modified version of the particle swarm optimization 
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technology reduces energy usage, network bandwidth usage, end-to-end latency, and boosts success and 

reliability factors. The suggested technique is found to decrease energy consumption by 3%, latency by 5%, 

network bandwidth uses by 3%, and to boost system reliability by 2% with success rate by 8%. Several trials 

have been conducted with a maximum of 10 repetitions. 

Ghafari and Mansouri (2024) proposes applying nonlinear based chaotic artificial rabbits optimization 

(NCARO) which is a unique variation of artificial rabbits optimization (ARO), for task scheduling in a fog 

computing environment (TSNCARO). By utilizing nonlinear and chaotic control settings, the NCARO 

maximizes ARO. The suggested technique makes advantage of chaotic maps to enhance ARO's exploratory 

behaviour. The results of the simulation shown that, the suggested TSNCARO algorithm enhanced makespan, 

service duration, total cost, energy usage, CDER, and PDST in various scenarios. Through the application of a 

nonlinear mechanism and chaotic maps, NCARO facilitates an easy shift from exploration to exploitation. 

Idrees et al. (2024) proposes energy-aware data transmission strategy with decision-making (EDaTAD) that 

operates on sensor devices and fog gateways, the two level nodes of the fog computing-based TI architecture. 

At the sensor device level, the EDaTAD applies a Lightweight Redundant Data Removing (LiReDaR) method 

to reduce the collected data before forwarding it to the fog gateway. A decision-making model is suggested in 

the fog gateway to help the monitoring team in remote monitoring applications make the right choices. Lastly, 

it sends the redundant data sets to the cloud for archiving and additional analysis, using a Data Set Redundancy 

Elimination (DaSeRE) technique. In comparison to the PFF 0.8, PFF 0.75, Bartlett, Tukey, and Fisher 

methods, respectively, the suggested EDaTAD methodology minimizes the energy consumption from 28.03% 

up to 74.23%, from 23.55% up to 73.36%, from 14.95% up to 58.86%, from 11.24% up to 61.90%, and from 

1.37% up to 58.02%. The findings demonstrate that by eliminating duplicate data reading sets after obtaining 

them from the sensor devices, the EDaTAD offers superior energy-saving outcomes at the fog gateway 

compared to the other approaches. 

Hossam et al. (2024) deliver an exclusive two-layered hierarchical fog device architecture that maximizes fog 

node selection for healthcare applications by utilizing cluster aggregation.  In order to minimize system latency 

and lower energy usage in fog computing settings, they provide three effective approaches which are Earliest 

Deadline First (EDF) Algorithm, Search Nearest Gateway Algorithm and Energy-Aware Module Placement 

(EAMP) Algorithm. Using the iFogSim toolkit, they thoroughly assess their suggested model and compare it 

with a cloud-based and latency-aware model. When compared to the Cloud-based approach, the model shows 

an average reduction in latency of at least 87% and an average reduction in energy usage of at least 76% in 

four different network topologies. Similarly, the model shows at least a 43% reduction in average latency and 

27% reduction in energy use compared to the Latency-aware model. 

The Minimal Schedule Time with Energy Constraint (MSTEC) algorithm is a low-delay scheduling algorithm 

that is suggested for fog computing workflows with energy constraints from Li et al. (2024). Not only that, 

High Reliability with Energy Constraint (HREC) algorithm also proposed by them to maximize fog computing 

system stability in mobile circumstances, a workflow with limited energy usage was suggested. The 

workflow's energy consumption may be efficiently limited by the algorithm, which can also shorten the 

workflow's completion time. Furthermore, an algorithm known as High Reliability with Energy Constraint 

(HREC) was put out to optimize the system reliability of fog computing in mobile scenarios, specifically for 

workflows involving energy constraints. According to our experiments, the HREC algorithm improves system 

reliability by 22% when compared with the MSTEC algorithm, and the MSTEC algorithm reduces completion 

times by an average of 16.5% when compared with the baseline algorithm.  

Our proposed energy-aware method differs from other works in that we combined two optimization modules 

which are energy-aware module placement and the dynamic voltage and frequency scaling (DVFS) technique 

for energy optimization. Energy-aware module placement aims to improve efficiency by placing modules on 

the fog device which can fulfill its requirements based on the module’s estimated minimum energy and MIPS. 

DVFS reduces cost and enhances resource utilization by adjusting the MIPS of fog devices as close as possible 

to the MIPS of the module requirement. In fact, by using our proposed energy-aware method, execution time 

and service delay can also be reduced due to the improvement of overall efficiency. 
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Offloading Review 

Fog computing uses an offloading method that transfers computation power closer to the data source instead of 

the cloud which is located further from the data source. Implementing computation offloading can help extend 

the life of the devices’ batteries, including laptops, smartphones and network. Fog computing has to be 

investigated to deal with the issues of work scheduling in cloud data centres at the same time minimizing 

energy usage. This is because it can decrease the amount of time taken by applications to go live. To achieve 

this result, fog computing has to use a combination of an IWO (invasive weed optimization) and a cultural 

evolution algorithm (CEA). In the IWO task scheduling (IWOTS) method, in order to attain high levels of 

efficiency, employing heterogeneous cluster systems is necessary to organize work. IWOTS makes a point of 

including both meta-heuristics and heuristic-based algorithms in its algorithms. The IWO technique, which is a 

meta-heuristic algorithm, is applied to predict the respective dominant of tasks. In addition, the heuristic-based 

earliest finish time (EFT) method assigns jobs among computer resources to attain the most applicable solution 

for the job. 

There are two offloading destinations: a single server and multiple servers. According to JianYu Wang and his 

teams (2022), the purpose of offloading is to shift the computation power from a resource-limited mobile 

device to resource-rich fog nodes so as to enhance the mobile applications’ accomplishment. Hence, at the 

offloading algorithm design phase, selection on cloud servers has to be considered carefully. In order to assure 

the user experience, by ensuring lower energy consumption and response latency, the runtime workload of an 

application can be offloaded in sequential execution (to only one server) or in parallel execution (to multiple 

servers). As the IoT devices are distributed in the network, computation is able to offload to fog servers 

through WiFi or cellular networks. When a single fog server is not enough to fulfill the latency requirement, 

then the workload will be shared with other fog servers to be assisted. 

Offloading Issues 

Task offloading techniques can help IoT devices overcome resource constraints, including computing power, 

battery life and storage space, which can be particularly useful for computationally intensive workloads on IoT 

devices, especially mobile devices. As mobile devices are often resource constrained, some of their activities 

are offloaded to the fog or cloud to improve performance and save battery consumption. We need another 

object to perform activities instead of IoT devices and deliver the results to them to enable various resource-

intensive IoT applications such as augmented reality, virtual reality, facial recognition and multimedia 

distribution. Task offloading (Wang, B. et. al., 2020) is the term that represents this technology. 

Mobile devices, communication connections and fog nodes are the three main components of the work offload 

process from mobile devices to fog nodes. The mobile device demonstrates how tasks in the IoT program can 

be disassembled to a smaller size and performed locally or remotely using offloading technologies. The 

bandwidth, connectivity and mobility of the device determine the quality of data transfer (e.g. WiFi or cellular 

networks) and offloading technologies are used to move computationally intensive activities from the mobile 

device to the fog node. This is because the computing power of mobile devices is lower and the computing 

power of cloud servers is higher than that of fog nodes. Task offloading is responsible for balancing the load of 

IoT applications at runtime and improving offload performance and system throughput. Load balancing, data 

management, latency control, security and energy efficiency are a few factors that offload technology can 

influence in the IoT.  

Offloading is a technique for transferring computationally intensive work from resource-limited IoT devices 

(i.e. offload sources) to resource-rich compute nodes (i.e. offload destinations) to improve the performance of 

latency-sensitive IoT systems. Methods for task offloading fall into two broad categories, determined by the 

number of offloading destinations: single and multiple. Single type offloading methods allow offloading of 

computational tasks to a single fog node for processing in a sequential order, while multiple type offloading 

methods allow offloading of computational tasks to multiple destinations, e.g. offloading to multiple fog nodes 

for parallel processing to ensure QoS requirements are met (e.g. lower response latency). 
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Overview of the Task Offloading Approaches 

Ding, Y. et al. (2020) proposed a decentralised computing offload strategy (DCOS) method to build a task 

segmentation and offloading approach for multi-user multi-mobile-edge scenarios in order to reduce 

application execution overhead. MAUI was required to divide the application into a series of tasks with 

correlations, which were represented as a programme call graph. The model solution was then turned into a 

convex optimization problem, from which the best offloading option was generated.  

Lu, H. et al. (2020) proposed a task scheduling algorithm based on MA-DDPG for discrete server selection in 

order to improve system energy consumption, task latency and task discard rate for mobile and edge devices. It 

exploited multi-agent continuous learning features to overcome the problem of environmental instability 

induced by a single decision maker. It combined the SAC algorithm with a maximum entropy reward function 

to encourage DDPG Actors to do as many actions as possible in order to find more near-optimal path options. 

It coupled multi-agent DDPG with SAC to tackle the problems of reinforcement learning instability and small 

learning, as well as offloading energy consumption, latency, and task discarding rate.  

Chang, Z. et al. (2020) propose their work to tackle the problem of dynamic task offloading for numerous 

users while calculating the best power and radio resources. More specifically, the model presented in this 

research is built on batteries that can absorb energy using energy harvesting techniques and use it to power 

mobile devices. The authors suggested an approach for dynamically assigning the appropriate power and 

communication channels using Lyapunov optimization. According to the article, the number of subcarriers 

influences the cost. The cost falls as the number of subcarriers grows because mobile devices will have more 

possibilities to discharge their activities. Another finding in the article is that the number of mobile devices has 

an influence on average cost, which increases as the number of mobile devices grows.  

Liu, C. et al (2020) proposed work analyzes a network with a set of end-users and a set of fog nodes. End-user-

generated dynamic jobs are independent, yet the CPU cycles required to execute a single bit are the same for 

all activities. Furthermore, the paper's scenario model includes binary offloading, in which end-users can 

offload the entire work to an adjacent fog node. If the selected fog node believes that its resources will be 

insufficient to finish the work by the deadline, the master fog node will offload the task to another selected fog 

node. As a result, the suggested model implies that each fog node has two queues, one for high priority 

activities and one for low priority jobs. If a job is transferred from one fog node to another, the suggested 

model continues to route it to the high-priority queue.  

Yang, M. et al. (2021) presented an architecture with a fog layer and a cloud layer, in which vehicles in the fog 

layer can transfer jobs to the cloud layer. The architecture takes into account both static and mobile fog nodes 

that can collaborate to offload tasks. It also considers the influence of mobility of task offloading. Thus, the 

mathematical model portrays coverage as a dynamic variable and enables for the shortest possible task service 

time while taking storage, bandwidth, and deadline limitations into account. As a result, the authors suggest a 

task offloading strategy that reschedules work based on their due dates. The suggested approach then selects 

how to offload tasks depending on capacity and bandwidth restrictions. The extensive simulation findings 

presented in this research are obtained by employing realistic vehicle trajectories. They demonstrate the 

suggested policy's performance in terms of task latency, service composition, and task completion rate in 

various circumstances.  

Cheng, Z., et al. (2021) suggested a DRL-based joint deep reinforcement learning (FDRL) architecture to 

successfully decrease learning loss and privacy leakage during the learning phase. They also suggested a 

hybrid optimization technique for task offloading and resource allocation approaches based on FDRL. The 

strategy successfully protects data privacy in the UAV environment, reduces raw data transfer, and reduces 

learning loss.  

Tu et al. (2022) proposed a new approach for dynamic offloading of fog computing that combines long short -

term memory (LSTM) with deep learning. Thus, the key contribution of the research is to estimate the load of 

the fog server in order to optimise the offloading option. Furthermore, the paper's findings suggest that the 

proposed approach reduces average latency.  
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Wang, J. et.al. (2022) employed a sequence-to-sequence (S2S) neural network to obtain task dependencies of 

applications and used non-policy reinforcement learning for task offloading decisions. The S2S neural network 

was trained based on task DAGs collected periodically. According to the experimental results, the 

reinforcement learning-based offloading approach achieved better performance than heuristic algorithms, but 

the application to compute offloading online requires a large amount of training, which causes a large 

consumption.  

Yan, L., et al. (2022) suggested a DRL-based jointly optimal task offloading method that takes into account 

energy waste when jobs are dropped. The optimization challenges of long-term latency and system energy 

consumption in task offloading are addressed by integrating a DQN-based reinforcement learning technique 

with collaborative computing offloading at the cloud edge. However, static simulation tests are used to assess 

its performance. As a result, in order to evaluate its performance, it must be relocated to a genuine dynamic 

environment. The drawback of the proposed method based on offloading is it does not take execution time and 

network usage into consideration. 

S. A. Khan et al. (2022) presents a novel approach to task placement that minimizes the cost of employing 

cloud resources to fulfill the task by executing two-way offloading between cloud and fog. They compare their 

suggested solution to the current state-of-the-art baseline method and evaluate it on a range of configurations, 

including big and small data centers with homogeneous and heterogeneous physical machines (PMs) and 

varying work batches. Their suggested approach actively and dynamically offloaded the cloud's activities 

while optimizing the use of the fog resources that were available. When the fog can manage the duties, it can 

return the jobs that are executing on the cloud to it. This significantly reduces both the total cost of employing 

cloud resources and the time it takes to complete the operation. They assessed their suggested approach for a 

range of assessing measures and contrasted it with the current cutting-edge baseline technique. In comparison 

to the baseline approach, the experimental findings show a 40.87% increase in the fog data center's resource 

utilization and a ×1.68 reduction in the cloud data center's cost. 

Reddy and Sudhakar (2023) bringing forth an osmotic-based method for job loading and scheduling. The 

devices and tasks are classified in the Osmotic Approach (OA)-based heuristic method, and the tasks are 

allocated to the best devices according to their dynamically available capacity. Using simulated data sets, the 

suggested scheduling algorithm is compared to more conventional random task loading and round robin task 

loading procedures. It is discovered that the suggested algorithm performs significantly better than the other 

algorithms. In terms of certain metrics, the Random Order (RO) and Revised Random Order (RRO) algorithms 

are significantly outperformed by the Optimal Assignment (OA) algorithm. While OA's execution time is 

23.36% to 60.71% faster, its timeliness reliability varies from 94.2% to 100%. Fog device utilization is as high 

as 97.7%, and throughput improvement varies from 12.43% to 154.58% over RRO and from 57.57% to 

199.23% over RO. Furthermore, OA demonstrates a 4.27% to 40.65% turnaround time improvement. These 

improvements are ascribed to efficient handling of activities with tight deadlines, appropriate task assignment, 

and effective load balancing. 

Task Offloading technique with P4 (TOS-P4) is a new offloading technique that uses Programming Protocol-

independent Packet Processors (P4) technology is proposed by Akyıldız et al. (2023). An Intelligent 

Transportation System (ITS) application scenario is used to assess the suggested scheme, and it is contrasted 

with a traditional model known as Task Offloading Scheme with Software-Defined Networking controller 

(TOS-SDN).  The testing results show that TOS-P4 is 6.54 times more efficient than TOS-SDN in waiting 

times for tasks received at Resource Poor (RP) Fog servers when the servers' load status is assessed at 5 s 

intervals. Additionally, in the TOS-SDN scenario, RP Fog servers have an average task waiting time that is 

thirty times longer than Resource Rich (RR) Fog servers. 

Sulimani et al. (2024) proposes the Hybrid Offloading (HybOff) algorithm, which uses clustering theory to 

solve problems in both static and dynamic ways, greatly improving load balancing and resource utilization in 

fog networks. According to experimental data obtained with the iFogSim simulation program, HybOff 

dramatically lowers offloading messages, distance, and decision-offloading implications. It outperforms static 

offloading approach (SoA) (64%) and prevalent offloading approach (PoA) (88%), improving load balancing 
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by 97%. Furthermore, it improves system performance 1.6 and 1.4 times more than SoA and PoA, 

respectively, and raises system utilization by an average of 50%. 

Sumona et al., (2024) introduces the ELTO-DQL algorithm, a Deep Q-Learning-based method for task 

offloading. The algorithm is designed to optimize both user Quality of Experience (QoE) and energy 

consumption in fog computing environments. The paper emphasizes the balance between reducing service 

delay and minimizing energy consumption through task offloading to fog nodes, demonstrating improvements 

in both QoE (by 15%) and energy efficiency (by 19%) compared to existing benchmarks 

For workflow applications in FCI with heterogeneous resources and varying communication costs, Shukla & 

Pandey, (2024) proposed an algorithm called MOTORS algorithm which combine both hybrid optimization-

based resource scheduling approach (HORSA) with a fuzzy dominance-based task clustering and overloading 

technique (FDTCO). The basis of HORSA is the hybridization of HS and GA. The following five workflow 

datasets have been simulated: Montage, CyberShake, epigenomics, LIGO (inspiral), and SIPHT. Average 

makespan, average cost, average RUF, and average energy consumption have all been determined. We have 

compared our suggested MOTORS algorithm to other resource management strategies already in use such as 

ACO, HPSOGWO, and the MAA algorithm. The task overloading and resource scheduling solution is 

effectively optimized by the suggested MOTORS algorithm in terms of makespan, cost, resource utilization, 

and energy consumption. In comparison to ACO, HPSOGWO, and MAA, MOTORS considerably shortens the 

makespan by 91%, 88%, and 49%, respectively. This variation is acceptable even if the average cost increased 

by roughly 129%, 112%, and 100% over these methods.  

Our proposed computation offloading method can achieve the shortest execution time and the least network 

usage compared with other work. This is because analysis and testing are carried out on the simulation 

repeatedly to evaluate the performance of our proposed algorithm. In fact, several simulation parameters are 

followed during the testing such as the processing capacity of fog devices, RAM of fog devices, network 

latency, fog device upstream capability, fog device downstream capability, module size and tuple size. 

Summary of Related Work 

Table 1. Summary Related Work of the QoE 

Reference Problem Technique Data Application 

R. Mahmud et 

al (2020) 

Hierarchical, dispersed, 

and heterogeneous nature 

of computing instances 

fuzzy logic models IoT devices iFogSim 

Baranwal, G 

et.al (2020) 

High computational 

complexity of application 

placement policy  

TOPSIS (Technique for 

Order of Preference by 

Similarity to Ideal Solution) 

IoT devices IoT system  

Nashaat, 

Ahmed and 

Rizk (2020) 

Reduction of delay in 

application 

Multi-Dimensional QoE 

(MD-QoE) model 

Fog nodes IoT application   

Varshney et al. 

(2021) 

Fog environments having 

resource heterogeneity, 

resource limitation and 

unpredictable nature.  

Multi-criteria decision 

making (MCDM) 

techniques 

Fog computing Smart application 

Zhao et .al 

(2021) 

QoE-driven cross-layer 

optimization issues 

Near-optimal iterative 

algorithm (EC-VE) and 

greedy algorithm 

IoT devices IoT system 
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Saovapakhiran 

et.al. (2022) 

IoT service providers are 

competing to provide 

services 

QoE-driven architecture IoT Devices IoT system 

Wang et.al 

(2022) 

Point clouds have large 

volume of data, difficult 

to stream in bandwidth-

constrained networks 

QoE-driven adaptive 

streaming approach 

Point clouds Point Cloud 

Sreenivasu 

Mirampalli et 

al., (2022) 

Addresses the challenge 

of efficiently allocating 

resources in fog-enabled 

mission-critical IoT 

applications 

Hungarian Maximization 

Algorithm and fuzzy-based 

approach for QoE 

calculations 

Parameters for 

applications 

(access rate, 

resource 

requirements, 

processing time) 

and fog instances 

(round trip time, 

resource 

availability, 

processing 

speed) 

Fog computing 

networks, 

particularly for 

mission-critical IoT 

applications 

Yadav & 

Baranwal, 

(2023)  

Find an efficient method 

of selecting task 

processing positions in 

IoT edge networks while 

considering QoE to meet 

the expectations of 

different applicants and 

improve system 

performance  

fuzzy logic models IoT devices IoT System 

Carvalho & 

Macedo, (2023) 

Degradation of user 

Quality of Experience 

(QoE) caused by co-

located applications in 

cloud environments 

Deep Learning Models, 

QoE Estimator Algorithm, 

Kubernetes Scheduler 

Extensions, and evaluation 

on Testbed 

QoE metrics IoT System 

Evangeline et 

al., (2023) 

Device Heterogeneity, 

Limited Bandwidth, 

Response Time, Resource 

Allocation, Fault 

Tolerance, Quality of 

Experience (QoE), Cost 

Guess Fit Algorithm, 

Cluster Bandwidth 

Allocation (CBA) 

Algorithm, Switching 

Table-based Fault Tolerance 

Module 

Bandwidth in 

cloud network 

IoT devices 

Abofathi et al., 

(2024) 

Optimize module 

placement to meet quality 

of service requirements, 

reduce energy 

consumption, and 

improve service quality in 

fog computing 

environments. 

Whale Optimization 

Algorithm (WOA), 

Learning Automata, 

Distributed Learning 

Automata, Particle Swarm 

Optimization (PSO), and 

NSGA-II algorithm. 

IoT applications, 

fog nodes, 

service 

placement, 

energy 

consumption, 

delay, and 

network usage 

IoT application 

Bikas & Sayıt, Selection of paths for Genetic Algorithm-Based QoE Metrics Adaptive HTTP 
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(2024) Multipath TCP (MPTCP) 

subflows to maximize the 

Quality of Experience 

(QoE) for adaptive HTTP 

streaming systems. 

Path Schelection Streaming Systems 

(HAS) 

Liu et al., 

(2024) 

Effectively caching video 

files and managing bitrate 

adaptation to balance 

video quality, re-

buffering time, and 

transmission delays 

Caching Placement Model, 

Bitrate Adaptation Model, 

Video Transmission Model, 

Utility Function Model 

QoE Metrics Collaborative 

caching and 

adaptive bitrate 

streaming 

Islam et al., 

(2024) 

Addressing trade-offs 

between service latency, 

availability, QoE, VNF 

deployment costs. 

HPSP - Hyper-heuristic 

algorithm for NP-hard 

optimization. 

IoT devices Fog Computing 

 

Work Observes User Expectations in Meets Instances Status regarding Decentralised  

Management 

Prioritised 

Placement 

Deadlin

e 

Compound 

QoE Gain 

Service 

Access 

Resource 

Requirement 

Processing 

Time 

Proximity/ 

Response 

Rate 

Resource 

Availability 

Processing 

Speed 

    

H. Santos et 

al., 2020 
✔ ✖ ✖ ✔ ✖ ✖ ✔ ✖ ✖ ✔ 

M.J. Farooq 

et al., 2020 
✖ ✖ ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✔ 

A. Tsipis et 

al., 2020 
✔ ✖ ✖ ✔ ✖ ✖ ✔ ✖ ✖ ✔ 

A. 

Munusamy 

et al., 2020 

 ✖ ✖ ✖ ✔ ✔ ✖ ✔ ✔ ✖  ✖ 

Abd Elaziz 

et al., 2021 
✖ ✖ ✔ ✖ ✖ ✔ ✔ ✖ ✖ ✖ 

Bichi et al., 

2022 
✔ ✖ ✖ ✔ ✔ ✔ ✖ ✔  ✖ ✔ 

Liu et al., 

2022 
✔ ✖ ✖ ✔ ✔ ✔ ✔ ✔ ✖ ✖ 

Jasim et al., 

2022 
✔  ✖ ✔ ✔ ✖ ✔ ✔ ✖ ✖ ✔ 

M. 

Sriraghaven

dra et al., 

2022 

✖ ✖ ✖ ✔ ✖ ✖ ✔ ✖ ✔ ✖ 

Guha Roy et 

al., 2022 
✖ ✖ ✔ ✖ ✔ ✔ ✔ ✔ ✖ ✔ 

Sreenivasu 

Mirampalli 

et al., 2022 

✔ ✔ ✔ ✖ ✔ ✔ ✔ ✔ ✖ ✔ 
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Yadav & 

Baranwal, 

2023 

✔ ✔ ✔ ✔ ✖ ✔ ✔ ✔ ✖ ✔ 

Carvalho & 

Macedo, 

2023 

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✖ ✔ 

Evangeline 

et al., (2023) 
✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✖ ✔ 

Abofathi et 

al., 2024 
✔ ✔ ✔ ✖ ✔ ✔ ✔ ✔ ✔ ✔ 

Bikas & 

Sayıt, 2024 
✖ ✖ ✔ ✔ ✔ ✔ ✖ ✖ ✖ ✔ 

Liu et al., 

(2024) 
✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✖ ✔ 

Islam et al., 

2024 
✔ ✖ ✔ ✔ ✔ ✔ ✔ ✔ ✖ ✔ 

Our Work ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

Table 2.1 Summary Related Work of the Energy aware 

Reference Problem Technique Data Application 

Bichi et al. (2022) High-security environments are 

harsh and unpredictable, and the 

technologies used in them must 

work constantly for an extended 

period of time. 

A sequential application 

module and a master-

worker application 

module. 

Military things 

data 

Energy in IoT 

devices 

Malik et al. (2022) IoT devices and fog nodes 

have limited energy, energy-

efficient approaches for storage 

and processing are required in 

6G. 

Newly developed energy-

efficient solutions  

Energy-efficient 

solutions 

Energy efficiency in 

IoT devices / Sensor 

nodes / Fog nodes 

Chuang & Hsiang 

(2022) 

Due to mobile devices keep 

increasing, hardware resource 

faced limits, certain applications 

may not run smoothly. 

popularity‐aware and 

energy‐efficient offloading 

mechanism  

Upload and 

return data size 

Energy in mobile 

devices / Fog nodes 

and offloading 

S. Azizi et al 

(2022) 

Green renewable energy with 

novel dynamic frequency scaling 

Energy and performance- 

aware scheme for the Fog–

IoT environment 

Blockchain 

technology 

Energy 

Nazari Bu-Ali et 

al. (2022) 

Scheduling such dependent 

jobs in Fog is an NP-hard issue 

that takes a long time to solve and 

high energy consumption, leaving 

it unsuitable for real-time 

applications. 

A multiobjective task 

scheduling model which 

includes an intelligent 

solution named IETIF 

which combines and 

leverages the benefits of 

simulated annealing and 

NSGA-III algorithms. 

Priority tasks 

in the form of a 

DAG graph, with 

graph 

construction and 

weighting  

IoT devices 

Naha et al, (2022) Due to unique programmes, 

mobile devices' energy 

consumption is very dynamic 

which makes a realistic  energy 

profiling for mobile devices 

difficult.  

energy-aware resource 

allocation technique with a 

hybrid approach and a 

sustainable solution. 

Delay, 

processing time 

and processing 

cost status data 

Fog nodes, energy-

aware 
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Mordacchini et al. 

(2022) 

It is difficult to maintain highly 

accessible computer and data 

infrastructures while minimising 

system energy usage. 

Application placement 

performing edge-to-edge 

exchanges (EMC 

algorithm) 

Convergence 

speed 

Energy and Qoe 

Aware 

Feng et al. (2022) Energy minimization problem 

is a mixed-integer nonlinear 

programming that causes more 

energy consumption. 

Novel transmission- 

strategy-based NOMA 

transmission in the multi 

IoT cooperative fog 

computing system 

Computation 

time and local 

CPU frequency 

Energy in Fog 

nodes / IoT nodes 

Delgado & 

Famaey (2022) 

Capacitors have a limited energy 

storage capacity, they exhibit 

intermittent on-off behaviour. 

Energy-aware task 

scheduling algorithm 

Voltage behaviour Batteryless IoT 

devices 

Avgeris et al. 

(2022) 

It is difficult to place computing 

duties of IoT applications in fog 

infrastructure. 

Fuzzy logic is used to 

determine the RoE of 

applications, CCS of 

instances, and QoE of a 

user. Then use the 

Hungarian maximisation 

assignment technique for 

mapping. 

Resource Gain 

and Processing 

Time Reduction 

Ratio 

Energy in IoT 

devices, QoS and 

QoE 

Sellami et al. 

(2022) 

Problem in establishing 

appropriate resource allocation 

and high performance levels 

while dealing with job 

management, energy 
conservation, and ultra-reliable 

low-latency unpredictability. 

Deep Reinforcement 

Learning is being used to 

construct job assignment 

and scheduling methods 

for SDN-enabled IoT 

networks. 

Computing 

Intensity status 

and computing 

resources on fog 

nodes 

Fog-enabled 

mobile IoT nodes and 

QoS, QoE 

Idrees et al. 

(2022) 

This massive amount of data 
results in high communication 

costs, increased power 

consumption, and excessive 

latency at the fog gateway. 

Energy-efficient Fog 
Computing-enabled Data 

Transmission(EFoCoD) 

protocol, a Lightweight 

Data Redundancy 

Elimination (LiDaRE) 

Algorithm. 

EFoCoD 

protocol 

Energy 
efficiency  in smart 

sensor nodes 

Singh & Das 

(2022) 

Massive amounts of data 

generated by time-sensitive IoT 

devices necessitate increased 

scalability, excessive energy 

consumption and reduced latency. 

Four-tier cloud-fog-IoMT 

architectural model based 

on reliable MQTT protocol 

MQTT, Client, 

Broker and 

Subscriber 

Energy, QoS 

Ghanavati, 

Abawajy & Izadi 

(2022) 

Additional resources are 

required to reduce the conflict 

between developing IoT 

applications and resource-

constrained IoT devices. 

Ant Mating 

Optimization (AMO) and 

bi-objective task 

offloading 

Computation 

intensity status 

Energy and Task 

offloading in IoT 

devices, QoS 

Tariq et al. (2022) The Internet of Vehicles has 

become more dependent, so it 

needs to ensure stability. 

Task offloading as 

semi-Markov decision 

process (SMDP) 

Resource units Internet of 

Vehicles, energy-

aware and offload 

(Iftikhar et al., 

2023) 

Existing algorithms, including 

Reinforcement Learning (RL), 

have drawbacks such delayed 

adaptation in unstable contexts 

and poor scalability. 

HUNTER include a 

Bidirectional Gated 

Recurrent Unit (GRU) 

(HunterPlus) 

Instructions per 

Second(IPS), 

RAM, Disk, and 

Bandwidth 

consumption 

energy used by 

processors, storage, 

memory, and network 

devices 

 Saif et al. (2023)  Multiple-objective problems 

(MOP) 

 Non-dominated Particle 

Swarm Optimization 

(NPSO), 

 Delay 

threshold 

 energy 

consumption within 

workload groups 
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Liu et al. (2023) Inefficient fog devices due to 

amount of IoT devices 

particle swarm genetic 

joint optimization artificial 

bee colony algorithm and 

particle swarm 

optimization (PGABC–

PSO) strategy 

Fog node Energy in fog 

computing 

Singh et al. (2023) Absence of prerequisites for 

the majority of contemporary fog 

computing applications 

SDN-enabled fog 

computing with 

Collaborative Machine 

Learning (CML) 

performance 

evaluation 

parameters 

robust resource 

allocation technique 

Mohammadzadeh 

et al. (2023) 

High number of Virtual 

Machines required for workflow 

execution 

discrete hybrid version 

of the SOS and GOA 

algorithms (HDSOS-

GOA) algorithms 

scientific 

procedures, 

number of virtual 

machines 

energy 

consumption of the 

scheduling process 

Hajam and Sofi 

(2023) 

resource constrained fog nodes 

for heterogeneous IoT tasks 

Greedy task scheduling 

SMO (gTS-SMO) and 

semi-greedy task 

scheduling SMO (sgTS-

SMO) 

performance 

evaluation 

parameters 

energy 

consumption in an 

active state when fog 

nodes process tasks 

Zhao et al. (2024) Maximize system energy 

consumption during task 

offloading 

EOPCO-S and EOPCO-

M algorithm 

Fog node, IoT 

devices 

Energy 

consumption during 

task offloading 

(Hashemi et al., 

2024) 

disordered energy 

consumption and latency 

increasement 

metaheuristic algorithm 

Cat Swarm Optimization 

(CSO) and live migration 

technique 

Fog node Energy 

consumption and 

minimize latency on 

processing resources.  

Khan et al. (2024) faulty or damaged fog devices 

result in inaccurate measurements 

or destruction that will negatively 

impacts the system's overall 

performance 

fault-tolerant technique 

using optimization 

algorithm 

data generated 

by sensors 

energy usage as a 

criterion for any 

reactive techniques. 

Ghafari and 

Mansouri (2024) 

The majority of earlier 

scheduling plans did not 

simultaneously take into account 
the three criteria factors: energy, 

cost, and service time 

Nonlinear and Chaotic 

version of the ARO 

algorithm (NCARO) for 
Nonlinear and Chaotic 

ARO 

private energy resulting 

from both active and 

inactive states 

Idrees et al. 

(2024) 

heavy data traffic of IoT 

applications reality 

Energy-aware Data 
Transmission Approach 

with Decision-making 

(EDaTAD) 

Actual 
measurements of 

detected data 

from the sensor 

nodes 

energy 
consumption at 

sensor devices 

Hossam et al. 

(2024) 

Due to resource limitations and 

device limitations, effectively 

choosing fog nodes for 

application modules with 

different deadline needs and 

guaranteeing adherence to quality 

of service (QoS) criteria pose 

substantial difficulties. 

Search Nearest Gateway 

Algorithm, Earliest 

Deadline First (EDF) 

Algorithm, the Energy-

Aware Module Placement 

(EAMP) Algorithm  

data sensed by 

the sensors 

energy 

consumption in fog 

computing 

environments 

Li et al. (2024) electricity costs and carbon 

emissions continue to rise due to 

the high energy consumption 

Minimal Schedule Time 

with Energy Constraint 

(MSTEC) algorithm, High 

Reliability with Energy 

Constraint (HREC) 

algorithm 

Fog nodes restricted energy 

consumption for the 

workflow 
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Work Article Criteria 

Energy 

Efficiency 

Scalability Latency Bandwidth Energy Usage in 

Fog Nodes 

Violation Time 

and Energy 

Delay-aware 

Bichi et al., 2022 ✖ ✖ ✔ ✔ ✖ ✖ ✖ 

Malik et al., 2022                                       ✔ ✖ ✔ ✖ ✔ ✖ ✔ 

Chuang & Hsiang, 2022 ✔ ✖ ✔ ✔ ✔ ✖ ✖ 

Azizi et al, 2022 ✔ ✖ ✔ ✔ ✔ ✔ ✔ 

Nazari Bu-Ali et al., 

2022 
✔ ✖ ✔ ✖ ✔ ✖ ✔ 

Naha et al., 2022 ✖ ✖ ✔ ✔ ✔ ✔ ✖ 

Mordacchini et al., 2022 ✔ ✖ ✔ ✔ ✔ ✖ ✖ 

Feng et al., 2022 ✔ ✖ ✔ ✖ ✔ ✔ ✔ 

Delgado & Famaey, 

2022 
✔ ✖ ✖ ✖ ✖ ✖ ✖ 

Avgeris et al., 2022 ✔ ✔ ✔ ✖ ✖ ✔ ✖ 

Sellami et al., 2022 ✔ ✔ ✔ ✔ ✔ ✖ ✔ 

Idrees et al., 2022 ✔ ✖ ✔ ✖ ✖ ✖ ✖ 

Singh, N & Das, AK 

2022 
✔ ✔ ✔ ✔ ✔ ✖ ✔ 

Ghanavati, Abawajy & 

Izadi, 2022 
✔ ✖ ✔ ✖ ✔ ✖ ✖ 

Tariq et al., 2022 ✔ ✖ ✔ ✖ ✔ ✔ ✔ 

(Iftikhar et al., 2023) ✔ ✔ ✖ ✖ ✔ ✔ ✔ 

Saif et al. (2023) ✔ ✖ ✔ ✖ ✖ ✔ ✔ 

Liu et al. (2023) ✔ ✖ ✖ ✖ ✔ ✖ ✔ 

Singh et al. (2023) ✔ ✖ ✔ ✔ ✖ ✖ ✖ 

Mohammadzadeh et al. 

(2023) 
✔ ✔ ✖ ✖ ✖ ✖ ✖ 

Hajam and Sofi (2023) ✔ ✖ ✖ ✖ ✖ ✔ ✖ 

Zhao et al. (2024) ✔ ✔ ✔ ✖ ✔ ✖ ✔ 

(Hashemi et al., 2024) ✔ ✖ ✔ ✔ ✔ ✖ ✖ 

Khan et al. (2024) ✔ ✖ ✔ ✔ ✖ ✖ ✖ 
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Ghafari and Mansouri 

(2024) 
✔ ✖ ✖ ✔ ✖ ✖ ✖ 

Idrees et al. (2024) ✔ ✖ ✔ ✖ ✖ ✖ ✖ 

Hossam et al. (2024) ✔ ✖ ✔ ✔ ✔ ✖ ✖ 

Li et al. (2024) ✔ ✖ ✔ ✔ ✔ ✖ ✖ 

Our Work ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

Table 2.2 Summary Related Work of the Offloading 

Reference Problem Technique Performance Parameters 

Time Energy Network 

Phan et 

al., (2021) 

Overloaded nodes in task 

scheduling  

Dynamic fog-to-fog offloading in 

SDN-based fog computing systems 
✔ ✔ ✔ 

(Kishor & 

Chakarbar

ty, 2021) 

Difficulty of balancing 

compute and 

communication delays 

while minimizing latency 

in IoT-Fog situations 

through task offloading 

optimization 

Smart Ant Colony Optimization 

(SACO) algorithm 
✔ ✔ ✔ 

S. A. 

Khan et 

al. (2022) 

Inadequate for huge 

workloads requiring a lot 

of computation on 

devices with limited 

resources 

Workload/job placement method that 

performs two-way offloading 
✔ ✔ ✖ 

Reddy 

and 

Sudhakar 

(2023) 

absence of a scheduling 

algorithm designed to 

maximize resource 

utilization at the fog 

layer, meet job deadlines, 

and reduce overall 

execution time 

Osmotic Approach (OA)-based 

heuristic solution 
✔ ✔ ✖ 

Akyıldız 

et al. 

(2023) 

Low-quality offloading 

caused by low bandwidth 

and high latency 

Task Offloading Scheme with P4 

(TOS-P4) 
✔ ✖ ✔ 

Sulimani 

et al. 

(2024) 

Static offloading (SoA) 

falls short in 

heterogeneous networks 

Hybrid Offloading (HybOff) 

algorithm 
✔ ✔ ✔ 

Shukla & 

Pandey, 

(2024) 

Workflow applications 

with diverse resources 

and varying 

communication costs in 

FCI 

 MOTORS algorithm which combine 

both hybrid optimization-based 

resource scheduling approach 

(HORSA) with a fuzzy dominance-

based task clustering and 

overloading technique (FDTCO) 

✖ ✔ ✖ 

Our work Limited resources on fog 

computing can easily 

caused overload  

Load estimation and optimal task 

offloading in fog devices 
✔ ✔ ✔ 
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CONCLUSION 

In this chapter, much research has been done on QoE placement, energy and offloading. There are a lot of 

methods that can be used to increase performance in terms of the three criteria. The first and most efficient 

method for placement is QoE-aware Application Mapping Policy which is proposed in this project. The QoE-

aware Application Mapping Policy which includes Fuzzy logic-based approaches and multi-constrained 

single-objective optimization techniques to improve data processing time and service quality. It also 

guarantees one-to-one mapping between instances and applications. Besides, this QoE-aware Application 

Mapping Policy differs from other existing related work because it investigates and studies criteria such as 

service access rate, required resource amount and responsiveness to data processing problems. The standard 

designates application placement demands according to user requirements. Their main purpose is to maximize 

the user's composite QoE gain in terms of criteria such as less crowded networks, capable resource allocation, 

and shortened operation processing time. Furthermore, this proposed policy is developed in a decentralized 

manner, therefore, the single point failure issue and management overhead can be avoided. 

Moreover, our proposed energy-aware method will be different from other existing related works because the 

two optimization modules which are energy-aware module placement and the dynamic voltage and frequency 

scaling (DVFS) technique for energy optimization are combined in this project. Energy-aware module 

placement aims to improve efficiency by placing a module on the fog device that can fulfill its requirements 

based on the module's estimated minimum energy and MIPS. DVFS reduces cost and enhances resource 

utilization by adjusting the MIPS of the fog device as close as possible to the MIPS of the module requirement.  

Finally, the offloading method that is proposed by this project is able to achieve the shortest execution time 

and the least network usage compared with other existing related work. This is because analysis and testing are 

carried out on the simulation repeatedly to evaluate the performance of our proposed algorithm. In fact, several 

simulation parameters such as processing capacity of fog devices, RAM of fog devices and network latency, 

fog device upstream capability, fog device downstream capability, module size, and tuple size are followed 

during the testing. 

Research Methodology and Problem Analysis  

In this chapter, the main purpose is to analyse the problem faced and the encountered approaches during the 

research. The causes and issue of the research topic problems are further illustrated by reviewing plenty of 

related papers and journals. The research objectives for this research will be done through the methods such as 

QoE, energy and offloading are explained and introduced in detail. Additionally, a framework is presented for 

the research methodology. The tools and techniques involved to acquire the data are fully explained.  

In this chapter, there will be two main sections which are section 3.1 that describe the approaches to achieve 

research objectives, problem analysis as well as the faced challenges in this research. Meanwhile, section 3.2 

will be the chapter summary of this chapter. 

Approaches to Research  

The main features of fog computing such as QoE-aware application mapping policy, energy consumption and 

computation offloading are being studied to further understand the perspective on the development of existing  

solutions. The research methodology framework is illustrated as shown in Figure 3.1. From Figure 3.1, it can 

be seen that the analysis will be carried out based on the three main criteria which are QoE-aware mapping, 

energy and computation offloading based on the collected information from the literature review. The analysis 

results will assist in understanding and provide a more accurate perspective on the issue that affects the overall 

performance in fog computing environment. The gathered information will also specify the direction of the 

research. Besides, the gathered information will also assist in formulating the following objectives in this 

research. 

1. To propose a QoE-aware application mapping policy to improve the satisfaction.  
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2. To optimise and keep the energy consumption at an optimal level through module placement. 

3. To introduce a computation offloading method to prevent overloading on any fog device. 

4. To access the suggested solution and measure the work with the existing solutions. 

  

Fig. 3.1 Research Methodology Framework 

Energy Aware Review 

The main features of fog computing such as QoE-aware application mapping policy, energy consumption and 

computation offloading are being studied to further understand the perspective on the development of existing 

solutions. The research methodology framework is illustrated as shown in Figure 3.1. From Figure 3.1, it can 

be seen that the analysis will be carried out based on the three main criteria which are QoE-aware mapping, 

energy and computation offloading based on the collected information from the literature review. The analysis 

results will assist in understanding and provide a more accurate perspective on the issue that affects the overall 

performance in fog computing environment. The gathered information will also specify the direction of the 

research. Besides, the gathered information will also assist in formulating the following objectives in this 

research. In this chapter, there will be two main sections which are section 3.1 that describe the approaches to 

achieve research objectives, problem analysis as well as the faced challenges in this research. Meanwhile, 

section 3.2 will be the chapter summary of this chapter. 
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Formulate Research Problem  

Challenges of Developing QoE-aware Application Mapping Policy 

Different from Cloud data centres, Fog nodes are geographically distributed more closer to the end users. The 

resource constrained from the fog node will create a significant variance of network round-trip time, data 

processing speed and resource availability. Therefore, application placement in Fog environments will be a 

challenging task. There might be different application placement policies required to achieve a certain service 

level in Fog. The application placement such as Quality of Service (QoS), resource, situation-aware 

application placement in fog environment are already exploited. However, the impact and effect brought from 

Quality of Experience (QoE) in Fog-based application placement is still haven't be investigated and researched 

widely. In some situations, the QoE can be acted as the complement of the QoS. Although separate policy 

based service is led by QoE and QoS due to there being some subtitles between QoE and QoS. 

QoE is accepted to be used for user centric measurement in different service aspects such as to observe user 

requirements, perception and requirements on a service in different situations. QoE mainly focuses on user 

interests, therefore, QoE-aware policies can further increase the loyalty of users on a particular service and 

decrease the service abandon rate. In a fog environment, QoE-aware policies are already used for resource 

estimation and service coverage optimization. In addition to recovery and service provisioning, the application 

in Fog Computing is for estimating user QoE which can improve data processing time, resource consumption, 

and network quality. However, the user interest on different system services might be varied in real-time 

environments like fog environments. There will also be a frequent change in the QoE domination factors in fog 

environments. Therefore, to develop efficient QoE-aware policies will be a quite challenging and difficult task. 

In IoT, real-time interactions will happen more often than human interventions. Therefore, it is not possible to 

give feedback after every certain interval to notify QoE. Correspondingly, the significant variety of QoE 

dominating factors also made prediction-based QoE models to not be successful. There will be difficulties in 

modifying the placement based on the evaluation of QoE. After placing the application, it is necessary to make 

modifications based on the evaluation. So, identifying the QoE dominating factors and the combined impact on 

user QoE will be more viable and prior to application placement. Then, based on the factors, the applications 

can be placed to the most suitable computing instances so the user QoE will be downgraded. Hence, it is 

possible to monitor the difference between QoE on specific service and user feedback. 

Challenges of Lowering Energy Consumption 

Power consumption will be one of the major challenges to be taken into consideration while designing the 

algorithms and policy. The main purpose for an energy efficient algorithm is to consume the least energy to 

distribute the tasks and ensure the low latency quality of service at the same time. Available energy budget is 

another challenge to reduce the energy consumption due to battery-limited power on the devices. For example, 

IoT devices like sensors are not rechargeable and also have limited energy on the used battery size. Thus, it is 

required to sleep the sensor while the sensor is unused to save energy by using low-energy communication 

protocols. Green computing can be achieved by QoS-aware policy due to the non-increment of energy 

consumption.  

Challenges of Distributing Tasks with Computation Offloading in Fog 

Computation offloading is a common demand on end devices as well as in fog computing networks. It is very 

vital to handle fault tolerance and maintain the efficiency of a distributed system in a fog environment due to 

numerous devices running at the same time. There are certain algorithms that only can be used on closely 

placed nodes with insignificant delays. In fog environments, multiple fog nodes are used instead of single fog 

nodes, this because the multiple fog nodes can increase the computing capability to execute the task in order to 

fulfil low latency requirements. However, the high computation complexity and communication overhead 

ended up being an obstacle for achieving low-latency and agile response, optimal solutions which are 

accompanied by global information and centralised control in a fog environment. Thus, the complexity of 

algorithms is required to be taken into consideration because the simple implementation and operation of 

algorithms will always ensure the best performance. 
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Furthermore, there are several aspects that will be required to take into consideration such as the distances 

between service providing nodes, network links speeds between nodes and the distance between task processed 

nodes and the client. Thus, it is challenging to design a task distributing algorithm with computation offloading 

that can work on geographically distributed fog nodes. Also, developing a method to control load balancing 

mechanisms on the distributed fog nodes that have high delays tolerance in an effective manner is vital. To 

ensure the efficiency of the performance, the design of load balancing algorithms must be as simple as 

possible. 

Define Research Objectives  

There are few objectives to be achieved in this research. First and foremost, the first objective is to propose a 

QoE-aware application mapping policy to enhance the quality of service with a shorter processing time. 

Besides, the optimization of energy consumption while assuring the acceptable performance for the distributed 

task will be the second objective. Furthermore, the third objective is to propose the computation offloading 

method to prevent overloading on fog devices. Last but not least, the last objective is to evaluate the proposed 

solutions and use the collected data to compare in terms of efficiency and performance with the existing 

solutions. 

Proposed QoE-aware Application Mapping Policy  

To achieve the first objective, several research papers and journals have been reviewed to further understand 

QoE regards its policy. The reviewed research paper or journal assists in proposing a QoE-aware application 

mapping policy that can improve quality of service with lesser processing time for data. 

QoE-aware application mapping policy uses Fuzzy logic based approaches and multi-constraint single 

objective optimization technique. The QoE is capable of being influenced by the wide range of user 

assumptions parameters. Besides, based on various state criteria parameters, the instances of fog computing 

can also be classified. However, in this research, the access rate, demanded resources and speed limited the 

user assumption criteria. While, the circulation time, available resource and processing time limited the state 

criteria. 

To develop a QoE-aware policy, it is required to calculate the Degree of Assumption (DoA) and Capacity 

Class Grade (CCG). To calculate the DoA and CCG, the Fuzzy logic based approach is chosen because the 

consideration of Fuzzy logic is the best solution for the scalability characteristic in different situations and also 

the importance of dominance of multiple parameters. According to the  assumption criteria and state criteria 

parameters, the associated Fuzzy sets and rules have been scaled.  

After the DoA of application mapping request and CCG of Fog instances which is to get the maximised QoE 

Gain for mapping of applications are obtained, the multi-constrained single objective optimization technique 

will be applied. Then, to solve the optimization problem, an optimization solver with a single objective and 

multiple constraints will be used shortly. 

Proposed Energy-aware Module Placement 

To achieve the second objective which is to optimise the energy consumption the energy-aware method is 

proposed. There are two optimization modules proposed which can decrease the total energy consumption, 

total network usage and execution time. The understanding of energy-aware methods is vital because the 

performance and capability of infrastructure will be affected. 

There are a lot of research papers and journals that show that the capability and performance can be improved 

by energy optimization. The serious energy wastage is also extremely important. Moreover, the existing 

proposed algorithms in energy related papers can assist and be a reference on designing an improved energy-

aware method. 

The first module of energy-aware method is energy-aware module placement which functions to place the 

incoming task or module to fog devices to fulfil the requirement of the incoming task or module. There are two 
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methods associated in the energy-aware module which include estimating minimum energy of the mobile and 

MIPS of the module. Comparison between these two methods are made with available fog devices. The 

comparison will be used to determine whether the fog device is able to handle more incoming tasks and 

modules in order to place the module. In other words, if the fog device is available to be placed in more 

modules, the incoming module will be placed in that particular module. Otherwise, the most suitable following 

fog device will be the next available fog device to place the incoming module. 

After the mobile is placed to the fog device, the second module, dynamic voltage and frequency scaling 

(DVFS) technique will be performed to enhance the energy consumption and resource utilisation. DVFS is 

used to adjust the MIPS of fog devices in order to fit the MIPS of module requirements based on the MIPS of 

the module. The purpose of DVFS is to minimise the energy consumption and resource utilisation. In other 

words, after the fog device is placed by the module, the DVFS is to calculate the new MIPS. Thus, if the 

incoming module requires less MIPS but the current fog device contains a large amount of MIPS, the DVFS 

will adjust the MIPS of the fog device to fit the incoming module MIPS. 

Proposed Offloading 

To achieve the third objective which is to lessen the execution time and decrease the network usage in fog 

environments, an offloading algorithm is proposed. In the fog environment, there are numerous fog devices in 

the fog layers that can host applications with one and above instances. It is vital to know how the fog 

architecture works in terms of the simulation and module mapping function. Besides, it is important to 

familiarise with the procedure of offloading due to the proposed algorithm being run in simulation and the 

review will be made during the development process. There will be maximum load of fog devices and the 

maximum load must be determined at the beginning. The current job load will be added with the new job load 

when the new job reaches the fog devices. The job will be offloaded to the other fog devices if the result of job 

load for both current job load and new job load is exceeded on the fog devices. The job will not be executed on 

the current fog device if the result of job load is exceeded. During the simulation, the offloading analysi s and 

testing will be carried out. During the simulation, there will be few simulation parameters to be followed such 

as RAM of fog devices, capacity of fog devices, network latency, etc. The result will be generated after the 

execution is done. 

There are other related works such as research papers and journals related to implementation of the offloading 

method that are also reviewed. The suitable algorithm is chosen and the modification is made based on the 

chosen algorithm. To achieve the shortest execution time, testing is repeatedly performed. Additionally, the 

results from the testing simulation are recorded as well as the charts and graphs for further comparison. A set 

of notation for computation offloading is produced to standardise the coding style. The notation is illustrated in 

the pseudocode and coding phase of the program. The reader can have a better understanding by referring to 

the notation set. 

To result in better performance in terms of the execution time and network usage during the simulation in the 

fog environment, an offloading algorithm is proposed. The advantages of this algorithm is it can prevent the 

fog devices being flooded with every incoming task. Besides, it can determine which fog devices handle the 

least amount of tasks due to the MIPS. Therefore, all of the fog devices will be fully utilised in the fog 

environment. 

System Design and Implementation 

The proposed techniques are transformed into a workable system to achieve all objectives before the proposed 

techniques can be implemented as a tool to collect data and feedback from the users that are being invited to 

evaluate the effectiveness of the proposed methods. The evaluation is done through a scenario of virtual reality 

(VR) game in fog computing environments. There will be two stages in the transformation process which 

includes system design and the implementation stage. 

In the system design stage, the use case diagrams, flowcharts and pseudocodes are used to present all the 

activities that involve the transformation of the requirements. The implementation of the VR game algorithm 
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involves three stages. By using QoE-aware application mapping policy, energy-aware placement and 

offloading algorithm to map the module to appropriate mobile devices in order to ensure the optimization of 

the performance.  

During the implementation stage, the simulator called iFogSim is used to implement the proposed 

methodology. iFogSim is a dynamic environment of  IoT applications platform for using to perform 

simulation. Besides, the tools Eclipse is used as the design and development tool to run iFogSim simulator. 

The Java programming language is used to write the proposed algorithm. To achieve the predefined objectives, 

the prototype for every proposed system is well developed and recursively tested. 

System Testing and Evaluation 

Scenario 

Several scenarios have been set to test the proposed solution and solution without energy-aware to achieve the 

fourth objective. The comparison is made based on a few aspects such as execution time, total power 

consumption and network usage from the simulation results. Based on the scenario, different aspects will result 

in different results as shown in Table 3.1. Table 3.1 shows the simulation scenario on the proposed solution 

without QoE-aware and energy-aware. 

Table 3.1 Simulation scenario on fog device and application module arrangement  

Scenario Fog Device Arrangement Application Module Arrangement 

Scenario 1 Fog Device MIPS increases from end user 

towards cloud 

Module’s MIPS requirements increases from 

client towards last module 

Scenario 2 Fog Device MIPS increases from end user 

towards cloud 

Module’s MIPS requirements decreases from 

client towards last module 

Scenario 3 Fog Device MIPS increases from end user 

towards cloud 

Module’s MIPS requirements is in random order 

between client and last module 

Scenario 4 Fog Device MIPS is in random order between 

end user and cloud 

Module’s MIPS requirements increases from 

client towards last module 

Scenario 5 Fog Device MIPS is in random order between 

end user and cloud 

Module’s MIPS requirements decreases from 

client towards last module 

Scenario 6 Fog Device MIPS is in random order between 

end user and cloud 

Module’s MIPS requirements is in random order 

between client and last module 

Case Study 

After the development, the existing solution is used to compare and evaluate the proposed solution. Table 3.2 

shows the data gathering techniques for evaluation and comparison. The criteria that is used to compare and 

evaluate the proposed solution and existing solution includes execution time, energy consumption and network 

usage. The simulation is completed in the tool iFogSim. 
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Table 3.2 Data gathering technique used for evaluation and comparison 

No. Title Data Gathering Technique Method Information obtained 

1. Comparison with 

solution without 

QoE-aware  

Simulation in iFogSim Quantitative Comparison result based on energy 

consumption, execution time and 

network usage 

2. Comparison with 

solution without 

energy optimization 

Simulation in iFogSim Quantitative Comparison result based on energy 

consumption, execution time and 

network usage 

3. Comparison with 

solution without 

computation 

offloading 

Simulation in iFogSim Quantitative Comparison result based on energy 

consumption, execution time and 

network usage 

4. Comparison between 

solution with QoE-

aware  

Simulation in iFogSim Quantitative Comparison result based on energy 

consumption, execution time and 

network usage 

5. Comparison between 

solution with QoE-

aware and energy-

aware 

Simulation in iFogSim Quantitative Comparison result based on 

execution time, network usage and 

energy consumption 

System Testing and Evaluation 

The involved steps and acquired findings will be documented at the end of the research. To show the level of 

performance and improvement of the development, documentation is necessary to be an evidence to express 

the findings. Documentation can also express the completeness and accuracy of the work for the reader. The 

understanding of the reader in terms of the flow of research and the contribution made on existing knowledge 

is mainly based on the documentation. Besides, documentation will serve as a vital reference in the future 

work for other researchers.  

Summary 

In summary, the problem analysis and discussion of methodology used are contained in this research, The 

problem statement is analysed including the detailed explanation of the cause and issue that lead to the 

problems. The research methodology framework is developed to achieve the research objectives. The detailed 

explanation based on the Proposed QoE-aware Application Mapping Policy, Proposed Energy-aware Method, 

Proposed Computation Offloading Method, System Design and Implementation, System Testing and 

Evaluation and Documentation are described in the research. The explanation of tools used for the 

development phase as well as data gathering method is described as well. The following chapter will be 

presented on the topic of system design and implementation of the proposed solution. 

Research Methodology and Problem Analysis  

The main topic will be presented in this chapter is the system design and implementation of the proposed 

solutions. There are two phases in the proposed solution, phase one is QoE-aware application mapping and 

energy-aware module placement, meanwhile, phase two is the implementation of computation offloading 

algorithm. The purpose of the proposed solution is to   enhance user satisfactions, minimise the execution time, 

network usage and to optimise the energy consumption. The beginning of this chapter will be the discussion of 

system architecture design. Then, the system implementation of QoE-aware application mapping, energy-
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aware module placement and computation offloading will be discussed subsequently. The last section will be 

the conclusion of this chapter.  

System Architecture Design 

The information related to the fog computing framework, fog environment simulation and the modelling of fog 

environment and module placement will be provided in this section. 

There are three layers to build up the fog computing architecture which are sensor layer, fog layers and cloud 

layers. Figure 4.1 shows the fog computing architecture which constitutes layers that are liable for explicit 

assignments to aid the operation of higher layers. 

All service requests are gathered from users in integrated fog and cloud networks. The users are linked with 

various applications. The users can send service requests to fog nodes via wireless access as well as access to 

the fog nodes. The fog nodes will respond to the users based on the service request on demand as well. The 

result will return back to the users through three layers architecture. 

The IoT devices linked with applications will perform specific functions based on the request from the end 

users. Multiple interconnected Applications Modules are divided from Fog-enabled IoT applications. There 

will be two Applications Modules composed for Fog-enabled IoT applications. The two Application Modules 

include Client module and Main Application Module. The Client Module will run and process at the user’s 

proximate devices. It will hold the user’s preferences and contextual information as well as the deliveries such 

as acknowledgement or instruction of the Main Application Module. Meanwhile, the Main Application 

Modules will carry out all the application data operations. The output of the Main Application Module will be 

regarded as the final product of the Fog-enabled IoT systems. 

 

Fig. 4.1   Fog Computing Architecture 
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The third layer of fog computing architecture will be the sensor or IoT devices layer. The devices in this layer 

are located the most closest to the end user. This layer is a physical environment which consists of various IoT 

devices like sensors, actuators, mobile phones, and etc. All of these devices are geographically distributed 

widely in the world. All of the devices in IoT are modelled by a sensor and actuator and all of these devices are 

able to emit data. Sensors are used to perform sensing the physical objects or events feature data and 

transmitting the sensed data for processing and storing to the upper layer. Actuators are used for responding 

when there are changes in environments imposed by the applications based on the captured information from 

sensors. 

The second layer is a fog layer in which numerous fog nodes are located in this layer. The fog nodes include 

routers, switches, access points, fog servers, etc. The fog nodes are distributed between the clouds centre and 

end devices from the end users. The services are obtained by connecting the end devices to the fog nodes. The 

fog nodes are able to perform computing, transmitting, temporarily storing and receiving sensed data. In the 

fog layer, the real-time analysis and latency-sensitive application will be accomplished. Additionally, the other 

side of the fog node is connected to the cloud data centre by IP core network. The interaction and cooperation 

will be done between fog nodes and cloud data centres for obtaining more powerful computing and storage 

capabilities. 

The cloud layer that performs global or centralised monitoring and control is located at the top layer. The 

cloud layer consists of multiple storage devices and high-performance servers which are able to perform strong 

computing and storing capabilities for supporting extensive computation analysis and permanently storage of 

gigantic amounts of data. Large-scale event detection, long-term pattern recognition and relationship 

modelling to support dynamic decision making will be the result of cloud scale analytics. One of the major 

objectives of cloud level analytics is to guarantee the grid and service vendors in order to perform large scale 

resource and management activities as well as prepare for the blackouts or brownouts. 

On top of this, there will be three main aspects to be considered in fog computing. The first aspect is Quality of 

Experience (QoE). QoE is an acceptable service that is mainly determined based on the users requirements and 

perception. QoE will provision the service by summarizing the user’s perceptions, requirements and intentions. 

QoE-aware application mapping is required to guarantee the ensuring quality of experience of the users in 

terms of enhancing the data processing time and service quality. There are two techniques used for proposing 

QoE-aware mapping policy. The techniques are fuzzy logic and multi-constraint single objective optimization 

techniques. 

Fuzzy logic is used to perform the calculation of Degree of Assumption (DoA) for application and Capacity 

Class Grade (CCG) for computing instances. The high combined intensity of associate Assumption Criteria 

parameters is indicated by high DoA. Whereas, the CCG is to represent the better ability of an instance to fulfil 

different user assumptions. After performing calculations on both DoA and CCG, the multi-constraint single 

objective optimization technique is used to maximise the Rating Gain for all application mapping to improve 

the QoE of the user and also maintain QoS of the user at the same period of t ime. QoE-aware policy will 

ensure one to one mapping between applications and instances. 

Energy is a second aspect in fog computing. It refers to the total power consumption during fog 

implementation. Although the increment of quality of service will result in more energy consumed, it is also 

vital to minimise the power consumption by using an energy-aware module placement. First of all, the fog 

node will calculate the estimated minimum energy on the incoming module, Then, the estimated minimum 

energy and MIPS of the incoming module will be compared to the maximum energy and MIPS of the fog 

device. This process will stop until a fog device is found and able to fulfil the incoming module requirements. 

Next, the incoming module is placed to the found fog device. The dynamic voltage and frequency scaling 

(DVFS) that is used to adjust the remaining MIPS.  

Lastly, the third aspect is the proposed offloading in the fog layer. The proposed offloading is used to transfer 

resource intensive computational tasks to another fog device due to the limitation of fog devices such as 

limited computational power, storage, and energy. To prevent the overall performance being affected, an 

offloading algorithm is proposed to solve the issues. Although there are numerous fog devices located in the 
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fog layer which are able to host more than one instance for the application, there is the maximum workload for 

fog devices. When the new task is arrived at the fog device, the system will compare the job load of the task on 

the current fog device. If the fog device is already occupied by a task, the newly arrived task will be offloaded 

to the following fog device instead of executing the task at the current fog device. 

In short, the three aspects mentioned above are the most vital elements in fog computing environments in order 

to enhance overall performance for execution of job as well as execution time and usage of network.  

The distributed data flow (DDF) model is created for deployment in fog computing and it is the role model of 

the applications. Applications which contain data processing capabilities are modelled as module collections. 

Also, based on the data output, it is to produce information which is beneficial to the application. The output 

data from a processing module for example, module I. This means when the module I is done processing, the 

result from module I is able to be used as another module such as module J and so on. The data dependency is 

created between module I and J due to this appearance and it can be performed as an application on directed 

graph design in this model.  

In IoT, the IoT devices use sensors as source of the data. Meanwhile in cloud architecture, the data is known as 

cloudlet. On the other hand, in fog computing, the data is known as tuples. 

Fog Environment Simulation 

 

Fig. 4.2   Main classes 

Figure 4.2 shows the main classes in fog environment simulation. Fog controller is one of the physical devices 

that is responsible for building the fog node to deploy the abstraction, it is similar to cluster lead while also 

granting communication between cloud and fog layers. The Controller is used to control the ModuleMapping, 

FogDevice as well as the Application.  

QoE is used to support module mapping in order to develop an QoE-aware application mapping policy which 

improves overall user experience and ensures one to one mapping between applications and instances. The 

second process will be gone through in Energy class which is an energy-aware module placement after 

application being mapped to fog instance. Energy-aware module placement aims to optimise the energy 

consumption as well as execution time and usage of the network. Next, the Offloading class is to prevent the 

overloading of a fog device through the implementation of a proposed offloading algorithm. Through this 

algorithm, the task will be offloaded to other fog nodes instead of executing when the current fog device is 

processing a task. After these three processes, the results will be passed to ModulePlacementMapping and 

finally the module is placed to the suitable fog device by ModulePlacement class. The results will be returned 
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back to application after the task is processed by the fog device. The three classes which are AppModule, 

AppLoop and AppEdge connect to the application. AppModule serves as the processing elements of fog 

applications. AppModule will process and send the generated output tuples to next modules in the DAG. 

AppLoop is an extra class, utilised for determining the loops that are important to the user and controls the 

process whereas an AppEdge case indicates the information reliance between a couple of application modules 

and represents a directed edge in the application mode. 

Modeling Fog Environment 

The target application is a fog computing environment that consists of multiple fog devices which can bring 

the cloud applications closer to the physical IoT devices at the network edge. Fog device is also known as fog 

node which is able to process tuples that were sent from other modules hosted on the other fog node hence 

qualifying fog node as a “mini-cloud” located at the edge of a network that is interconnected by varieties of 

communication technologies. Virtual machine is the logical data flow presented in a physical fog node in order 

to fully leverage the processing capability of the fog node. Thus, the virtual machine which is located in the 

fog devices will process the tuple according to the tuple scheduler. A host is a computer or other device that 

communicates with other hosts on a network. Hosts on a network include clients and servers that send or 

receive data, services or applications. Based on research, only one application module is provisioned within a 

single virtual machine instance to simplify the testing. Figure 4.3 shows the relationship of the related main 

entities of the proposed solution. 

 

Fig. 4.3 The relationship of the main entities in proposed solution 

Application is composed of modules that could be individually hosted on fog nodes to fully leverage the 

potential of fog devices. The characteristics of modules include maximum MIPS requirement, RAM 

requirement, Bandwidth requirement, and the tuple frequency. On the other hand, the characteristics of fog 

devices include MIPS, RAM, bandwidth, link latency, and energy consumption. 

iFogSim supports resource management service through two application module placement. “Cloud-only 

placement” is all modules of an application run in data centres whereas “Edgeward placement” is application 

modules that are placed close to the edge of the network. However, devices close to the edge of the network 

may not be powerful enough to host all the applications. The placement policy determines how application 

modules are placed across Fog devices upon submission of application. The placement process can be driven 

by objectives such as minimising end-to-end latency, network usage, operational cost, or energy consumption. 

The class Module Placement is the abstract placement policy that needs to be extended for integrating new 

policies. The illustration of module placement is shown in Figure 4.4. 
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Fig. 4.4 Illustration of module placement 

QoE-aware Application Mapping 

QoE-aware application will be the first process in phase one of a proposed solution which enhances the user 

satisfaction. 

Architecture of QoE-aware Application Mapping 

The computational nodes are equipped with resources such as memory, bandwidth and CPU to run various 

applications for computational fog nodes (CFN). The resources are virtualized among MSs, micro services, 

where assignment of applications for execution are conducted in computational nodes. Dynamic provision on 

the additional resources for a micro service can be conducted from either In CFN, all configured MSs can be 

operated independently. Controller node is in charge of monitoring and controlling the overa ll activities of 

CFN. There is data storage in the controller node that stores metadata that is related to the running application 

and State Criteria parameters of the MSs. In the controller node, a Capacity Grade Unit is proposed to define a 

capacity index for each MS based on the State Criteria parameters to ensure that MSs are ranked in accordance 

with their competence.  

Sometimes, the computation of data signals transmitted from IoT devices is facilitated by edge fog nodes, 

EFNs. For certain Fog-enabled IoT systems, it is assumed that the corresponding EFNs run the Client Module 

and aid in placing the subsequent module to CFNs in the upper level. In this approach, the connections are 

established between EFNs and IoT devices. The Client Module is initiated by the Application Initiation Unit of 

EFNs, through which a user expresses assumptions related to the application to EFNs. EFN services are used 

to obtain and collect the capacity index of MSs and it is stored in a data storage. Moreover, the data storage 

keeps user Assumption Criteria and Quantity of Service (QoS) attributes related to the application for further 

processing. In EFN, there are two individual units which are, Application Mapping Unit and Assumption 

Degree Unit. For each application mapping request, Assumption Degree Unit calculates a priority value by 

considering user Assumption Criteria. Other than that, the Application Mapping Unit of EFN carries out 

mapping of applications to appropriate Fog instances according to the priority value of application mapping 

requests and the capacity index of MSs respectively. Figure 4.5 shows the architecture for QoE-aware 

application mapping.  
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Fig. 4.5 Architecture for QoE-aware application mapping 

Flow of QoE-aware Application Mapping 

The calculation of a priority value called Degree of Assumption (DoA) will be the essential steps of each 

application mapping request according to the user assumption parameters, and also to calculate a capacity 

index called Capacity Class Grade (CCG) of MSs in CFNs in accordance to the state parameters and guarantee 

the QoE maximised applications mapping to competent MSs using DoA and CCG values. It requires the active 

participation of Assumption Degree Unit, Application Mapping Units of EFNs and Capacity Grade Unit of 

CFNs in order to carry out the steps. Figure 4.6 shows the sequence diagram for QoE-aware application 

mapping. 

 

Fig. 4.6 Sequence diagram for QoE-aware application mapping 
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To ensure the best quality of experience for end users, the calculation of two values is vital. The two values are 

DoA of an application and CCG of a computing instance to effectively map the application to fog instances. 

There are several steps that need to be followed from the calculation of two values until mapping of 

application. The first step is to get the Bandwidth, Demanded Resources and Latency Acceptability to store 

into data storage from the clients assumption. The parameters are sent for DoA calculation through the process 

of fuzzy inference and defuzzification after assumption parameters are normalised. After calculating DoA, 

edge fog nodes will query the accessibility of cloud fog nodes about available micro services and CCG values 

will be associated. Then, State Criteria will be acquired for the calculation of CCG and the CCG is sent once it 

is calculated. The total Rating Gain of the applications are maximised in the process of mapping applications 

on that instance. QoE-aware mapping of the applications will be promoted based on the maximum Rating 

Gain. 

Notation and Definition  

Table 4.1 shows the QoE-aware application mapping 

Symbol Definition 

𝑀 Set of all Edge Fog Nodes (EFNs) 

𝑁 Set of all Computational Fog Nodes (CFNs) 

𝐷𝑜𝐴  Degree of Assumption (𝐷𝑜𝐴) is the priority value that are calculated based on assumption 

parameters 

𝐶𝐶𝐺 Capacity Class Grade (𝐶𝐶𝐺) is a capacity index of micro services according to state parameter 

to ensure the maximisation of application placement 

𝐸𝑚 Set of all application mapping request in EFN 

𝐽𝑛 Set of all micro services in CFN 

∝ Bandwidth parameter in Assumption Criteria 

𝛽 Demanded resources parameter in Assumption Criteria 

𝛾 Latency Acceptability parameter in Assumption Criteria 

𝜃 Circulation time parameter in State Criteria 

𝜆 Resource availability parameter in State Criteria 

𝜋 Processing speed parameter in State Criteria 

𝐴𝑒𝑚  Assumption Criteria for application 𝑒 ∈ 𝐸𝑚 

𝑆𝑗𝑛
 State Criteria for instances 𝑗 ∈ 𝐽𝑛 

𝜎𝑒𝑚
 DoA of application 𝑒 ∈ 𝐸𝑚 

ɸ𝑒𝑚
 Data signal size for 𝑒 ∈ 𝐸𝑚 

𝛺𝑗𝑛
 CCG of instances 𝑗 ∈ 𝐽𝑛 

𝐾𝜔
𝑒𝑚  Assumption (value) of parameter ω for application 𝑒 ∈ 𝐸𝑚 ; 𝜔 ∈ {𝛼, 𝛽, 𝛾} 

𝐺𝜀
𝑗𝑛  State (value) of parameter ɛ for instances 𝑗 ∈ 𝐽𝑛 ;𝜀 ∈ {𝜃, 𝜆, 𝜋}  

𝜏𝜔 Fuzzy membership function for any 𝐴𝑒𝑚  parameter ω 

𝜏𝜀
′  Fuzzy membership function for any 𝑆𝑗𝑛  parameter ɛ 

𝐹𝑎  Fuzzy outcome set for DoA calculation. 

𝐹𝑐
′ Fuzzy outcome set for CCG calculation. 

∀𝑓𝑒𝑚  Singleton value for a Fuzzy outcome in (DoA) 𝑓𝑒𝑚
∈  𝐹𝑎  of 𝑒 ∈ 𝐸𝑚 

Ʌ𝑓𝑗𝑛
′

 Singleton value for Fuzzy outcome in (CCG) 𝑓𝑗𝑛

′ ∈  𝐹𝑐
′ of 𝑗 ∈ 𝐽𝑛 

𝜏𝑎 Membership function for any Fuzzy outcome in DoA calculation  

𝜏𝑐
′  Membership function for any Fuzzy outcome in CCG calculation  

𝑣𝑗𝑛

𝑒𝑚 ∈ {0,1} Equals to 1 if 𝑒 ∈ 𝐸𝑚mapped to 𝑗 ∈ 𝐽𝑛, 0 otherwise 

𝐴𝑟  Normalised access rate  

𝑅𝑟 Normalised resource requirement  

𝑃𝑡 Normalised processing time 

𝛤𝐵𝑤 Fuzzification bandwidth set 
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𝛤𝑅𝑟 Fuzzification resource requirement set 

𝛤𝑃𝑡 Fuzzification processing time set 

𝛤𝑖 Fuzzification Inference  

𝛱𝑠 Defuzzification Singleton  

s Singleton 

𝛱 Defuzzification 

RoE Return on Equity Value 

CCS Cloud Computing and Services Value 

Calculation of Degree of Assumption (DoA) 

Based on the specific fog environment, application placement requests are given distinctive expectation 

parameters ‘range. The amount of the parameter can be chosen unless it didn’t reach beyond the range.  

Table 4.2 Range of the Parameters for DoA 

Parameter/Metrics Value in Range(𝑥𝜔, 𝑦𝜔) 

Bandwidth (3, 18) 

Demanded Resources (4, 16) 

Latency Acceptability (20, 140) 

The users end device compromise to the 𝐴𝑒𝑚
∈  {𝐾𝛼

𝑒𝑚, 𝐾𝛽
𝑒𝑚, 𝐾𝛾

𝑒𝑚 } regarding an application 𝑒𝑚 to the system 

through the Application Initiation Unit. The data storage will contain the 𝐴𝑒𝑚
 and it is sent to the Assumption 

Degree unit of EFN 𝑚. 𝐴𝑒𝑚  which contain three parameters and the range. The units of the values vary. The 

values of each parameter are normalised to simplify further calculation. The result of the normalisation will 

fall in between -1 and 1 by using Eq.4.1: 

𝐾𝜔
𝑒𝑚 = 2 (

𝐾𝜔
𝑒𝑚 −𝑥𝜔

𝑦𝜔−𝑥𝜔
) − 1                                           (4.1) 

𝐾𝜔
𝑒𝑚  is the normalised value for criteria 𝜔 within the range [𝑥𝜔, 𝑦𝜔]. Each criteria in [𝑥𝜔, 𝑦𝜔], is defined based 

on the scope for every criteria of Table 4.2 offered in the Fog Environment. In the other words, 𝑥𝜔  refer to the 

minimum value of the range of parameters, 𝑦𝜔  refers to maximum value of the range of parameters  In 

Assumption Degree Unit, a Fuzzy logic based approach is used to calculate the 𝜎𝑒𝑚
of each application from 

the normalised parameter in 𝐴𝑒𝑚
. 

Fuzzification Module for DoA Calculation 

Fuzzification is used to convert the crisp input values into fuzzy values by using the information in the 

knowledge base. In fuzzification, the crisp inputs which are x and y are taken to determine the degree whether 

they belong to which of the appropriate fuzzy sets. The standardised value 𝐾𝜔
𝑒𝑚  of any 𝐴𝑒𝑚

 parameter 𝜔 is 

transformed into an equivalent fuzzy dimension through associate membership function  𝜏𝜔 . This work 

involved membership functions of different Assumption Criteria from three different fuzzy sets. The following 

are the fuzzy sets: 

● Bandwidth: 𝐵𝑤 ∈  {𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 𝐿𝑜𝑤, 𝐿𝑜𝑤, 𝑀𝑒𝑑𝑖𝑢𝑚, 𝐻𝑖𝑔ℎ, 𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 𝐻𝑖𝑔ℎ} 

● Demanded resources: 𝐷𝑟 ∈  {𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 𝑆𝑚𝑎𝑙𝑙, 𝑆𝑚𝑎𝑙𝑙, 𝑀𝑒𝑑𝑖𝑢𝑚, 𝐿𝑎𝑟𝑔𝑒, 𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 𝐿𝑎𝑟𝑔𝑒} 

● Latency Acceptability: 𝐿𝑎 ∈  {𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 𝑆𝑙𝑜𝑤, 𝑆𝑙𝑜𝑤, 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒, 𝐹𝑎𝑠𝑡, 𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 𝐹𝑎𝑠𝑡} 

In this case, the following 𝐾𝜔
𝑒𝑚  value will be given as 6 per seconds, 7 CPU cores and 110 ms to Bandwidth, 

Demanded Resources and Latency Acceptability respectively, as shown in Table 4.3. 
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Table 4.3 Value of DoA Calculation 

Parameter Bandwidth (per seconds) Demanded Resource (CPU cores) Latency Acceptability (ms) 

𝑥𝜔  3 4 20 

𝑦𝜔  18 16 115 

𝐾𝜔
𝑒𝑚  6 7 100 

After the value is prepared, it takes fuzzy input and applies it to the antecedents of fuzzy rules, then it can start 

to calculate the Degree of Assumption (DoA) as shown in Table 4.4 based on Eq.4.1: 

Table 4.4: Result of Calculation of DoA 

Bandwidth Demanded Resource  Latency Acceptability 

𝐾∝
1 = 2 (

6 − 3

18 − 3
) − 1 

         𝐾∝
1  = -0.60 

𝐾𝛽
1 = 2 (

7 − 4

16 − 4
) − 1 

          𝐾𝛽
1 = -0.50 

𝐾𝛾
1 = 2 (

100 − 20

115 − 20
) − 1 

         𝐾𝛾
1 = 0.68 

The membership degree, 𝜏𝜔 (𝐾𝜔
𝑒𝑚 ) for any normalised value for criteria 𝜔 based on respective fuzzy sets in 

Figure 4.7. Table 4.5 is fuzzy sets after assumption parameters that are normalised. The fuzzy set will be 

arranged in: 

❖ Bandwidth: 

➢ 𝜏𝜔 (𝐾∝
1)  → 𝐵𝑤: { 𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 𝐿𝑜𝑤, 𝐿𝑜𝑤, 𝑀𝑒𝑑𝑖𝑢𝑚, 𝐻𝑖𝑔ℎ, 𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 𝐻𝑖𝑔ℎ} 

❖ Demanded Resource: 

➢ 𝜏𝜔 (𝐾𝛽
1)  → 𝐷𝑟: {𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 𝑆𝑚𝑎𝑙𝑙, 𝑆𝑚𝑎𝑙𝑙, 𝑀𝑒𝑑𝑖𝑢𝑚, 𝐿𝑎𝑟𝑔𝑒, 𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 𝐿𝑎𝑟𝑔𝑒} 

❖ Latency Acceptability: 

➢ 𝜏𝜔 (𝐾𝛾
1)  → 𝐿𝑎: {𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 𝑆𝑙𝑜𝑤, 𝑆𝑙𝑜𝑤, 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒, 𝐹𝑎𝑠𝑡, 𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 𝐹𝑎𝑠𝑡} 

 

Figure 4.7: Membership function of assumption criteria parameters 
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Before the normalisation process, it is assumed that the value of parameter ∝ in application. Fuzzy sets can be 

displayed in many shapes. However, triangles or trapezoids can usually fully express expert knowledge and 

can greatly simplify the calculation process. Figure 4.8 shows how Fuzzy logic separates the area for 

Bandwidth fuzzy sets. 

 

Fig. 4.8 Area separation for Bandwidth fuzzy sets  

After the normalisation process is complete in Table 4.4, the answer for 𝐾∝
1  is = -0.60. 𝐾∝

1  refer to the 

normalised application 1 under Bandwidth parameter ∝. Based on the result, it is shown that -0.60 of the x axis 

hit 0.25 and 0.75 on the y axis of its respective membership set in the Extremely Low and Low area. Refer 

Figure 4.9, therefore it is concluded that the fuzzy set for 𝜏𝜔 (𝐾∝
1)  → 𝐵𝑤: {0.25,0.75,0.0,0.0,0.0}. 

 

Fig. 4.9 Bandwidth normalised value intercepted Extremely Low and Low area 

In parameter of Demanded Resources, 𝐾𝛽
1 is = -0.50. 𝐾𝛽

1 refer to the normalised application 1 under Demanded 

Resources parameter 𝛽. Based on the result, it is shown that -0.50 of x axis hit 0.00 and 0.00 on y axis in 

Extremely Small and Small area on y-axis of its respective membership set correspondingly, therefore it is 

concluded that the fuzzy set for 𝜏𝜔 (𝐾𝛽
1)  → 𝐷𝑟: {0.0,0.0,0.0,0.0,0.0}. 

In parameter of Latency Acceptable, 𝐾𝛾 
1  is = 0.68. 𝐾𝛾 

1  refer to the normalised application 1 under Latency 

Acceptability parameter 𝛾. Based on the result, it is shown that 0.50 of x axis hit 0.50 on y axis in Fast and 

Extremely Fast membership sets respectively, therefore it is concluded that the fuzzy set for 𝜏𝜔 (𝐾𝛾 
1 )  →

𝐿𝑎: {0.0,0.0,0.0,0.50,0.50}. Table 4.5 shows the examples of fuzzy sets after assumption parameters being 

normalised. 

Table 4.5: Fuzzy sets after assumption parameters being normalised 

Parameter DoA 

(𝐾𝜔
𝑒𝑚) 

Intercepted Area of Y-axis (Normalised Value) 𝜏𝜔 (𝐾𝜔
𝑒𝑚 ) 

Bw -0.60 

 

Extremely Low 

(0.25) 

Low 

(0.75) 

Medium 

(0.00) 

High 

(0.00) 

Extremely 

High (0.00) 

{0.25,0.75,0.00, 

0.00,0.00} 
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Dr  

-0.50 

Extemely Small 

(0.00) 

Small 

(1.00) 

Medium 

(0.00) 

Large 

(0.00) 

Extremely 

Large 

(0.00) 

{0.00,0.00,0.00, 

0.00,0.00} 

La  

0.68 

Extremely Slow 

(0.00) 

Slow 

(0.00) 

Moderate 

(0.00) 

Fast 

(0.52) 

Extremely 

Fast (0.48) 

{0.00,0.00,0.00, 

0.52,0.48} 

Fuzzy Inference Module for DoA Calculation 

Fuzzy inference is used to formulate a mapping from a given input to an output using fuzzy logic. Then, the 

mapping will provide the basis from which decisions can be made or patterns can be identified. During fuzzy 

inference, corresponding fuzzy outputs are determined by mutually comparing fuzzy inputs with the help of 

fuzzy rules. The fuzzy rules are set in such a way that approximately stringent assumption parameters like 

large resource demand are given higher weight. As a result, the DoA value for the requests will be more 

aligned with the stringent assumption parameters compared to flexible parameters like moderate latency 

acceptable and medium bandwidth. After that, the system needs to be tuned and evaluated to see if the fuzzy 

system meets the requirements specified at the beginning. The surfaces can be generated by using the fuzzy 

logic toolbox to analyse the performance of the system. The fuzzy rules used to calculate DoA are shown in 

Figure 4.10 while the results of fuzzy inputs (Assumption Criteria parameters) comparison based on the fuzzy 

rules are shown in Appendices. 

 

Fig. 4.10 Fuzzy rules for DoA calculation 

The membership degree for each of the fuzzy outputs refers to the highest membership degree of each 

compared parameter from the corresponding fuzzy set. The figure 4.10 is based on table 4.2 Range of the 

Parameters for DoA. The equation used to determine the membership degree is shown in Eq.4.2:  

𝜏𝑎(𝑓𝑒𝑚
)

= (𝜏𝛼 (𝐾𝛼
𝑒𝑚) , 𝜏𝛽 (𝐾𝛽

𝑒𝑚) , 𝜏𝛾 (𝐾𝛾
𝑒𝑚 ))  

(4.2) 
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Fig. 4.11 Fuzzy rules for DoA calculation 

From Figure 4.11, the bandwidth will be divided into 5 types which are ‘EH’, ‘H’, ‘M’, ‘L’, ‘EL’ and represent 

‘Extremely High’, ‘High’, ‘Medium’, ‘Low’ and ‘Extremely Low’. The resource demand is divided into 5 

types which are ‘EL’, ‘L’, ‘M’, ‘S’, ‘ES’ and represent ‘Extremely Large’, ‘Large’, ‘Medium’, ‘Small’ , 

‘Extremely Small’. Using the comparison of the first fuzzy set as an example, with the Extremely Low 

Bandwidth, Extremely Large Demanded Resource and Extremely Slow Latency Acceptance, the fuzzy output 

will be on an High level. The illustrative explanation is shown in Figure 4.12. Any u number of fuzzy rules can 

be triggered based on the Assumption Criteria parameters. 

 

Fig. 4.12 Illustrative explanation on getting fuzzy output for DoA calculation 

Defuzzification Module of DoA calculation 

The maximum rating of the application for that fuzzy output is represented by a value called singleton value 

which is set in a way that could make the logical difference on having fuzzy outputs obviously visible. In this 
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case, the singleton value for fuzzy output is set as ‘Extremely High’, ‘High’, ‘Medium’, ‘Low’ and ‘Extremely 

Low’ as 10, 8, 6, 4 and 2 respectively. Fuzziness helps us evaluate the rules, but the final output of the fuzzy  

system must be a clear number. The input of the defuzzification process is the aggregate output fuzzy set, and 

the output is a single number. For defuzzification, Fuzzy logic is applied on different parameters of the 

Assumption Criteria to obtain the exact DoA for application. The equation used to obtain DoA is shown in 

Eq.4.3: 

𝜎𝑒𝑚
=

∑𝑧=𝑢
𝑧=1 𝜏𝑎(𝑓𝑒𝑚

𝑧 )×∀𝑧

𝑓𝑒𝑚

∑𝑧=𝑢
𝑧=1 𝜏𝑎(𝑓𝑒𝑚

𝑧 )
                            (4.3) 

Each membership degree will be multiplied with the corresponding singleton value, then all the values resulted 

from the multiplication will be summed up and lastly, be divided by the sum of all membership degrees. 

σ_(e_m )  refers to the exact DoA obtained for application e_m. The Application Mapping Unit will then use 

σ_(e_m ) to map the application to a suitable Fog computing instance. 

Calculation of Degree of Assumption (CCG) 

Table 4.6: Range of the Parameters for CCG 

Parameter/Metrics Value in Range(𝑥𝜀
′ , 𝑦𝜀

′) 

Circulation Time (2, 17) 

Available Resources (3, 15) 

Processing Time (40, 160) 

CCG is calculated after the calculation of DoA has been done for each application placement request. At this 

stage, EFN m will question the accessibility of CFN n on the available micro services j_n and associate CCG 

values. For every micro services in a CFN, the CCG is calculated in Capacity Class Grading unit from the 

correlated State Criteria, S_(j_(n ) )∈ {G_θ^(j_n ),G_λ^(j_n ),G_π^(j_n ) }. The calculation steps are similar to 

calculation for Degree of Assumption (DoA). The values for State Criteria parameters are different, therefore 

the normalisation process is carried out using Eq.4.4: 

𝐺𝜀
𝑗𝑛 = 2 (

𝐺𝜀
𝑗𝑛 − 𝑥𝜀

′

𝑦𝜀
′ − 𝑥𝜀

′
) − 1 

 

(4.4) 

𝐺𝜀
𝑗𝑛  is the result after the normalisation process for criteria 𝜀 within the range [𝑥𝜀, 𝑦𝜀]. The range is set based 

on the capacity of the Fog environment for those respective parameters. After normalisation, a Fuzzy logic 

based approach is used for further calculation.  

Fuzzification Module for CCG Calculation 

The membership 𝜏𝜀
′  is use to determine the membership degree of normalised 𝐺𝜀

𝑗𝑛  value to relate fuzzy sets. 

This fuzzy sets for each parameter are listed as follow: 

i. Circulation time: 𝐶𝑡 ∈  {𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 𝑆ℎ𝑜𝑟𝑡, 𝑆ℎ𝑜𝑟𝑡, 𝐴𝑣𝑒𝑟𝑎𝑔𝑒, 𝐿𝑜𝑛𝑔, 𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 𝐿𝑜𝑛𝑔} 

ii. Resource Availability: 𝑅𝑎 ∈  {𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙, 𝐿𝑖𝑚𝑖𝑡𝑒𝑑, 𝐴𝑑𝑒𝑞𝑢𝑎𝑡𝑒, 𝑆𝑢𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡, 𝑃𝑙𝑒𝑛𝑡𝑖𝑓𝑢𝑙} 

iii. Processing Time: 𝑃𝑡 ∈  {𝑀𝑖𝑛𝑖𝑚𝑎𝑙, 𝐹𝑎𝑖𝑟, 𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒, 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡, 𝑂𝑝𝑡𝑖𝑚𝑎𝑙} 

In this case, the following 𝐺𝜀
𝑗𝑛  value will be given a sample as 11 per seconds, 12 CPU cores and 85 ms to 

Circulation Time, Resources Availability and Processing Time respectively, as shown in Table 4.7.  
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Table 4.7 Value of CCG Calculation 

Parameter Circulation Time 

(per seconds) 

Resource Availability  

(CPU cores) 

Processing Time 

(ms) 

𝑥𝜀
′   2 3 40 

𝑦𝜀
′ 17 15 160 

𝐺𝜀
𝑗𝑛  11 12 85 

After the value is prepared, calculate the Capacity Class Grade (CCG) as shown in Table 4.8 based on Eq.4.4:  

Table 4.8: Result of Calculation of CCG 

Circulation Time Resources Availability Processing Time 

𝐺𝜃
𝑗𝑛 = 2 (

11 − 2

17 − 2
) − 1 

𝐺𝜃
𝑗𝑛= 0.20 

𝐺𝜆
𝑗𝑛 = 2 (

12 − 3

15 − 3
) − 1 

𝐺𝜆
𝑗𝑛= 0.5 

𝐺𝜋
𝑗𝑛 = 2 (

85 − 40

160 − 40
) − 1 

𝐺𝜋
𝑗𝑛= -0.25 

The membership function, 𝜏𝜔 (𝐺𝜀
𝑗𝑛) for state criteria parameters is shown in Figure 4.13, while examples of 

fuzzy sets after state parameters that are normalised are shown in Table 4.9. The fuzzy set will be arranged in:  

❖ Bandwidth: 

➢ 𝜏𝜔 (𝐺𝜃
𝑗𝑛)  → 𝐶𝑡: { 𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 𝑆ℎ𝑜𝑟𝑡, 𝑆ℎ𝑜𝑟𝑡, 𝐴𝑣𝑒𝑟𝑎𝑔𝑒, 𝐿𝑜𝑛𝑔, 𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝑙𝑦 𝐿𝑜𝑛𝑔} 

❖ Demanded Resources: 

➢ 𝜏𝜔 (𝐺𝜆
𝑗𝑛)  → 𝑅𝑎: {𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙, 𝐿𝑖𝑚𝑖𝑡𝑒𝑑, 𝐴𝑑𝑒𝑞𝑢𝑎𝑡𝑒, 𝑆𝑢𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡, 𝑃𝑙𝑒𝑛𝑡𝑖𝑓𝑢𝑙} 

❖ Latency Acceptability: 

➢ 𝜏𝜔 (𝐺𝜋
𝑗𝑛)  → 𝑃𝑡: {𝑀𝑖𝑛𝑖𝑚𝑎𝑙, 𝐹𝑎𝑖𝑟, 𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒, 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡, 𝑂𝑝𝑡𝑖𝑚𝑎𝑙} 

 

Fig. 4.13: Membership function of state criteria parameters 
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After the normalisation process is complete in Table 4.8, the answer for Circulation Time, 𝐺𝜃
𝑗𝑛  is = 0.20. 𝐺𝜃

𝑗𝑛  

refer to the normalised application 1 under Bandwidth parameter 𝜃. Based on the result, it is shown that 0.20 

of x axis hit 0.5 on y axis of its respective membership set in Average and Long area, therefore it is concluded 

that the fuzzy set for 𝜏𝜔 (𝐺𝜃
𝑗𝑛)  → 𝐶𝑡: {0.0,0.0,0.55,0.45,0.00}. 

In parameter of Resource Acceptability, 𝐺𝜆
𝑗𝑛  is = 0.50. 𝐺𝜆

𝑗𝑛  refer to the normalised application 1 under 

Demanded Resources parameter 𝜆. Based on the result, it is shown that 0.50 of x axis hit 0.35 and 0.65 on y 

axis in Adequate and Sufficient area on y-axis of its respective membership set correspondingly, therefore it is 

concluded that the fuzzy set for 𝜏𝜔 (𝐺𝜆
𝑗𝑛)  → 𝑅𝑎: {0.00,0.00,0.00,1.00,0.00}. 

In parameter of Processing Time, 𝐺𝜋
𝑗𝑛  is = -0.25. 𝐺𝜋

𝑗𝑛  refer to the normalised application 1 under Latency 

Acceptability parameter 𝜋. Based on the result, it is shown that -0.25 of x axis hit 0.35 and 0.65 on y axis in 

Minimal and Fair membership sets respectively, therefore it is concluded that the fuzzy set for 𝜏𝜔 (𝐺𝜋
𝑗𝑛)  →

𝑃𝑡: {0.50,0.50,0.00,0.00,0.00}. 

Table 4.9: Fuzzy sets after state parameters being normalised 

Parameter CCG 

(𝐺𝜀
𝑗𝑛) 

Intercepted Area of Y-axis (Normalised Value) 𝜏𝜔 (𝐺𝜀
𝑗𝑛) 

Ct 0.20 Extremely 

Short (0.00) 

Short 

(0.00) 

Average 

(0.55) 

Long 

(0.45) 

Extremely 

Long (0.00) 

{0.0,0.0,0.55,0.45,0.

00} 

Ra 0.50 

 

Critical 

(0.00) 

Limited(

0.00) 

Adequate 

(0.00) 

Sufficient 

(1.00) 

Plentiful 

(0.00) 

{0.00,0.00,0.00,1.00

,0.00} 

Pt -0.25 Minimal 

(0.00) 

Fair 

(0.50) 

Acceptable 

(0.50) 

Efficient 

(0.00) 

Optimal 

(0.00) 

{0.00,0.50,0.50,0.00

,0.00} 

Fuzzy Inference Module for CCG Calculation 

Corresponding fuzzy outputs are determined by mutually comparing fuzzy inputs with the help of fuzzy rules 

during fuzzy inference similar to the calculation of DoA. However, the fuzzy rules for calculating CCG give 

higher weight to those approximately impediment state parameters such as long Circulation Time. As a result, 

the CCG value of the instances indicate more on the limitation instead of the convenience such as adequate 

Resources Availability and fair Processing Time. The fuzzy rules used to calculate CCG are shown in Figure 

4.14 which is based on table 4.6, while the results of fuzzy inputs comparison based on the fuzzy rules are 

shown in Appendices. 

 

Fig. 4.14: Fuzzy rules for CCG calculation 
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Fig. 4.15: Fuzzy rules for CCG calculation 

From Figure 4.15, the calculation time will be divided into 5 types which are ‘ES’, ‘S’, ‘A’, ‘L’, ‘EL’ and 

represent ‘Extremely Short’, ‘Short’, ‘Average’, ‘Long’ and ‘Extremely Long’. The resource availability is 

divided into five types which are ‘P’, ‘S’, ‘A’, ‘L’, ‘C’ and represent ‘Plentiful’, ‘Sufficient’, ‘Adequate’, 

‘Limited’, ‘Critical’. The membership degree for each of the fuzzy outputs refers to the lowest membership 

degree of the compared parameters from the corresponding fuzzy set. The equation used to determine the 

membership degree is shown in Eq.4.5: 

𝜏𝑐
′ (𝑓𝑗𝑛

′ ) = (𝜏𝜃 (𝐾𝜃
𝑗𝑛) , 𝜏𝜆 (𝐾𝜆

𝑗𝑛) , 𝜏𝜋 (𝐾𝜋
𝑗𝑛))   

                                                     

(4.5) 

Using the result of the comparison of the first fuzzy set as a reference, with the Extremely Short Circulation 

Time, Critical Resources Available and Minimal Processing Time, the fuzzy output will be Extremely Low. 

The illustrative explanation is shown in Figure 4.16.  

 

Fig. 4.16: Illustrative explanation on getting fuzzy output for CCG calculation 

Defuzzification Module for CCG Calculation 

In this case, the singleton value represents the maximum rating of the application for that fuzzy output. The 

singleton values for fuzzy output are set as ‘Extremely High’, ‘High’, ‘Medium’, ‘Low’ and ‘Extremely Low’ 

as 10, 8, 6, 4 and 2 respectively. For defuzzification, the membership degrees generated are combined with an 

equation to obtain the exact CCG, 𝛺𝑗𝑛
 of the instance. The equation used to obtain CCG is shown in Eq.4.6: 

𝛺𝑗𝑛
=

∑𝑧=𝑢
𝑧=1 𝜏𝑐

′ (𝑓𝑗𝑛

′𝑧) × Ʌ𝑧

𝑓𝑗𝑛
′

∑𝑧=𝑢
𝑧=1 𝜏𝑐

′ (𝑓𝑗𝑛

′𝑧)
 

 

(4.6) 
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Each membership degree will be multiplied with the corresponding singleton value, then all of the values 

resulting from the multiplication will be summed up and lastly be divided by the sum of all membership 

degrees. The CCG obtained is then forwarded to the querying EFN to carry out the following application 

mapping process. 

Application Mapping to Fog Instances  

The output of DoA of an application and CCG of a computing instance is named Rating Gain for mapping the 

application on that instance. The total Rating Gain of the applications are maximised in the process of mapping 

applications to computing instances. The maximum Rating Gain is able to promote the QoE-aware mapping of 

the applications. The high combined intensity of associate Assumption Criteria parameters are denoted by the 

high DoA of the applications. The higher CCG relatively indicates better ability of the instances to satisfy 

different user assumptions even within the weaknesses. DoA of an application serves as the representative 

parameter for all of its assumption parameters, therefore the best possible convergence of the assumption 

parameters to corresponding state parameters of the instances are guaranteed by the maximised Rating Gain of 

the particular application. As a result, the chance of managing Fog facilities such as computational resources 

and service accessibility increases without affecting the user assumptions, the QoE regarding the applications 

are optimised as well. 

In an EFN, the applications are mapped to computing instances in the Application mapping unit using a multi-

constraint objective function. The multi-constraint objective function is shown in Eq.4.7: 

 𝑚𝑎𝑥 ∑

∀𝑒𝑚∈𝐸𝑚

∑

∀𝑗𝑛∈𝐽𝑛

𝑣𝑗𝑛

𝑒𝑚 (𝜎𝑒𝑚
× Ω𝑗𝑛

)  

 

(4.7) 

Throughout the objective function, the Rating Gain for all application mapping requests are maximised to 

improve overall user QoE, one to one mapping between applications and instances are guaranteed, and the 

QoS of the application including service delivery time, service cost and packet loss rate are maintained. In case 

mapping that satisfies the constraints is not arranged by the EFN, the nodes will be queried for further 

instances. 

The objective function satisfied the decentralised optimization problem. The optimization problem will be 

solved and the application will be mapped once the application mapping requests are submitted to an EFN. The 

EFN can solve this optimization problem with multiple constraints using any integer programming solver such 

as SCIP. A local view of the Fog system is considered by EFN in order to solve the optimization problem. Due 

to the location, the chance for an EFN to receive a huge load of application mapping requests in a specific time 

is low. Thus, the optimization problem is less likely to be an NP-hard problem. 

Algorithm for QoE-aware Application Mapping  

The pseudocode for QoE-aware application mapping is presented in Figure 4.17: 

Algorithm 1 QoE-Aware Application Mapping 

1:         function DoA(bandwidth, demandedResources, latencyAcceptability) 

2:         〖Bw〗_ = bandwidth                       ← Normalised bandwidth within (-1, 1) 

3:         Rr = demandedResources         ← Normalised demanded resources within (-1,1) 

4:         Pt = latencyAcceptability      ← Normalised latency acceptability within (-1, 1) 

5:         ΓBw = 〖Bw〗_                 ← convert Normalised Bw to fuzzy set 
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6:         ΓRr = Rr                  ← convert NormalisedRR to fuzzy set 

7:         ΓPt= Pt                  ← convert NormalisedPT to fuzzy set 

8:         for each ΓBw = min..max do 

9:          for each ΓRr = min..max do 

10:        for each ΓPt = min..max do 

11:         take the largest among the 5 values then 

12:         store in Γi 

13:         Πs += Γi* s 

14:         Π +=  Γi 

15:        end 

16:        end 

17:       end 

18:      return DoA = Πs / Π 

19        end function 

20:       function CCG(circulationTime, availableRequirement, processingTime) 

21:       Bw = circulationTime              ← Normalised circulation time within (-1, 1) 

22:       Rr = availableRequirement     ← Normalised available requirement within (-1,1) 

23:       Pt= processingTime     ← Normalised processing time within (-1, 1) 

24:       ΓBw = 〖Bw〗_               ← convert Normalised to fuzzy set 

25:       ΓRr = Rr              ← convert NormalisedRR to fuzzy set 

26:      ΓPt= Pt                ← convert NormalisedPT to fuzzy set 

27:       for eachΓBw = min..max do 

28:      for each ΓRr= min..max do 

29:       for each ΓPt= min..max do 

30:        take the smallest among the 5 values then 

31:        store in Γi 

32:        Πs +=Γi* s 

33:      Π+= Γi 

34:     end 
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35:    end 

36:   end 

37:     return CCG = Πs /Π 

38      end function 

Fig. 4.17: Pseudocode for QoE-aware application mapping 

System Testing for QoE-aware Application Mapping 

A policy called Edgeward is implemented in the fog simulator and used as comparison to our proposed 

solution. Edgeward placement strategy is inclined towards the deployment of application modules close to the 

edge of the network. However, devices close to the edge of the network may not be computationally powerful 

enough to host all operators of the application. In such a situation, the strategy iterates on fog devices towards 

clouds and tries to place remaining operators on alternative devices. 

This section is to ensure the validation testing is verifying every class in the iFogSim simulation to be accurate 

and properly running. Table 4.10 shows some of the simulation parameters which include processing capacity 

of fog devices, RAM of fog devices, network latency, fog device upstream and downstream capability, module 

size and tuple size. 

Table 4.10: Simulation parameters for QoE-aware application mapping testing 

Parameter Value 

Processing capacity of fog devices 500 - 4500 MIPS 

RAM of fog devices 200 - 1800 Mb 

Network latency 2 - 100 ms 

Fog Device Upstream capability 1024000 Mbps 

Fog Device Downstream capability 1024000 Mbps 

Module Size 150 - 1100 MIPS 

Tuple Size 100 – 3000 MIPS 

Before the comparison between the proposed solutions with others’ work is carried out, few scenarios are 

defined to have an accurate result. In the simulation, few aspects are compared which are the execution time, 

total power consumption and total network usage. Different aspects will display different results which depend 

on the scenario. Table 4.11 shows the 6 scenarios used to simulate the results of the proposed solution. All the 

scenarios are using 1 application to run. 

Table 4.11: Simulation scenarios used in the experiments 

Scenario Fog Device Arrangement Application Module Arrangement 

Scenario 1 Fog Device MIPS increases from end user 

towards cloud 

Module’s MIPS requirements increases from client 

towards last module 

Scenario 2 Fog Device MIPS increases from end user 

towards cloud 

Module’s MIPS requirements decreases from client 

towards last module 

Scenario 3 Fog Device MIPS increases from end user 

towards cloud 

Module’s MIPS requirements is in random order 

between client and last module 

Scenario 4 Fog Device MIPS is in random order 

between end user and cloud 

Module’s MIPS requirements increases from client 

towards last module 

Scenario 5 Fog Device MIPS is in random order 

between end user and cloud 

Module’s MIPS requirements decreases from client 

towards last module 

Scenario 6 Fog Device MIPS is in random order 

between end user and cloud 

Module’s MIPS requirements is in random order 

between client and last module 
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Fig 4.18 and 4.19 shows the comparison of execution time and network usage between application mapping 

with and without QoE awareness. 

 

Fig. 4.18: Bar Chart for execution time for solution with and without QoE-aware and with proposed QoE-

aware application allocation with 1 and 5 application 

Figure The bar chart in Figure 4.18 compares the execution times for three approaches: without QoE-aware, 

with QoE-aware, and the proposed QoE-aware algorithm in 6 different scenarios. In the figure, the x-axis 

shows the different scenarios while the y-axis represents the execution time in milliseconds. Besides on figure 

4.18 where each solution’s execution time are significantly different, it is illustrated that the execution time of 

the solution with QoE-aware is clearly shorter than without QoE-aware and proposed QoE-Aware. Hence, it 

showed that the QoE-Aware can fulfil the user requirement on QoE (improve the user satisfaction) and at the 

same time reduce the execution time. However, the proposed QoE-Aware application allocation is having high 

execution time compared to previous QoE-aware solutions when executing 1 application. When we add the 

number of application to 5, we can see that the execution time of purposed QoE-aware application allocation 

are having significant reduction. 
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Fig. 4.19: Bar chart for total energy consumption of application with and without QoE-aware 

Figure 4.19 shows the total energy consumption of application in 6 different scenarios by using QoE-aware 

and without QoE-aware. In the figure, the x-axis represents the difference of scenarios while the y-axis shows 

the total energy consumption. Based on the figure above, the total energy consumption of the application with 

QoE-aware is slightly higher than without QoE-aware. This is because to fulfil the QoE requirement, the 

energy consumption will increase to carry out the QoE-aware module placement. In short, although energy 

consumption has not been improved, the QoE requirement is fulfilled. 
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Fig. 4.20: Bar chart for comparison of network usage for solution with and without QoE-aware 

Figure 4.20 shows the total network usage of the solution with and without QoE-aware in 6 different scenarios. 

In the figure, the x-axis represents the different types of scenarios while the y-axis shows the total network 

usage. In the 6 scenarios, the results show that the solution with QoE-aware is better as it has the lower 

network usage compared to the solution without QoE-aware. This is because the application did not run or use 

the cloud but just using the fog computing so  the network usage is much lower. It indicates that it can fulfil 

the user requirements on QoE and at the same time reduce the network usage.  

Energy-Aware Module Placement 

The energy-aware module placement is the second process in phase one of the proposed solution, the objective 

is to optimise the energy consumption. The reason for proposing the Energy-aware is to reduce the energy 

consumption in the fog computing. 

Analytical Modeling of Proposed Energy-aware Algorithm 

To place the modules, a minimum energy requirement by a module was estimated then placed into the fog 

device that can handle the modules. 

 

Fig. 4.21: Processing of energy-aware module placement 
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Figure 4.21 shows that the process of placing  the incoming module and above is the example of the process. 

As the figure showed the module minimum energy needed and MIPS, there are 1,2,3.....n fog devices in which 

are represented by different maximum energy and MIPS. At first, if the fog device is not enough maximum 

energy and MIPS for the incoming module, the fog device will forward the module to the following fog device 

and find a fog device which can fulfil the requirement of the module.       

 

Fig. 4.22: Sequence diagram for energy-aware module placement 

Figure 4.22 shows the sequence diagram for energy-aware module placement that illustrates the essential steps 

in achieving energy saving in fog computing. The first step is to get the MIPS of the incoming module and 

available fog devices which is the execution speed of the computer's CPU. Next is to get the current CPU 

utilisation based on the two MIPS values. After that, minimum energy needed by that incoming module is 

calculated. Once it is calculated, the MIPS and minimum energy of the module is compared with the available 

energy of the fog device until a suitable fog device is found and eventually the module will be placed to that 

fog device. Lastly, the DVFS will adjust the MIPS of the fog device into a value of used MIPS value.  

Parameter Definition 

Pmax Maximum power 

 Ps Static power 

 Pc Constants power 

 U Utilisation 

M mips The MIPS of the incoming module 

F mips The available fog devices MIPS 

Min Energy The get the minimum energy of incoming module 

frequency The available frequency value 
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maxFre The max frequency number on HOST (in GHz) 

  NCV    Closest value of energy consumption fog devices 

  AM   Module 

  ECE   Estimated consumed energy after allocation 

  AMIPS   Adjusted MIPS = 
𝐹𝑚𝑖𝑝𝑠

𝑀𝑎𝑥𝐹𝑟𝑒
 ×frequency [𝜒] 

  NNAME   Name of Fog Device 

  VRNAME   VRGame’s name 

  C   Client 

  PDVFS   Process of Dynamic voltage and frequency scaling  

  U   Utilisation 

The following formula is applied to perform the energy-aware module placement.    

𝑃𝑚𝑎𝑥  − 𝑃𝑠  

100
 

(4.8) 

Using 𝑃𝑚𝑎𝑥- 𝑃𝑠 and divided by 100, in order to obtain the constant power value. 

𝑚𝑖𝑛𝐸𝑛𝑒𝑟𝑔𝑦 =  (𝑃𝑠 + 𝑃𝑐)  × 𝑈 × 100         (4.9)  

In this formula, the formula above is used to do the calculation and get the estimated minimum energy of the 

module. 

𝑈 = 𝑀𝑖𝑛 (1 ,
𝑀𝑚𝑖𝑝𝑠

𝐹𝑚𝑖𝑝𝑠
) 

(4.10) 

The parameter 𝑈 shown above is the parameter put inside the Eq.4.9. The formula for the parameter 𝑈 is using 

the function Math.min and compare the 1 and the result which is 
𝑀𝑚𝑖𝑝𝑠

𝐹𝑚𝑖𝑝𝑠
 . In other word, the Eq.4.10 formula 

was used to obtain the current utilisation of CPU from and applied by the minEnergy and compare with the 

available energy of fog devices. The process will loop until the module is found the fog device which satisfy 

the 𝑚𝑖𝑛𝐸𝑛𝑒𝑟𝑔𝑦  and  𝑀𝑚𝑖𝑝𝑠 of the module. 

After the modules are placed to the fog devices, DVFS is performed in order to check whether the fog devices 

still have available resources or not. If the fog device still has plenty of remaining MIPS, then DVFS will 

adjust the MIPS of the fog device into a value that is close to the used MIPS value. 

 

Fig. 4.23: Processing of Dynamic voltage and frequency scaling (DVFS) 

http://www.rsisinternational.org/


Page 3730 www.rsisinternational.org 

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS) 

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025 

 

    

 

 

DVFS will adjust the MIPS of the selected fog device. After that, the selected fog device MIPS is adjusted as 

close as possible with the incoming module MIPS. 

Algorithm 2 Energy-Aware Module Placement 

1: function NCV (FMIPS, PMAX, NNAME) 

2: for each NCV do 

3: for each AM do 

4: function U 

5: if U(NCV) bigger than MMIPS(minEnergy) then 

6: add MMIPS to NCV 

7: return NNAME 

8: deployed modules 

9: end if  

10: if (NNAME equal VRNAME AND NNAME equal C) then 

11: add MMIPS to NCV 

12: return NNAME 

13: deployed modules 

14: end if 

15: end 

16: end 

17: for each NCV do 

18: if NNAME include "cloudlet" then 

19: PDVFS(NCV) 

20: end if 

21: end 

Fig. 4.24: Pseudocode for energy-aware module placement 

For any fog device that is closest, it will perform the module of estimating the consumed energy after 

allocation. If the device is suitable for the module placement, then it will add the module to the device and 

print the device name before the modules are deployed, else it will find the upper level of devices for suitable 

module placement. If the device name equals m-VRGame and the module name is client, then it will add the 

module to the device and print the device name before the modules are deployed. 

Algorithm 3 DVFS (Dynamic Voltage and Frequency Scaling 

1:  used mips = fog device total MIPS – fog devices available MIPS 

2:  Device adjust total mips = used mips 

Fig. 4.25: Pseudocode for DVFS 
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First, calculate the used mips by using the formula. After that, the fog device total MIPS is set to equal to the 

used MIPS. For the scenarios used to test the result of the proposed algorithms, please refer to Table 4.13. 

Table 4.13: Simulation parameters for energy efficiency application mapping testing 

Parameter Value 

Processing capacity of fog devices 2500 - 6500 MIPS 

RAM of fog devices 200 - 1800 Mb 

Network latency 2 - 100 ms 

Fog Device Upstream capability 1024000 Mbps 

Fog Device Downstream capability 1024000 Mbps 

Module Size 150 - 1100 MIPS 

Tuple Size 100 – 3000 MIPS 

System Testing For Energy Efficiency  

 

Fig. 4.26: Execution time of application with and without QoE & Energy-aware 

 

Fig. 4.27: Execution time of application with and without Energy-aware only 
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Figure 4.26 shows the execution time of the application with and without QoE & Energy-aware in different 

scenarios. In the figure, the x-axis represents the difference of scenarios while y-axis shows the execution time 

in milliseconds. The result shows that the execution time of the application with QoE and Energy-aware is 

shorter than without QoE and Energy-aware. As a result, the QoE and Energy-aware placement is able to fulfil 

the QoE requirements and further reduce the execution time as compared to application without QoE and 

Energy-aware. 

Figure 4.27 shows the execution time of the application with and without Energy aware in different scenarios. 

In the figure, the x-axis represents the 6 differences of scenarios; the y-axis shows the execution time in 

milliseconds. As the graph above it can be clearly seen that the results of the execution time with Energy-

aware only is consistent throughout the 6 scenarios and has a lower execution time as compared to without 

Energy-aware except for scenario 4 whereas the execution time without Energy-aware is inconsistent. 

Overally, it can be concluded that by implementing the Energy-aware only can reduce the execution time too. 

 

Fig. 4.28: Total energy consumption of application with and without QoE & Energy-aware 

 

Fig. 4.29: Total energy consumption of application with and without Energy-aware only 
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Figure 4.28 shows the total energy consumption of application in 6 different scenarios by comparing QoE, 

Energy-aware with without Energy-aware. In the figure, the x-axis represents the 6 different scenarios while 

the y-axis shows the total energy consumption in a megajoule. Based on the figure above, the total energy 

consumption of the application with QoE and Energy-aware is slightly higher than the application without 

QoE and Energy-aware. This result stated that energy consumption is not reduced when at the same time 

fulfilling the QoE requirement. 

Figure 4.29 shows the total energy consumption of application in 6 different scenarios by comparing Energy-

aware only with without Energy-aware. In the figure, the x-axis represents the 6 different scenarios while the 

y-axis shows the total energy consumption in a megajoule. According to the figure, it shows that the total 

energy consumption is reduced.  

 

Fig. 4.30:  Total network usage of application with and without QoE & Energy-aware 

 

Fig. 4.31:  Total network usage of application with and without Energy-aware only 

Figure 4.30 shows the results of total network usage of application with and without QoE, Energy-aware in 6 

different scenarios. In scenario 3 and 5, the total network usage with QoE and Energy-aware is lower 

compared to the network usage without QoE and Energy-aware. This result concluded that the total network 

usage of applications with QoE and Energy-aware will be better compared to without QoE and Energy-aware. 

Figure 4.31 shows the results of total network usage of applications with and without Energy-aware only in 6 

different scenarios. In all scenarios, the total network usage with Energy-aware only is lower compared to the 

http://www.rsisinternational.org/


Page 3734 www.rsisinternational.org 

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN SOCIAL SCIENCE (IJRISS) 

ISSN No. 2454-6186 | DOI: 10.47772/IJRISS | Volume IX Issue I January 2025 

 

    

 

 

network usage without Energy-aware. This result concluded that the total network usage of applications with 

Energy-aware only will be better compared to without Energy-aware. 

The result showed the parameter of the infrastructure and application that the team defined to run the 

stimulation of the energy algorithm in iFogsim. According to the figure, the result of the Energy-aware 

algorithm is shown. Through the result, the team examines the total network usage, cost of execution in cloud, 

total energy consumption, energy consumed, etc. As a result, the team can use these results to compare the 

proposed algorithm with other energy aware algorithms to determine whether the proposed algorithm has the 

better capability and performance. 

Proposed Offloading Algorithm 

The result showed the parameter of the infrastructure and application that the team defined to run the 

stimulation of the energy algorithm in iFogsim. According to the figure, the result of the Energy-aware 

algorithm is shown. Through the result, the team examines the total network usage, cost of execution in cloud, 

total energy consumption, energy consumed, etc. As a result, the team can use these results to compare the 

proposed algorithm with other energy aware algorithms to determine whether the proposed algorithm has the 

better capability and performance. 

In phase two of the proposed solution, the proposed Offloading Algorithm is implemented. It is assumed that 

the fog layer consists of large amounts of fog devices that can host the application for more than one instance. 

First, the MIPS of the fog devices are determined. When a new task arrives at the fog device, the MIPS of the 

new task from the application will be compared with the current MIPS of the fog device. If the current fog 

device is already processing a task, this means the fog device will have higher MIPS compared to other fog 

devices. Therefore, the system will offload the task to another fog device to prevent the fog device from being 

fully scheduled and affecting the performance. 

The distance between the fog device that is executing the job and the end user’s device determines the network 

usage. For instance, the further the fog device is located from the user, the higher the network usage due to the 

fact that the job has to travel through a lot of fog devices in order to reach the destination fog device that is 

responsible for executing the job.  

The total number of modules to execute determines the execution time. For instance, the higher the number of 

modules to be executed on a fog device, the higher the execution time due to the fact that the job has to wait 

for resources from the resource constrained fog device that are currently overloaded with modules.  

 

Fig. 4.32:  Sequence diagram for offloading 
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Figure 4.32 shows the sequence diagram for offloading. Firstly, the client will send a task execution request to 

the edge node and the task execution request will be forwarded to the fog node. The maximum job load for 

each fog node is determined. If the fog node is able to execute the task, the task will be scheduled for 

execution, otherwise the task will be offloaded to another applicable fog node. There is also a situation that the 

task cannot be executed within the fog environment and the task will be forwarded to cloud in this case. After 

the task has been executed, all the results will be sent back to the client. Figure 4.33 shows the pseudocode of 

the Computation Offloading algorithm. 

Algorithm 4 Computation Offloading algorithm 

1: function ResourceDiscovery(NF, FG, DEND, A) 

2: for each FD in NF do 

3: FOGmips = FOGmips + Dmips 

4: end for 

5: for each M in NM do 

6: APPmips = APPmips + Mmips 

7: end for 

8: Initialize MMAP 

9: NMP = QoEApplicationMapping(app) 

10: NFC = EnergyModulePlacement(NF, FG, DEND) 

11: while FOGmips > APPmips do 

12: FOGmips= MapDeviceLoop(NFC, NMP, MMAP) 

13: end while 

14: end function 

Fig. 4.33:  Pseudocode of proposed Offloading algorithm 

System Testing for Proposed Offloading Algorithm 

The simulation parameters are similar with those in the system testing conducted for QoE-aware mapping 

which includes processing capacity of fog devices, RAM of fog devices, network latency, fog device upstream 

capability, fog device downstream capability, module size and tuple size. The simulation parameters are shown 

in Table 4.14. Strategies with and without the proposed Offloading Algorithm are tested according to the 

parameter value are shown in Table 4.14. 

Table 4.14: Simulation Parameters for Computation Offloading algorithm testing 

Parameter Value 

Processing capacity of fog devices 2500 - 6500 MIPS 

RAM of fog devices 200 - 1800 Mb 

Network latency 2 - 100 ms 

Fog Device Upstream capability 1024000 Mbps 

Fog Device Downstream capability 1024000 Mbps 

Module Size 150 - 1100 MIPS 

Tuple Size 100 – 3000 MIPS  
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Fig. 4.34:  Bar chart for comparison of execution time algorithm with and without QoE-aware & Energy-aware 

& Offloading  

Figure 4.34 shows the execution time of the solution with and without the proposed Offloading algorithm in 6 

different scenarios. In the figure, the x-axis represents the difference of scenarios while the y-axis shows the 

execution time in milliseconds. By looking at the chart, it is shown that there is much difference in the 

execution time in different scenarios for both solutions, while it is clearly visible that the solution with 

offloading has decreased the execution time.  

 

Fig. 4.35:  Energy consumption of algorithm with and without QoE & Energy-aware & Offloading 

Figure 4.35 shows the total energy consumption of application in 6 different scenarios by using the proposed 

offloading algorithm and without the proposed offloading algorithm. In the figure, the x-axis represents the 

difference of scenarios while the y-axis shows the total energy consumption in megajoules. Based on the figure 
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above, the total energy consumption of the application with QoE, Energy-aware and proposed offloading 

algorithm is equal to without computation offloading algorithm. This result already stated clearly that the 

proposed offloading algorithm would increase the energy consumption. 

 

Fig. 4.36:  Bar chart for comparison of network usage for solution with and without enhanced Offloading 

algorithm 

Figure 4.36 shows the total network of the solution with and without QoE, Energy-aware and proposed 

offloading algorithm in 6 different scenarios. In the figure, the x-axis represents the difference of scenarios 

while the y-axis shows the total network usage in milliseconds. By looking at the chart, it is concluded that the 

solution with the QoE, Energy-aware and proposed Offloading algorithm has lower network usage 

Chapter Summary and Evaluation 

In this chapter, the QoE-aware application mapping implemented has proven able to reduce the execution time 

and network usage but will increase the energy consumption. The implementation of QoE-aware application 

mapping with energy-aware module placement is able to further reduce the execution time and network usage 

but energy consumption was not reduced. However, implementing energy-aware module placement only, the 

execution time, energy consumption and network usage will be slightly reduced. Hence, QoE-aware and 

energy-aware cannot be guaranteed at the same time. Furthermore, implementing QoE-aware application 

mapping, energy-aware module placement with offloading algorithms will slightly reduce the network usage 

but will increase in execution time and have no effect on the energy consumption. In short, the proposed 

algorithms can fulfil the user QoE requirement and at the same time would not overload the fog devices. 

Energy consumption can be reduced if solely implementing the energy-aware module placement. 

Evaluation 

In this chapter, the QoE-aware application mapping implemented has proven able to reduce the execution time 

and network usage but will increase the energy consumption. The implementation of QoE-aware application 

mapping with energy-aware module placement is able to further reduce the execution time and network usage 

but energy consumption was not reduced. However, implementing energy-aware module placement only, the 

execution time, energy consumption and network usage will be slightly reduced. Hence, QoE-aware and 

energy-aware cannot be guaranteed at the same time. Furthermore, implementing QoE-aware application 

mapping, energy-aware module placement with offloading algorithms will slightly reduce the network usage 

but will increase in execution time and have no effect on the energy consumption. In short, the proposed 

algorithms can fulfil the user QoE requirement and at the same time would not overload the fog devices. 

Energy consumption can be reduced if solely implementing the energy-aware module placement. 
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This chapter will be focused on the proposed solution evaluation as well as the data collection technique used 

to perform analysis on the result of the QoE, Energy-Aware and Offloading algorithm. Next, A statistical 

model is used to ensure the accuracy and consistency of the data. Other than that, experiment setup and several 

tools are used in order to analyse and evaluate the QoE, Energy-Aware and Offloading algorithm performance. 

First and foremost, the evaluation of the network usage, consumption of power and execution time based on 

the results obtained from the proposed QoE application allocation, QoE algorithm and Edgeward begins. Next, 

the Energy-Aware algorithm will then be implemented into the proposed QoE application allocation and QoE 

algorithm and the result will be tested and compared with the Edgeward. Thirdly, the enhanced algorithm will 

be implemented into the QoE-Aware and Energy-Aware algorithm and compared with the Edgeward. 

This chapter is organised as follows: Section 5.1 describes performance setup that includes the experiment 

setup and components. Section 5.2 describes the data collection method that we used to collect the data. 

Section 5.3 presents the statistical model that we used to ensure the accuracy of results collected. Section 5.4 

discusses the performance analysis of proposed QoE-Aware algorithm, QoE-Aware algorithm added with 

Energy-Aware algorithm and together with the proposed Offloading algorithm. Finally, Section 5.5 will be the 

conclusion of  the chapter. 

Performance Setup 

In order to evaluate the performance of the proposed algorithm, a predefined set of fog computing resource and 

application module job parameters are used and shown in Table 5.1. A fog-cloud environment is modelled in a 

way that it consists of a total number of nine fog devices in the fog layer. The unit used to measure the 

processing power is the million instructions per second (MIPS). Next, as the MIPS of a fog device is high, then 

the better or faster the fog device in handling and efficiently performing the tasks. 

Table 5.1: A predefined set of fog computing resources and application module parameters 

Parameter Value 

Processing capacity of fog devices 350 - 1000 MIPS 

Ram of fog devices 256 - 512 Mb 

Network latency 2 - 100 ms 

Fog Device Upstream capability 10000 - 1024000 Mbps 

Fog Device Downstream capability 10000 - 1024000 Mbps 

Module Size 100 - 600 MIPS 

Tuple Size 1000 - 6000 MIPS 

Several application modules are divided to enable those modules to be hosted by individual fog devices in the 

fog layer for the purpose to process the job of the application modules. Besides that, five applications are 

created and divided into four modules for each application to be hosted in the fog layer for the testing 

simulation purposes. Next, 100 MIPS to 600 MIPS are the variation requirement for each application module. 

The pseudocode for Edgeward module placement is presented in Figure 5.1: 

Algorithm 1: Edgeward module placement 

1:         for p ∈ PATHS do Across all paths 

2:                  placedModules ←{};  

3:                  for Fog device d ∈ p do                                                 ⇾ leaf-to-root traversal 

4:   modulesToPlace ←{};  

5:                   for module w ∈ app do                                    ⇾ find modules ready for 

placement on device d 
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6:                    if all predecessors of w are in placedModules then         ⇾ if all 

predecessors are placed 

7:                     add w to modulesToPlace;  

8:                    end 

9:                   end 

10:                          for module θ ∈ modulesToPlace do 

11:                                        if d already has instance of θ as θ’ then 

12:                                             if 𝐶𝑃𝑈𝜃 
 𝑟𝑒𝑞

 ≥ 𝐶𝑃𝑈 𝑑
𝑎𝑣𝑎𝑖𝑙 then              ⇾ device d does not have 

CPU capacity to host θ 

13:                                                                𝜃 ←merge(θ, θ’); 

14:             𝑓 ←parent(d); 

15:                                                                while𝐶𝑃𝑈𝜃 
 𝑟𝑒𝑞

 ≥ 𝐶𝑃𝑈 𝑓
𝑎𝑣𝑎𝑖𝑙do             ⇾ find device north 

of d for hosting θ 

16:                                                         𝑓 ←parent(𝑓); 

17:                                         end 

18:                          Place 𝜃 on device 𝑓;    ⇾ device d can host θ 

19:      add θ to placedModules; 

20:           end 

21:     else  

22:                          Place θ on device d; 

23:      add θ to placedModules; 

24:     end 

25:    end 

26:    else if no device north of d has an instance of θ then 

27:                          if 𝐶𝑃𝑈𝜃 
 𝑟𝑒𝑞

 ≤ 𝐶𝑃𝑈 𝑑
𝑎𝑣𝑎𝑖𝑙  then             ⇾ if not, will be handled by 

subsequent iterations 

28:             Place θ on device d;  

29:      add θ to placedModules; 

30:                   end  

31:     else 

32：       𝑓 ←parent(d); 
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33:                                                                while 𝐶𝑃𝑈𝜃 
 𝑟𝑒𝑞

 ≥ 𝐶𝑃𝑈 𝑓
𝑎𝑣𝑎𝑖𝑙do             ⇾ find device north 

of d for hosting θ 

34:                                                         𝑓 ←parent(𝑓); 

35:                                         end 

36:                          Place 𝜃 on device 𝑓;     ⇾ device f can host θ 

37:      add θ to placedModules;  

38:     end   

39:                  end 

40:          end 

41:        end 

42: end  

Fig 5.1: Pseudocode for Edgeward Module Placement 

 

Fig 5.2: Edgeward Module Placement Process 

According to Figure 5.1 and 5.2, all the modules will be sent to the fog devices which are closest to the edge 

network, also known as users’ network. When the module reaches the fog device, the fog device will check on 
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its own available resources in order to determine if the module could be placed on itself. The modules will be 

always placed on the nearest fog devices until the fog devices are out of resources. If so, the rest of the 

modules will be forwarded to the upper fog devices which are closer to the cloud. The process of the Edgeward 

Module Placement will be iterated until there is no more module. 

 

Fig 5.3: System topology of testing environment 

Tree system topology in the testing environment is being shown in Figure 5.3. The model of the fog-cloud 

environment consists of several components such as the applications, mobiles, fog devices, proxy server and 

the cloud service. The reason for setting up the proxy server is to act as a gateway between the cloud and the 

fog devices. 

Data Collection Method 

Proposed QoE-Aware application allocation, QoE-Aware and Edgeward algorithm has been run several times 

of testing using the iFogSim simulation. The purpose of the testing is to obtain the data and results between the 

Proposed QoE-Aware application allocation, QoE-Aware and Edgeward algorithm. Finally, the QoE-Aware, 

Energy-Aware, and enhanced Offloading algorithm will be put together into a test and compared against the 

Edgeward algorithm. 

The fog devices and modules are arranged in a strategic manner where the arrangement is based on the 

processing power of each of the fog devices and the processing power requirement for the modules.  

The parameters obtained and collected are the execution time, energy consumption, and usage of the network 

for the purpose to compare the performance of the scheduling algorithm application module. Last but not least, 

total execution time of the application, energy consumption of the fog devices and the usage of the network are 

being used as performance metrics for comparison purposes. 
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Statistical Model 

The indicator used to measure the accuracy of the estimate is the confidence interval. Next, the function of the 

confidence interval is to provide an accurate calculation on how close the measurement is to the initial 

estimation. The equation used to calculate can be referred below. 

𝑥 =  
∑ 𝑥

𝑛
  Calculate Mean Formula    

 Eg: 𝑥 = (587 + 30152 + 32583 + 1152116 + 1978420 + 763 + 38278 + 424569 + 1214947 + 

2458161 + 698 + 31568 + 329580 + 1190417   2305892 ) / 15  = 11188731 / 15 = 745,915.4 

(5.1)  

The sum of all values obtained from the results and then divided by the total number of experiments n comes 

the mean of the data. Besides that, confidence intervals can be used to calculate standard deviation through the 

following equation. 

𝑆 =  √∑ (𝑥− 𝑥)
2

𝑛−1
  Calculate Sample Standard deviation Formula 

(5.2) 

𝑥 𝑥 𝑥-𝑥 (𝑥 −  𝑥)
2
 

587 745,915.4 -745,328.40 555514423846.56 

30152 745,915.4 -715,763.40 512317244779.56 

32583 745,915.4 -713,332.40 508843112889.76 

1152116 745,915.4 406,200.60 164998927440.36 

1978420 745,915.4 1,232,504.60 1519067589021.16 

763 745,915.4 -745,152.40 555252099225.76 

38278 745,915.4 -707,637.40 500750689878.76 

424569 745,915.4 -321,346.40 103263508792.96 

1214947 745,915.4 469,031.60 219990641798.56 

2458161 745,915.4 1,712,245.60 2931784994719.36 

698 745,915.4 -745,217.40 555348973262.76 

31568 745,915.4 -714,347.40 510292207886.76 

329580 745,915.4 -416,335.40 173335165293.16 

1190417 745,915.4 444,501.60 197581672402.56 

2305892 745,915.4 1,559,976.60 2433526992547.56 

∑ (𝑥 − 𝑥)
2
  = Total =  11441868243785.60 

Eg: S = Sqrt ( Total  / (n - 1 ) ) 

= Sqrt ( 11441868243785.60 / (15 - 1) ) 

= 904033.352884473 

There are three values that are commonly used for confidence levels such as 90%, 95% and 99%. A decision 

has been made where 95% are chosen as the desired confidence level. Then, the calculation of Margin of Error 

can be calculated based on the following equation. 

𝑀𝑎𝑟𝑔𝑖𝑛 𝑜𝑓 𝐸𝑟𝑟𝑜𝑟 =  𝑍𝛼
2

 ×  
𝑆

√(𝑛)
 

(5.3) 
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Table 5.2: Notation for confidence interval 

𝑥 Mean 

𝑛 Sample size 

𝜎  Population Standard deviation 

S Sample Standard deviation  

𝛼 Confidence level 

𝑍 Value refer to z table 

𝑍𝛼
2

 ×  
𝜎

√(𝑛)
 

Margin Error 

𝜏 T value 

 

Fig 5.4: Z-table  

Z_(α/2)   stands for confidence coefficient. At the beginning, the confidence level α is 95%. Next, division of 

the confidence level α value by 2 and obtain a value of 0.475. Hence, 0.475 is between the intersection of 

column 0.06 and row 1.9 based on the Z-table in Figure 5.4 and it shows that the critical value is 1.9 + 0.06 = 

1.96. Next, the following equation can be used to define the confidence interval.  

𝐶𝐼 =  𝑥  ± 𝑍𝛼
2

 ×  
𝑆

√(𝑛)
 

                        Eg: 𝐶𝐼= 745,915.4 ±1.96 * ( 904033.352884473 /  

Sqrt(15)) 

                              = 745,915.4 ± 1.96 * 233420.408 

                             = 745,915.4 ± 457503.9997 

                             = ( 288411.4003 , 1203419.3997 ) 

(5.4) 
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We also will use paired sample T-test in order to make sure that QoE-Aware algorithm and QoE-Aware with 

Energy-Aware algorithm have significant differences with Edgeward algorithm. The equation 5.5 is used to 

calculate the T value and P value. 

𝜏 =  
|𝑥1 − 𝑥2|

√
𝜎2

𝑛1
+

𝜎2

𝑛2

 

Eg: τ = |498132.13 - 608106.93| / Sqrt( 489458.28522 

/1+591935.34132/15) 

(5.5) 

 

= |-109974.8| / Sqrt ( 15971294198 + 23359163219  ) 

= |-109974.8| / Sqrt ( 39330457417 ) 

= |-109974.8| / 198319.0798 

= 0.5545 

After the calculation and computation of previous equations, the values and information obtained will be 

recorded in tables in Section 5.4. 

Performance Analysis 

First and foremost, the results of the QoE-Aware algorithm such as the time execution and total network usage 

are obtained and recorded from the simulation and then further compared with the Edgeward algorithm. Next, 

the results for Energy-Aware with QoE-Aware from the simulation are recorded. In short, the QoE with 

Energy-Aware algorithm is compared with the Edgeward algorithm. Finally, the QoE-Aware, Energy-Aware, 

and enhanced Offloading algorithm will be tested and compared with the Edgeward algorithm. 

In order to test the two algorithms which are the QoE-Aware with the Energy-Aware algorithm, we used 

several testing scenarios in deploying the application modules to the fog layer. Below is the table 5.3 that 

shows how the application modules are arranged in each test scenario. 

Table 5.3 Test Scenario with their respective Application Module Arrangement 

Scenario Application Module Arrangement 

Scenario 1 Module’s MIPS requirements increase from client towards last module. 

Scenario 2 Module’s MIPS requirements decrease from client towards last module. 

Scenario 3 Module’s MIPS requirements are in random order between client and last module. 

Table 5.4 Module’s MIPS used in each scenario 

Scenario first module Second module Third module Fourth module 

1 100 200 300 400 

2 600 500 400 300 

3 random (100-1100) random (100-1100) random (100-1100) random (100-1100) 

In this testing, each application has 4 modules, and its MIPS will be used in accordance with Table 5.4. The 

fog devices and modules are arranged solely based on its processing power requirement. The nearer the fog 

devices to the cloud, the higher the processing power. In the first scenario, the modules’ MIPS are increased 

correspondingly, and the modules are placed in the ascending order of modules’ MIPS from end users towards 

the cloud. On the contrary, the modules' MIPS are decreased correspondingly, and the modules are placed in 

the descending order of modules’ MIPS from end users towards the cloud. However, the order of placing the 

modules and the modules’ MIPS are random in scenario 3. The main purpose of the test scenario is to evaluate 
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and test the proposed mechanism in those three different scenarios. Therefore, the total number of three 

scenarios are formed and tested using the two algorithms. 

Data Collection for performing QoE-Aware Algorithm 

In this testing, each application has 4 modules, and its MIPS will be used in accordance with Table 5.4. The 

fog devices and modules are arranged solely based on its processing power requirement. The nearer the fog 

devices to the cloud, the higher the processing power. In the first scenario, the modules’ MIPS are increased 

correspondingly, and the modules are placed in the ascending order of modules’ MIPS from end users towards 

the cloud. On the contrary, the modules' MIPS are decreased correspondingly, and the modules are placed in 

the descending order of modules’ MIPS from end users towards the cloud. However, the order of placing the 

modules and the modules’ MIPS are random in scenario 3. The main purpose of the test scenario is to evaluate 

and test the proposed mechanism in those three different scenarios. Therefore, the total number of three 

scenarios are formed and tested using the two algorithms. 

Table 5.5 shows the result of the Execution time of the application with the QoE-Aware algorithm and 

Edgeward tested. 

Table 5.5: Execution time for Edgeward and QoE-aware algorithm 

No of apps Scenario QoE-Aware algorithm (ms) Edgeward (ms) 

App 1 Scenario 1 1001 541 

Scenario 2 936 493 

Scenario 3 1350 535 

App 2 Scenario 1 55805 77412 

Scenario 2 56838 78089 

Scenario 3 56396 75387 

App 3 Scenario 1 658386 719644 

Scenario 2 635081 738338 

Scenario 3 671802 716679 

App 4 Scenario 1 1124034 1254331 

Scenario 2 1213788 1258754 

Scenario 3 1203488 1234770 

App 5 Scenario 1 862431 1685794 

Scenario 2 825641 1364587 

Scenario 3 856733 1685466 

Total 8223710 10890820 

Mean 548247.3333 726054.6667 

SSD (Sample Standard Deviation) 473105.1415 649964.9823 

CI (Margin of Error) 239424.2356 328927.6641 

T Test 0.3989 

P Value 0.0350 

The table 5.5 clearly shows the algorithm with better execution time is the QoE-Aware algorithm in 

comparison with Edgeward algorithm. Next, the mean value is recorded and obtained where the QoE-Aware 

algorithm has the mean value of 548247.333 while the Edgeward algorithm has the mean value of 561727.2. 

Hence, the mean value result indicates that QoE-Aware has lower value which means it performs better than 

the Edgeward algorithm. Validation on the results are performed where T-test and P-value is calculated and 

computed. Furthermore, a value of 0.9458 is obtained for the T-test value and it means that the two values do 

not have significant difference while the P-value of 0.4585 is obtained for which it is greater than 0.05. The 

QoE-aware algorithm is faster than the Edgeward algorithm for 2.40%. 
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Table 5.6: Execution time for QoE-aware algorithm and proposed QoE-Aware Application Allocation 

No of apps Scenario QoE-Aware algorithm 

(ms) 

QoE-Aware Application Allocation  

(ms) 

App 1 Scenario 1 1001 944 

Scenario 2 936 1178 

Scenario 3 1350 855 

App 2 Scenario 1 55805 59530 

Scenario 2 56838 56161 

Scenario 3 56396 55052 

App 3 Scenario 1 658386 722175 

Scenario 2 635081 740840 

Scenario 3 671802 758792 

App 4 Scenario 1 1124034 441877 

Scenario 2 1213788 444978 

Scenario 3 1203488 336939 

App 5 Scenario 1 862431 576487 

Scenario 2 825641 566645 

Scenario 3 856733 554598 

Total 8223710 5317051 

Mean 548247.3333 354470.0667 

SSD (Sample Standard Deviation) 473105.1415 297481.5092 

CI (Margin of Error) 239424.2356 150546.4150 

T Test 0.1901 

P Value 0.0383 

The table 5.6 clearly shows the algorithm with better execution time is the QoE-Aware Application Allocation 

in comparison with QoE-Aware algorithm. Next, the mean value is recorded and obtained where the QoE-

Aware Application Allocation has the mean value of 354470.0667 while the QoE-Aware algorithm has the 

mean value of 548247.333. Hence, the mean value result indicates that QoE-Aware Application Allocation has 

lower value which means it performs better than the previous QoE-Aware algorithm. Validation on the results 

are performed where T-test and P-value is calculated and computed. Furthermore, a value of 0.1901 is 

obtained for the T-test value and it means that the two values do have statistically significant difference while 

the P-value of 0.0191 is obtained for which it is smaller than 0.05. The QoE-Aware Application Allocation is 

faster than the QoE-Aware algorithm for 35.34%. 

Table 5.7: Total energy consumption for QoE-aware algorithm and Edgeward algorithm 

No of apps Scenario QoE-Aware algorithm (mj) Edgeward (mj) 

App 1 Scenario 1 7746133 7584735 

Scenario 2 7746133 7584101 

Scenario 3 7746133 7577828 

App 2 Scenario 1 7818652 7776270 

Scenario 2 7819135 7782798 

Scenario 3 7817990 7776927 

App 3 Scenario 1 7845183 7907466 

Scenario 2 7854322 7918060 

Scenario 3 7856753 7906792 

App 4 Scenario 1 8036149 7936682 

Scenario 2 8071645 7894012 

Scenario 3 8036254 7914793 

App 5 Scenario 1 8036273 7974861 
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Scenario 2 8020127 7915943 

Scenario 3 8036154 7963174 

Total 118487036 117414442 

Mean 7899135.7333 7827629.4667 

SSD (Sample Standard Deviation) 124200.4070 141544.1795 

CI (Margin of Error) 62854.0781 71631.2380 

T Test 0.1525 

P Value 0.00235 

Other than execution time, the next test will be testing the total consumption of energy for both QoE-Aware 

algorithm and Edgeward algorithm and the final result is being shown in table 5.7. As usual, there are a total 

number of 15 experiments performed that are accompanied by three different scenarios. Based on the table, the 

mean value for both algorithms have obtained and recorded which is 7899135.7333 for QoE-Aware algorithm 

and 7827629.4667 for Edgeward alone and the difference in the values indicates that the algorithm with the 

minimal or better at energy consumption is the Edgeward. Lastly, T-test and P value is calculated and obtained 

in order to validate the results where the T-test value shows the value of 0.1525 and P value shows the value of 

0.00235 that was a significant difference between the Edgeward and QoE-Aware algorithm which is less than 

0.05 because their total energy consumption readings are very close to each other. 

Table 5.8: Total Energy consumption for QoE-aware algorithm and proposed QoE-Aware Application 

Allocation 

No of apps Scenario QoE-Aware algorithm 

(mj) 

QoE-Aware Application Allocation 

(mj) 

App 1 Scenario 1 7746133 7746133 

Scenario 2 7746133 7746292 

Scenario 3 7746133 7747089 

App 2 Scenario 1 7818652 7585916 

Scenario 2 7819135 7585878 

Scenario 3 7817990 7588085 

App 3 Scenario 1 7845183 7884869 

Scenario 2 7854322 7858449 

Scenario 3 7856753 7883155 

App 4 Scenario 1 8036149 7846451 

Scenario 2 8071645 7842035 

Scenario 3 8036254 7783430 

App 5 Scenario 1 8036273 7881800 

Scenario 2 8020127 7878346 

Scenario 3 8036154 7883676 

Total 118487036 116741604 

Mean 7899135.7333 7782773.6 

SSD (Sample Standard Deviation) 124200.4070 114107.3111 

CI (Margin of Error) 62854.0781 57746.2668 

T Test 0.0124 

P Value 0.0007 

Other than execution time, the next test will be testing the total consumption of energy for both QoE-Aware 

algorithm and proposed QoE-Aware Application Allocation and the final result is being shown in table 5.8. As 

usual, there are a total number of 15 experiments performed that are accompanied by three different scenarios. 

Based on the table, the mean value for both algorithms have obtained and recorded which is 7899135.7333 for 

QoE-Aware algorithm and 7782773.6 for QoE-Aware Application Allocation and the difference in the values 

indicates that the algorithm with the minimal or better at energy consumption is the QoE-Aware Application 

Allocation. Lastly, T-test and P value is calculated and obtained in order to validate the results where the T-test 
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value shows the value of 0.0124 and P value shows the value of 0.0007 that was a significant difference 

between the for QoE-Aware Application Allocation and QoE-Aware algorithm which is less than 0.5. As a 

nutshell, the QoE-Aware Application Allocation has a 1.47% improvement compared to previous QoE-aware 

algorithm.  

Table 5.9 shows the result of the Total Network Usage of the application with the QoE-Aware algorithm and 

Edgeward tested. 

Table 5.9: Total Network Usage for Edgeward and QoE-aware algorithm 

No of apps Scenario QoE-Aware algorithm (kb) Edgeward (kb) 

App 1 Scenario 1 14927.8 58963 

Scenario 2 14775.6 58983.4 

Scenario 3 14893 59057.8 

App 2 Scenario 1 54263.8 86524.4 

Scenario 2 53079.8 87207 

Scenario 3 53409.2 85800.8 

App 3 Scenario 1 47488 63762.2 

Scenario 2 47558.8 64187.4 

Scenario 3 47613.6 63394.8 

App 4 Scenario 1 42967.3 53735.6 

Scenario 2 43625.1 53750.8 

Scenario 3 42381.2 53935.8 

App 5 Scenario 1 41368.7 53648.2 

Scenario 2 41253.2 53104 

Scenario 3 41527 53973.7 

Total 601132.1 950028.9 

Mean 40075.4733 63335.26 

SSD (Sample Standard Deviation) 13768.6751 12615.4170 

CI (Margin of Error) 6967.9110 6384.2819 

T Test < 0.0001 

P Value < 0.00001 

Table 5.9 shows the results of total network usage of QoE-Aware algorithm and Edgeward for a total of 15 

experiments with three different scenarios. The results show that the QoE-Aware algorithm had a better total 

network usage compared to Edgeward. The mean of total network usage for QoE-Aware algorithm is 

40075.4733 and for Edgeward is 63335.26. It is also observed that the total network usage for the QoE-Aware 

algorithm is lower than Edgeward. For validating the results, a T-test is used and the P value is calculated. The 

T-test shows < 0.0001 that indicates statistical significant difference between the two values, and it is found 

that the P value is < 0.00001 which is < 0.05. The QoE-aware algorithm will have lesser network usage for 

36.72% while compared to Edgeward algorithm. 

Table 5.10: Total Network Usage for QoE-Aware Application Allocation and QoE-aware algorithm 

No of apps Scenario QoE-Aware algorithm 

(kb) 

QoE-Aware Application Allocation 

(kb) 

App 1 Scenario 1 14927.8 14836.6 

Scenario 2 14775.6 15031.4 

Scenario 3 14893 14896 

App 2 Scenario 1 54263.8 52745 

Scenario 2 53079.8 52440.6 

Scenario 3 53409.2 52529.2 

App 3 Scenario 1 47488 46089.2 

Scenario 2 47558.8 46094.6 
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Scenario 3 47613.6 34267.8 

App 4 Scenario 1 42967.3 38458.6 

Scenario 2 43625.1 38779.2 

Scenario 3 42381.2 30703.6 

App 5 Scenario 1 41368.7 35471.6 

Scenario 2 41253.2 35630.4 

Scenario 3 41527 29696.8 

Total 601132.1 537670.6 

Mean 40075.4733 35844.7067 

SSD (Sample Standard Deviation) 13768.6751 13215.6608 

CI (Margin of Error) 6967.9110 6688.0471 

T Test 0.3979 

P Value 0.0017 

Table 5.10 shows the results of total network usage of QoE-Aware algorithm and QoE-Aware Application 

Allocation for a total of 15 experiments with three different scenarios. The results show that the QoE-Aware 

Application Allocation had a better total network usage compared to QoE-Aware algorithm. The mean of total 

network usage for QoE-Aware algorithm is 40075.4733 and for QoE-Aware Application Allocation is 

35844.7067. It is also observed that the total network usage for the QoE-Aware Application Allocation is 

lower than QoE-Aware algorithm. For validating the results, a T-test is used and the P value is calculated. The 

T-test shows 0.3979 that indicates significant difference between the two values, and it is found that the P 

value is 0.0017 which is < 0.05. QoE-Aware Application Allocation will have lesser network usage for 

10.56% while compared to QoE-Aware algorithm. 

Table 5.11: Rating Gain for QoE-Aware Application Allocation and QoE-aware algorithm 

No. of apps QoE-Aware Application Allocation (s) QoE-Aware Algorithm (s) 

1 35.30  

2 43.47  

3 43.47  

4 43.47  

5 43.40  

Total 209.11  

Mean 41.822  

SD   

CI   

T Test  

P Value  

The final results for resource gain for both algorithms have been recorded and obtained in table 5.11. The 

testing happens with 15 experiment counts. The scale can be explained in a way that as the mean value of the 

resource gain increases, the lower the cost induced. For instance, the QoE-Aware algorithm has the mean value 

of 1.95 which is greater than the Edgeward algorithm with the mean value of 1.396. Last but not least, 

validation of the result is performed by obtaining the T-test and P value. The T-test value shows the value of 

3.2624 while the P value shows the value of 0.011486 that indicates a significant difference between the two 

values (QoE-Aware Application Allocation & Qoe-aware Algorithm) which is lower than 0.05. 

Data Collection for performing Energy-aware Algorithm 

The comparison of QoE-Aware with Energy-Aware algorithm and Edgeward happens in this section where 

execution time is the main focus. First of all, we put QoE-Aware with Energy-Aware algorithm into a test and 

three parameters are used for the comparison purpose which are the total usage of the network, total 

consumption of power and lastly the total execution time. Based on table 5.8, the table shows the final result 

between QoE-Aware with Energy-Aware algorithm and Edgeward algorithm in terms of execution time for a 
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number of applications. Table 5.11 shows the result of the execution time for Edgeward, QoE-aware algorithm 

and QoE-aware with Energy-aware algorithm 

Execution time for Edgeward, QoE-aware algorithm and QoE-aware with Energy-aware algorithm 

No of apps Scenario QoE-Aware 

algorithm (ms) 

Edgeward (ms) QoE-Aware with Energy-Aware 

algorithm (ms) 

App 1 Scenario 1 612 1100 410 

Scenario 2 597 1009 377 

Scenario 3 518 925 325 

App 2 Scenario 1 25912 38170 17773 

Scenario 2 27600 39337 18147 

Scenario 3 26714 44569 18069 

App 3 Scenario 1 601284 771059 218135 

Scenario 2 417536 455422 219815 

Scenario 3 312293 546385 222914 

App 4 Scenario 1 1452502 869310 838680 

Scenario 2 1135091 870367 835160 

Scenario 3 1017145 886419 777496 

App 5 Scenario 1 819166 1502511 821211 

Scenario 2 815274 1527898 819568 

Scenario 3 819738 1567123 818300 

Total 7471982 9121604 5626380 

Mean 498132.1333 608106.9333 375092 

SSD (Sample Standard Deviation) 489458.2852 591935.3413 383333.5582 

CI (Margin of Error) 247700.0682 299560.6139 193993.5463 

T Test 0.2111550168 

P Value 0.0039895919 

After numerous counts of testing with different scenarios, it can be concluded that the algorithm with the best 

execution time than another is the algorithm of QoE-Aware with Energy-Aware compared to the Edgeward 

where the mean value for the combination of QoE-Aware with Energy-Aware algorithm is 375092.0, QoE-

Aware algorithm is 498132.1 while Edgeward algorithm alone is 608106.9. Hence, the lower the mean value 

of an algorithm, the better the performance of the specific algorithm. In this case, the algorithm with better 

performance is the QoE-Aware algorithm with the Energy-Aware algorithm. Last but not least, the validation 

on the results has to be performed in order to test its accuracy by obtaining the values of T-test and P value. 

For instance, the T-test value and P value obtained are 0.2112 and 0.0039896 respectively. Furthermore, a 

value of 0.2112 is obtained for the T-test value and it means that the two values do not have significant 

difference while a value of 0.0039896 is obtained for which it is more than 0.05. However, QoE-Aware with 

the Energy-Aware algorithm still has 6.7834% faster than Edgeward. 

Table 5.13: Total energy consumption for QoE-aware with Energy-aware algorithm and Edgeward algorithm 

No of apps Scenario QoE-Aware 

algorithm (mj) 

Edgeward (mj) QoE-Aware with Energy-

Aware algorithm (mj) 

App 1 Scenario 1 7746133 7647869 7747072 

Scenario 2 7746292 7648675 7746486 

Scenario 3 7747089 7724308 7747192 

App 2 Scenario 1 7817429 7775449 7889599 

Scenario 2 7818065 7780717 7916164 

Scenario 3 7820236 7838358 7877409 

App 3 Scenario 1 7852352 7752522 8201050 

Scenario 2 7856059 7763205 8127141 

Scenario 3 7845164 7855144 8018881 
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App 4 Scenario 1 8038228 7849260 8227633 

Scenario 2 8002331 7831765 8114234 

Scenario 3 7980015 7861455 8423569 

App 5 Scenario 1 8087449 7893617 8312432 

Scenario 2 8077500 7867069 8346382 

Scenario 3 8048200 7919988 8275659 

Total 118482542 117009401 120970903 

Mean 7898836.133 7800626.733 8064726.867 

SSD (Sample Standard Deviation) 126024.9493 82692.6721 232740.9889 

CI (Margin of Error) 63777.42388 41848.26601 117783.1913 

T Test 0.000287444981 

P Value 0.00002361104868 

Other than execution time, the next test will be testing the total consumption of energy for both QoE-Aware 

with Energy-Aware algorithm and the Edgeward algorithm and the final result is being shown in table 5.12. As 

usual, there are a total number of 15 experiments performed that are accompanied by three different scenarios. 

Based on the table, the mean value for both algorithms have obtained and recorded which is 8064726.867 for 

QoE-Aware with Energy-Aware algorithm and 7800626.733 for Edgeward alone and the difference in the 

values indicates that the algorithm with the minimal or better at energy consumption is the QoE-Aware with 

Energy-Aware. Lastly, T-test and P value is calculated and obtained in order to validate the results where the 

T-test value shows the value of 0.00028744 and P value shows the value of 0.00002361 that indicates a 

significant difference between the Edgeward and QoE-Aware with Energy-Aware algorithm which is less than 

0.05. Table 5.13 shows the result of the total network usage of the application with the QoE-Aware with 

Energy-Aware algorithm, QoE Algorithm and Edgeward tested.  

Table 5.14: Total network usage for Edgeward, QoE-aware algorithm and QoE-aware with Energy-aware 

algorithm 

No of apps Scenario QoE-Aware 

algorithm (kb) 

Edgeward 

(kb) 

QoE-Aware with Energy-Aware 

algorithm (kb) 

App 1 Scenario 1 14964.0 58952.8 14851.8 

Scenario 2 14727.6 59014.4 14820.2 

Scenario 3 14985.6 58920.6 14821.4 

App 2 Scenario 1 53648.2 86150.4 53269.2 

Scenario 2 53833.0 85887.4 53678.8 

Scenario 3 54187.6 86966.8 53923.4 

App 3 Scenario 1 47649.2 63653.8 46725 

Scenario 2 47857.0 63374.8 47127.6 

Scenario 3 47389.0 64161.6 47308.2 

App 4 Scenario 1 42884.0 54315.0 43056.6 

Scenario 2 43152.4 54050.6 42955.4 

Scenario 3 100898.8 54412.0 99285.4 

App 5 Scenario 1 41952.2 50807.8 42116.2 

Scenario 2 41978.8 50928.6 41781 

Scenario 3 42131.0 51595.2 41937.8 

Total 662238.4 943191.8 657658 

Mean 44149.2 62879.45333 43843.86667 

SSD (Sample Standard Deviation) 20918.06221 12924.2293 20579.9974 

CI (Margin of Error) 10586.00006 6540.562448 10414.91566 

T Test 0.005166914852 

P Value 0.002607611467 
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The last parameter that is going to test is the network usage. Based on the table 5.14, the network usage of both 

algorithms are obtained and recorded through 15 times of experimentation accompanied by three different 

scenarios. The algorithm with the least network usage is the Edgeward with Energy-Aware algorithm where 

the mean value of it is 43843.86667 while the Edgeward algorithm alone has the mean value of 62879.45333. 

In conclusion, the lower the mean value of network usage, the less network usage of the algorithm. Last but 

not least, validation on the result is performed by obtaining the T-test and P value. The T-test value shows 

0.0051669 while the P value shows 0.0026076 which is less than 0.05. It indicates a significant difference in 

the network usage between Edgeward and QoE-Aware with the Energy-Aware algorithm. 

Data Collection for performing QoE-Aware Algorithm 

The purpose of this section is to compare the algorithm between QoE-aware, Energy-aware placement with 

Computation Offloading and Edgeward algorithm alone. In summary, QoE-Aware with Energy-Aware 

algorithm is being combined with the Computation Offloading and compared against the Edgeward algorithm 

in order to obtain results of execution time, consumption of energy and lastly the usage of network. Table 5.15 

shows the execution time for both algorithms. 

Table 5.15: Execution time for Edgeward and QoE-aware with Energy-aware Placement with Enhanced 

Offloading algorithm  

No of apps Scenario QoE-aware with Energy-aware Placement with 

Offloading algorithm 

Edgeward (ms) 

App 1 Scenario 1 519 1100 

Scenario 2 552 1009 

Scenario 3 544 925 

App 2 Scenario 1 38345 38170 

Scenario 2 38120 39337 

Scenario 3 38529 44569 

App 3 Scenario 1 410714 771059 

Scenario 2 412652 455422 

Scenario 3 415638 546385 

App 4 Scenario 1 458394 869310 

Scenario 2 437355 870367 

Scenario 3 428320 886419 

App 5 Scenario 1 656356 1502511 

Scenario 2 681074 1527898 

Scenario 3 667788 1567123 

Total 4684900 9121604 

Mean 312326.6667 608106.9333 

SSD (Sample Standard Deviation) 264356.4314 591935.3413 

CI (Margin of Error) 133782.8127 299560.6139 

T Test 0.08811894506 

P Value 0.002418735049 

The results based on table 5.15 have been obtained and recorded for further analysis and observation. The 

testing happened with 15 experiment counts accompanied by three different scenarios. Based on the 

observation of the result obtained, the algorithm with better or efficient execution time is the Edgeward 

algorithm where it has the mean value of 312326.6667. Last but not least, validation on the results are 

performed where the T-test and P value is calculated and obtained. For instance, the T-test value shows 

0.088118 and P value shows 0.0024187 which is less than 0.05. There is a significant difference between the 

Edgeward (ms) and QoE-aware and Energy-aware Placement with proposed offloading algorithm (ms) since P 

value less than 0.05 because their execution time’s readings are very distinct to each other. 
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Table 5.16: Total energy consumption for Edgeward and QoE-aware with Energy-aware Placement with 

Enhanced Offloading Algorithm 

No of apps Scenario QoE-aware with Energy-aware Placement with 

Offloading algorithm 

Edgeward (mj) 

App 1 Scenario 1 7746681 7647869 

Scenario 2 7747023 7648675 

Scenario 3 7747806 7724308 

App 2 Scenario 1 7893655 7775449 

Scenario 2 7905772 7780717 

Scenario 3 7875590 7838358 

App 3 Scenario 1 8177893 7752522 

Scenario 2 8185514 7763205 

Scenario 3 8010110 7855144 

App 4 Scenario 1 8325028 7849260 

Scenario 2 8167156 7831765 

Scenario 3 8110226 7861455 

App 5 Scenario 1 8447283 7893617 

Scenario 2 8494543 7867069 

Scenario 3 8668019 7919988 

Total 121502299 117009401 

Mean 8100153.267 7800626.733 

SSD (Sample Standard Deviation) 290290.1853 82692.6721 

CI (Margin of Error) 146907.103 41848.26601 

T Test 0.0006385919742 

P Value 0.00009457846557 

Moreover, the next parameter that is going to be recorded and observed is the total consumption of energy for 

both comparison algorithms. The testing happens with 15 experiment counts accompanied by three different 

scenarios. In conclusion, the algorithm with least energy consumption is Edgeward algorithm with the mean 

value of 7882526.467 compared to QoE-Aware, Energy-Aware Placement with Computation Offloading 

Algorithm which has the mean value of 8100153.267. Last but not least, validation on the results are 

performed by obtaining the T-test and P value. For instance, the T-test shows 0.00063859 while the P value 

shows 0.000094578 which is less than 0.05 but their total energy consumption readings are very close to each 

other. 
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Table 5.17: Total network usage for Edgeward and QoE-aware with Energy-aware Placement with Enhanced 

Offloading Algorithm 

No of apps Scenario QoE-aware with Energy-aware Placement with 

Offloading algorithm 

Edgeward (kb) 

App 1 Scenario 1 14934.8 58952.8 

Scenario 2 14905 59014.4 

Scenario 3 14920.2 58920.6 

App 2 Scenario 1 53715.2 86150.4 

Scenario 2 53866.2 85887.4 

Scenario 3 54234.2 86966.8 

App 3 Scenario 1 47372.8 63653.8 

Scenario 2 47380.2 63374.8 

Scenario 3 47278.4 64161.6 

App 4 Scenario 1 42692.4 54315.0 

Scenario 2 43275.8 54050.6 

Scenario 3 43986.2 54412.0 

App 5 Scenario 1 26019 50807.8 

Scenario 2 25813 50928.6 

Scenario 3 25875.2 51595.2 

Total 556268.6 943191.8 

Mean 37084.57333 62879.45333 

SSD (Sample Standard Deviation) 14962.89276 12924.2293 

CI (Margin of Error) 7572.268502 6540.562448 

T Test 0.00002400455056 

P Value 0.0000004875142624 

Next, table 5.17 recorded the results of the total network usage for both algorithms in comparison. The testing 

happened with 15 experiment counts accompanied by 3 different scenarios. From the results obtained, it can be 

said that the algorithm with least usage of network is the Edgeward algorithm alone with the mean value of 

62879.45333 compared to QoE-Aware, Energy-Aware Placement with proposed Offloading algorithm with 

the mean value of 37084.57333. Last but not least, validation on the results are performed by obtaining the T-

test and P value. For instance, T-test has the value of 0.000024 and P value has the value of 0.00000048 which 

is less than 0.05 because their total network usage readings are very distinct to each other. QoE-aware, Energy-

aware and offloading has lower network usage than edgeward. This is because fog devices are having a load 

limit which is used to avoid the fog devices being overloaded. When the modules exceed the fog device’s load 

limit, the module will pass to another fog device. Therefore, the module would not only process solely on that 

fog device. Instead, the modules will pass to other fog devices for the sake of avoiding overload of fog devices. 

That’s the reason why offloading ends up decreasing the network usage. 
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Chapter Summary And Evaluation 

This chapter summarises the collection of data and using those data obtained to evaluate the proposed 

offloading algorithm with the comparison of existing QoE-aware algorithm, QoE-aware with energy-aware 

algorithm, and QoE-aware and energy-aware placement with computation offloading algorithm. The 

evaluation criteria including execution time, power consumption and network usage are used to compare 

between the proposed algorithm and existing algorithm. Other than that, the parameter of resource gain is used 

to compare the QoE-aware and Energy-aware Placement with the proposed Offloading Algorithm. 

In short, the comparison of QoE-aware with proposed Offloading Algorithm against Edgeward algorithm and 

QoE-aware and Energy-aware Placement with proposed Offloading Algorithm has come to a conclusion where 

the proposed QoE-aware with proposed Offloading Algorithm has better a performance in terms of execution 

time, total network usage and resource gain than Edgeward algorithm. 

RESULT AND DISCUSSION 

This chapter compares and evaluates the performance of proposed algorithms including QoE, energy and 

offloading solutions. Execution Time, Total Energy consumption and Total Network Usage are used to 

evaluate the performance of the proposed algorithm. The purpose is to analyse the main objective of this 

research which is to improve data processing time and service based on QoE-Aware application mapping 

policy. 

First, the data and results are collected from iFogSim simulation simulator. The result was analysed based on 

the data to show the impact of the proposed algorithm. In the experiments, the algorithm runs in the eclipse 

workspace. The three parameters include Execution Time, Total Energy consumption and Total Network 

Usage are captured. This chapter also focuses on the comparison of the results among Edgeward, QoE-aware 

algorithm, QoE-aware with energy-aware algorithm, QoE-aware with energy-aware and QoE, Energy-aware 

and offloading algorithm.  

This chapter includes four sections. Section 6.1 presents the analysis of the result related to execution time; 

Section 6.2 presents the analysis of the result regarding total energy consumption; whereas Section 6.3 

presents the analysis of result in terms of total network usage. Lastly, Section 6.4 concludes the chapter by 

highlighting the prominence of QoE-Aware offloading algorithm. 

Analysis of Algorithms in term of Execution Time 

Figure 6.1 shows the execution time of nine algorithms including Edgeward, QoE-aware algorithm, QoE-

aware with energy-aware algorithm, QoE-aware with energy-aware and offloading algorithm, the energy-

aware only, proposed QoE-aware application allocation, proposed QoE-aware with energy-aware algorithm, 

and proposed QoE-aware with energy-aware and offloading algorithm and the energy-aware only testing in 

proposed QoE-aware application allocation algorithm. On the y-axis represents the total execution time to 

complete the application’s tasks whereas on the x-axis indicates different types of scenarios. The value for 

each of the algorithms is using the result of execution time of five applications.  

  

Figure 6.1: Execution time of algorithms in Scenarios 
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According to Figure 6.1, In scenario 1, 2 and 3 the QoE-Aware algorithm shows improved performance with 

reduced execution times compared to the Edgeward algorithm, but it still lags behind the more advanced 

approaches. The Proposed QoE-Aware Application Allocation achieves substantially lower execution times in 

all scenarios, demonstrating its effectiveness in optimizing task distribution. The QoE-Aware with Energy-

Aware Placement with Offloading Algorithm further enhances performance by incorporating energy-efficient 

strategies, resulting in shorter execution times compared to the basic QoE-Aware algorithm. Among all 

algorithms, the Proposed QoE-Aware Application Allocation with Energy-Aware Placement and Offloading 

stands out, achieving the lowest execution times across all scenarios, making it the most efficient. The Energy-

Aware Only algorithms, both with and without QoE-awareness, show moderate improvements over the 

Edgeward and basic QoE-Aware algorithms. However, their execution times are slightly higher compared to 

the combined strategies of QoE-awareness and energy-aware placement, highlighting the importance of 

integrating both strategies for optimal performance. 

Analysis of Algorithms in term of Total Energy Consumption 

Figure 6.2 shows the energy consumption of nine algorithms including Edgeward, QoE-aware algorithm, QoE-

aware with energy-aware algorithm, QoE-aware with energy-aware and offloading algorithm, the energy-

aware only, proposed QoE-aware application allocation, proposed QoE-aware with energy-aware algorithm, 

and proposed QoE-aware with energy-aware and offloading algorithm and the energy-aware only testing in 

proposed QoE-aware application allocation algorithm. On the y-axis represents the total energy consumption 

needed to complete the application’s tasks whereas on the x-axis indicates different types of scenarios. The 

value for each of the algorithms is using the result of energy consumption of four applications. Based on the 

figure 6.2, QoE-aware with Energy-aware with offloading algorithm have the highest energy consumption 

whereas energy-aware algorithms use the lowest energy consumption.  

  

Figure 6.2: Total energy consumption of algorithms in Scenarios 

Based on the scenarios, Edgeward has the fourth highest energy consumption among the others. It is caused by 

the lower layer of the fog devices which the closest to the end devices cannot process the task, it will pass to 

another that above them, the middle and upper layer fog devices. Therefore, the characteristics of Edgeward 

that transfer the modules from one to upper fog device will slightly increase the power consumption. Since the 

QoE, Energy-Aware and offloading algorithms have an extra process which is offloading newly arrived tasks 

so it has the highest energy consumption. The energy-aware only algorithm has the second lowest energy 

consumption because it executes the modules with barely sufficient energy so the energy usage of the fog 

devices that implement the energy-aware only algorithm will have the lowest energy consumption. The QoE-
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aware algorithm has energy consumption that is higher than the Edgeward because the QoE-aware algorithm 

has to fulfil the user requirements via many calculations which has increased the energy consumption. While 

for our proposed QoE-aware application allocation are having the least of energy consumption in all scenario.   

Analysis of Algorithms in term of Total Network U

 

Figure 6.3: Total network usage of algorithms in Scenarios 

Figure 6.3 shows the total network usage of nine algorithms including Edgeward, QoE-aware algorithm, QoE-

aware with energy-aware algorithm, QoE-aware with energy-aware and offloading algorithm, the energy-

aware only, proposed QoE-aware application allocation, proposed QoE-aware with energy-aware algorithm, 

and proposed QoE-aware with energy-aware and offloading algorithm and the energy-aware only testing in 

proposed QoE-aware application allocation algorithm. On the y-axis represents the total network usage needed 

to complete the application’s tasks whereas on the x-axis indicates different types of scenarios. The value for 

each of the algorithms is using the result of network usage of five applications. 

Based on the figure 6.3, the Edgeward algorithm consistently shows the highest network usage in all scenarios. 

The QoE-Aware algorithm and Proposed QoE-Aware Application Allocation demonstrate lower network 

usage, indicating better optimization of resources. Among all algorithms, the Proposed QoE-Aware 

Application Allocation with Energy-Aware Placement and Offloading achieves efficient network utilization, 

balancing task execution with minimal data transfer requirements. This efficiency makes it suitable for 

applications requiring reduced network overhead. The Proposed QoE-Aware Application Allocation optimizes 

network usage by dynamically distributing tasks based on Quality of Experience (QoE) metrics such as latency 

and bandwidth. This ensures effective data transmission and minimizes unnecessary network usage.  

CONCLUSION 

In this chapter, the experimental result is discussed to show the performance of the QoE, Energy-Aware and 

proposed algorithm on the basis of the execution time, total energy consumption and total network usage. The 

experiments were investigated based on comparison among algorithms such as Edgeward, QoE-aware 

algorithm, QoE-aware with energy-aware algorithm, QoE-aware with energy-aware and offloading algorithm , 

energy-aware only algorithm, proposed QoE-aware application allocation, proposed QoE-aware with energy-

aware algorithm, and proposed QoE-aware with energy-aware and offloading algorithm and the energy-aware 

only testing in proposed QoE-aware application allocation algorithm.  

In summary, the proposed QoE-aware application allocation performs better as compared to other algorithms. 

Moreover, the analysis of the results shows that the performance of the proposed algorithm needs lesser 

execution time and lesser total network usage than the existing QoE-aware with energy-aware and computation 

offloading algorithm. 
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