Abstract
Modelling the effects of three natural predators on the aquatic and adult anopheles’ mosquitoes in the control of malaria transmission was aimed at eradicating anopheles’ larva, pupa and adult anopheles’ mosquito by introduction of natural predators “copepods, tadpoles and purple martins” (organism that eat up mosquito at larva, pupa, and adult stages), so that there should not be anopheles’ adult mosquito for malaria transmission in our society. This new proposed model is a control flow diagram of predator-prey interaction model in mosquito life-cycle that considers an open population of mosquito and predators. The population is sub-divided based on mosquito life-cycle and natural predators. Under a mosquito life-cycle, the population is divided into four compartments, Egg compartment E(t), Larva compartment L(t), Pupa compartment P(t), and Adult compartment A(t), and natural predators, it is divided into three compartments, namely; Copepods C_P (t), Tadpole〖 T〗_P (t) and Purple martins P_M (t). These models provide understanding for control of malaria in our environments, especially when the models are based on the ecology of the vector population and sound understanding of variables and parameters relevant for transmission. The model equations were derived using the model variables and parameters. The stability analysis of the free equilibrium states were analyzed using equilibrium point, elimination, substitution methods, idea of Beltrami’s and Diekmann’s conditions. From the stability analysis of steady state, we observed that the model free equilibrium state is stable, this implies that the equilibrium point or steady state is stable and the stability of the model(3.13.1) – (3.13.8) means, there will not be anopheles adult mosquito in our society for malaria transmission and from the idea of Beltrami’s and Diekmann’s conditions we observed that the Determinant of the Jacobian matrix is greater than zero(Det〖{j}〗>0),Trace of the Jacobian matrix is less than zero(Tr{j}<0) and the basic reproduction number is less than one ( R_0<1) which implies that the model disease free equilibrium state is stable. Hence the number of larva that transform to pupa is almost zero and the number of pupa that develop to adult is minimal and number of adult that escape to vector stage are inconsequential, that means the life-cycle could be broken at the larva, pupa, and adult stages with the introduction of natural predators, with the natural implication there will not be anopheles adult mosquito for malaria transmission and we also use maple for symbolical and numerical solution and presented the results graphically. The contribution of this research work to knowledge is to bring out the control flow diagram of prey-predator interaction, mathematical models, Identify the ability to control and eradicate malaria through stability analysis and numerical experiments showing the effect of the introduction of three natural predators on the larva, pupa and adult stages of the adult Anopheles mosquito( biological inoffensive method) which will contribute to the eradication of adult anopheles’ mosquito, which will also lead to the elimination of malaria in our society.
Page(s): 115-200 Date of Publication: 28 February 2023
Authors
Atanyi Yusuf Emmanuel
Department of Mathematics, Federal University of Lafia, PMB 146, Lafia, Nigeria
H.K Oduwole
Department of Mathematics, Nasarawa State University, Keffi,PMB 1022, Keffi, Nigeria
Utalor Kate Ifeoma
Mathematical Centre, Abuja, Nigeria
References
1. Atanyi Y. E, H.K. Oduwole & M.A. Umar. Mathematical prototype for the control of malaria by interrupting the life cycle of the Anopheles mosquito through the use of biological enemies in the larva, pupa and adult stages. IOSR Journal of Mathematics (IOSR-JM), 19(1), (2023): pp. 06-21.
2. Atanyi Y. E, H.K. Oduwole & M.A. Umar. Modelling the Effects of Three Natural Predators on the Aquatic and Adult Stages of Anopheles Mosquitoes in the Control of Malaria Transmission. Journal of Research in Applied Mathematics Volume 9-Issue 1(2023) pp:35-54 ISSN(online):2394-0743 ISSN(print): 2394-0735.
3. Atanyi Y. E, H.K. Oduwole and M.A. Umar. The Pictorial Integral of Malaria Control with Maple. Journal of Research in Applied Mathematics Volume 9-Issue 1(2023) pp:55-73 ISSN(online):2394-0743 ISSN(print): 2394-0735.
4. Adak, T., Singh, O. P., Das, M. K., Wattal, S., & Nanda, N. (2005). COMPARATIVE SUSCEPTIBILITY OF THREE IMPORTANT MALARIA VECTORS ANOPHELES STEPHENSI, ANOPHELES FLUVIATILIS, AND ANOPHELES SUNDAICUS TO PLASMODIUM VIVAX. Journal of Parasitology, 91(1), 79–82. https://doi.org/10.1645/ge-3514
5. Adigun, A. B., Gajere, E. N., Oresanya, O., & Vounatsou, P. (2015). Malaria risk in Nigeria: Bayesian geostatistical modelling of 2010 malaria indicator survey data. Malaria Journal, 14(1). https://doi.org/10.1186/s12936-015-0683-6
6. Agusto, F. B., & Parshad, R. D. (2011). Global dynamics of a PDE model for Aedes aegypti mosquitoe incorporating female sexual preference. Dynamics of Partial Differential Equations, 8(4), 311–343. https://doi.org/10.4310/dpde.2011.v8.n4.a2
7. Al-Riyami, A. Z., & Al-Khabori, M. (2013). Concomitant microfilaria and malaria infection. Blood, 121(22), 4437–4437. https://doi.org/10.1182/blood-2012-11-469809
8. Alaba, O. A., & Alaba, O. B. (2009). Malaria in Rural Nigeria: Implications for the Millennium Development Goals. African Development Review, 21(1), 73–85. https://doi.org/10.1111/j.1467-8268.2009.00204.x
9. Ali H. Hallem & A. H. H. (2019). Improving Oxidation Behavior of (Alpha- Beta) (Cu-Zn40) Brass by Aluminum Addition. International Journal of Mechanical and Production Engineering Research and Development, 9(1), 329–340. https://doi.org/10.24247/ijmperdfeb201932
10. Anderson, I. S., Berk, N. F., Rush, J. J., Udovic, T. J., Barnes, R. G., Magerl, A., & Richter, D. (1991). Andersonet al. reply. Physical Review Letters, 66(18), 2415–2415. https://doi.org/10.1103/physrevlett.66.2415
11. Aniedu, I. (1992). A comparative study of the distribution and seasonal abundance of malaria vectors in three ecologically distinct habitats in Baringo district, Kenya. Journal of Applied Entomology, 114(1-5), 268–274. https://doi.org/10.1111/j.1439-0418.1992.tb01126.x
12. Antonio-nkondjio, C., Kerah, C. H., Simard, F., Awono-ambene, P., Chouaibou, M., Tchuinkam, T., & Fontenille, D. (2006). Complexity of the Malaria Vectorial System in Cameroon: Contribution of Secondary Vectors to Malaria Transmission. Journal of Medical Entomology, 43(6), 1215–1221. https://doi.org/10.1093/jmedent/43.6.1215
13. Anvikar, A., Singh, D., Singh, R., Dash, A., & Valecha, N. (2010). Vivax malaria presenting with cerebral malaria and convulsions. Acta Parasitologica, 55(1). https://doi.org/10.2478/s11686-010-0013-7
14. Arrighi, R. B. G., Debierre-Grockiego, F., Schwarz, R. T., & Faye, I. (2009). The immunogenic properties of protozoan glycosylphosphatidylinositols in the mosquito Anopheles gambiae. Developmental & Comparative Immunology, 33(2), 216–223. https://doi.org/10.1016/j.dci.2008.08.009
15. Ashley, E. A., & Yeka, A. (2020). Seasonal malaria chemoprevention: closing the know–do gap. The Lancet, 396(10265), 1778–1779. https://doi.org/10.1016/s0140-6736(20)32525-3
16. Atta, H., & Reeder, J. (2014). World Malaria Day 2014: invest in the future. Defeat malaria. Eastern Mediterranean Health Journal, 20(04), 219–220. https://doi.org/10.26719/2014.20.4.219
17. Awolola, T. S., Brooke, B. D., Hunt, R. H., & Coetze, M. (2002). Resistance of the malaria vector Anopheles gambiae s.s. to pyrethroid insecticides, in south-western Nigeria. Annals of Tropical Medicine and Parasitology, 96(8), 849–852. https://doi.org/10.1179/000349802125002581
18. Awolola, T. S., Oyewole, I. O., Amajoh, C. N., Idowu, E. T., Ajayi, M. B., Oduola, A., Manafa, O. U., Ibrahim, K., Koekemoer, L. L., & Coetzee, M. (2005). Distribution of the molecular forms of Anopheles gambiae and pyrethroid knock down resistance gene in Nigeria. Acta Tropica, 95(3), 204–209. https://doi.org/10.1016/j.actatropica.2005.06.002
19. Awono-Ambéné, H. P., & Robert, V. (1999). Survival and emergence of immatureanopheles Arabiensismosquitoes in market-gardener wells in Dakar, Senegal. Parasite, 6(2), 179–184. https://doi.org/10.1051/parasite/1999062179
20. Ayala, D., Costantini, C., Ose, K., Kamdem, G. C., Antonio-Nkondjio, C., Agbor, J.-P., Awono-Ambene, P., Fontenille, D., & Simard, F. (2009). Habitat suitability and ecological niche profile of major malaria vectors in Cameroon. Malaria Journal, 8, 307. https://doi.org/10.1186/1475-2875-8-307
21. Ayala, F. J., & Coluzzi, M. (2005). Chromosome speciation: Humans, Drosophila, and mosquitoes. Proceedings of the National Academy of Sciences, 102(suppl 1), 6535–6542. https://doi.org/10.1073/pnas.0501847102
22. Bashar, K., & Tuno, N. (2014). Seasonal abundance of Anopheles mosquitoes and their association with meteorological factors and malaria incidence in Bangladesh. Parasites & Vectors, 7(1), 442. https://doi.org/10.1186/1756-3305-7-442
23. Bashar, K., Tuno, N., Ahmed, T. U., & Howlader, A. J. (2013). False positivity of circumsporozoite protein (CSP)–ELISA in zoophilic anophelines in Bangladesh. Acta Tropica, 125(2), 220–225. https://doi.org/10.1016/j.actatropica.2012.10.004
24. Benito, A., & Rubio, J. M. (2002). Screening Blood Donors at Risk for Malaria: Reply to Hänscheid et al. Emerging Infectious Diseases, 8(8), 873–874. https://doi.org/10.3201/eid0808.020200
25. Bernard, K. A., Pacheco, A. L., Burdz, T., Wiebe, D., & Bernier, A.-M. (2020). Corynebacterium godavarianum Jani et al. 2018 and Corynebacterium hadale Wei et al. 2018 are both later heterotypic synonyms of Corynebacterium gottingense Atasayar et al. 2017, proposal of an emended description of Corynebacterium gottingense Atasayar et al. 2017. International Journal of Systematic and Evolutionary Microbiology, 70(5), 3534–3540. https://doi.org/10.1099/ijsem.0.004153
26. Brabin, L., Verhoeff, F., & Brabin, B. J. (2002). Maternal height, birthweight and cephalo pelvic disproportion in urban Nigeria and rural Malawi. Acta Obstetricia et Gynecologica Scandinavica, 81(6), 502–507. https://doi.org/10.1034/j.1600-0412.2002.810605.x
27. Bruce-Chwatt, L. J., & Bruce-Chwatt, J. M. (1950). Antimalarial Drugs in West Africa. BMJ, 2(4669), 7–14. https://doi.org/10.1136/bmj.2.4669.7
28. Cano, J., Descalzo, M. Á., Moreno, M., Chen, Z., Nzambo, S., Bobuakasi, L., Buatiche, J. N., Ondo, M., Micha, F., & Benito, A. (2006). Spatial variability in the density, distribution and vectorial capacity of anopheline species in a high transmission village (Equatorial Guinea). Malaria Journal, 5(1). https://doi.org/10.1186/1475-2875-5-21
29. Chapman, A., McKendrick, M. W., & Gowda, R. (2006). WITHDRAWN: Malaria and tuberculosis co-infection. Journal of Infection. https://doi.org/10.1016/j.jinf.2005.11.172
30. Charlwood, J., Thompson, R., & Madsen, H. (2003). Malaria Journal, 2(1), 2. https://doi.org/10.1186/1475-2875-2-2
31. Chaudhary, A., Bansal, N., Gajraj, A., & Singh, R. V. (2003). Antifertility, antibacterial, antifungal and percent disease incidence aspects of macrocyclic complexes of manganese(II). Journal of Inorganic Biochemistry, 96(2-3), 393–400. https://doi.org/10.1016/s0162-0134(03)00157-0
32. Chen, J.-H., & McKendrick, M. W. (2016). ChemInform Abstract: Asymmetric Total Synthesis of Propindilactone G. ChemInform, 47(6), no-no. https://doi.org/10.1002/chin.201606217
33. Childs, L. M., & Prosper, O. F. (2017). Simulating within-vector generation of the malaria parasite diversity. PLOS ONE, 12(5), e0177941. https://doi.org/10.1371/journal.pone.0177941
34. Christophides, G. K. (2005). Transgenic mosquitoes and malaria transmission. Cellular Microbiology, 7(3), 325–333. https://doi.org/10.1111/j.1462-5822.2005.00495.x
35. Chuma, J., Okungu, V., & Molyneux, C. (2010). Barriers to prompt and effective malaria treatment among the poorest population in Kenya. Malaria Journal, 9(1). https://doi.org/10.1186/1475-2875-9-144
36. Churcher, T. S., Blagborough, A. M., & Sinden, R. E. (2012). Measuring the blockade of malaria transmission: analyzing the results of mosquito feeding assays. Malaria Journal, 11(S1). https://doi.org/10.1186/1475-2875-11-s1-p18
37. Churcher, T. S., Trape, J.-F., & Cohuet, A. (2015). Human-to-mosquito transmission efficiency increases as malaria is controlled. Nature Communications, 6(1). https://doi.org/10.1038/ncomms7054
38. Coetzee, M., Craig, M., & le Sueur, D. (2000). Distribution of African Malaria Mosquitoes Belonging to the Anopheles gambiae Complex. Parasitology Today, 16(2), 74–77. https://doi.org/10.1016/S0169-4758(99)01563-X
39. Coetzee, M., & Fontenille, D. (2004). Advances in the study of Anopheles funestus, a major vector of malaria in Africa. Insect Biochemistry and Molecular Biology, 34(7), 599–605. https://doi.org/10.1016/j.ibmb.2004.03.012
40. COHUET, A., TOTO, J.-C., SIMARD, F., KENGNE, P., FONTENILLE, D., & COETZEE, M. (2003). SPECIES IDENTIFICATION WITHIN THE ANOPHELES FUNESTUS GROUP OF MALARIA VECTORS IN CAMEROON AND EVIDENCE FOR A NEW SPECIES. The American Journal of Tropical Medicine and Hygiene, 69(2), 200–205. https://doi.org/10.4269/ajtmh.2003.69.200
41. Corbel, V., Darriet, F., Chandre, F., & Hougard, J. M. (2002). Insecticide mixtures for mosquito net impregnation against malaria vectors. Parasite, 9(3), 255–259. https://doi.org/10.1051/parasite/2002093255
42. Craig, M. H., Kleinschmidt, I., Gosoniu, L., Mabaso, M., Vounatsou, P., & Smith, T. (2005). SPATIAL STATISTICAL ANALYSIS OF MALARIA PREVALENCE DATA IN BOTSWANA. Epidemiology, 16(5), S115–S116. https://doi.org/10.1097/00001648-200509000-00290
43. Croskerry, P., Petrie, D. A., Reilly, J. B., & Tait, G. (2014). In Reply to Norman et al and to Ilgen et al. Academic Medicine, 89(9), 1196–1197. https://doi.org/10.1097/acm.0000000000000432
44. Cuamba, N., Choi, K. S., & Townson, H. (2006). Malaria vectors in Angola: distribution of species and molecular forms of the Anopheles gambiae complex, their pyrethroid insecticide knockdown resistance (kdr) status and Plasmodium falciparum sporozoite rates. Malaria Journal, 5, 2. https://doi.org/10.1186/1475-2875-5-2
45. Da, O., Coulibaly, M. T., Yerbanga, R. S., Koama, B., Ouedraogo, N., Tamboura, S., Dakuyo, Z. P., Sekhoacha, M. P., Nikiema, J. B., Ouedraogo, G. A., Matsabisa, M. G., & Ouedraogo, J. B. (2014). Antiplasmodial and Antioxidant Activities of Saye: A Traditional Herbal Remedy for Malaria. American Journal of Biochemistry and Molecular Biology, 4(4), 155–166. https://doi.org/10.3923/ajbmb.2014.155.166
46. Dabitao, K., Dembele, A., Haidara, F., & Sougane, A. (2011). Multidimensional Poverty and Living Conditions in Mali (2001-2006) (Pauvrett multidimensionnelle et conditions de vie au Mali (2001-2006)). SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3170969
47. Dashevskiy, T., & Ramirez, J.-M. (2015). Modeling of respiratory network: to sigh or not to sigh. BMC Neuroscience, 16(S1). https://doi.org/10.1186/1471-2202-16-s1-p48
48. Defoliart, G. R. (1954). Horn Fly Control with Chlorinated Insecticides1. Journal of Economic Entomology, 47(2), 266–268. https://doi.org/10.1093/jee/47.2.266
49. Degen, R., Weiss, N., & Beck, H.-P. (2000). Plasmodium falciparum: Cloned and Expressed CIDR Domains of PfEMP1 Bind to Chondroitin Sulfate A. Experimental Parasitology, 95(2), 113–121. https://doi.org/10.1006/expr.2000.4512
50. Dev, V., & Manguin, S. (2021). Defeating malaria in the North-East region: the forerunner for malaria elimination in India. Acta Tropica, 222, 106040. https://doi.org/10.1016/j.actatropica.2021.106040
51. Diabate, A., & Tripet, F. (2015). Targeting male mosquito mating behaviour for malaria control. Parasites & Vectors, 8(1). https://doi.org/10.1186/s13071-015-0961-8
52. Dietz, K. (1971). Malaria models. Advances in Applied Probability, 3(2), 208–210. https://doi.org/10.2307/1426159
53. Dr. Ramesh M., & Dr. R. M. (2020). Estimation of Mortality Rate of qSOFA and SIRS. International Journal of Medicine and Pharmaceutical Sciences, 10(5), 15–22. https://doi.org/10.24247/ijmpsoct20202
54. Diekmann, O., Heesterbeek, J.A.P., & Metz, J.A.J., (2006). On the Definition and Computation of the
55. Basic Reproduction Ratio Ro in Models for Infectious Disease ofHeterogeneous Populations. J. Math. Biol. 28:365-382.
56. Detinova, T. S. (1989). Age-grouping methods in Diptera of medical importance: with special reference
57. to some vectors of malaria. World Health Organization (WHO) (Geneva, Switzerland) Monograph series, 47, 1-216.
58. Eckhoff, P. A. (2011). A malaria transmission-directed model of mosquito life cycle and ecology. Malaria Journal, 10(1). https://doi.org/10.1186/1475-2875-10-303
59. Eckhoff, P. A. (2012). Malaria parasite diversity and transmission intensity affect development of parasitological immunity in a mathematical model. Malaria Journal, 11(1). https://doi.org/10.1186/1475-2875-11-419
60. Eldridge, W. W. (1925). “MALARIA TREATMENT OF PARESIS.” JAMA: The Journal of the American Medical Association, 84(20), 1515. https://doi.org/10.1001/jama.1925.02660460051032
61. Emmanuel, A. Y., & Omini, A. A. (2020). A Mathematical Model for the Eradication of Anopheles Mosquito and Elimination of Malaria. International Journal of Healthcare and Medical Sciences, 61, 1–14. https://doi.org/10.32861/ijhms.61.1.14
62. Emmanuel, E. E., Ador, J. U., Cosmas, A. O., Angela, E. O.-I., & Helena, M. O. (2018). The value of Creactive protein in the diagnosis of septicaemia in children with malaria. International Journal of Medicine and Medical Sciences, 10(1), 9–13. https://doi.org/10.5897/ijmms2017.1340
63. Et. al, Y. A. A. (2021). Malaria Prediction Model Using Machine Learning Algorithms. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(10), 7488–7496. https://doi.org/10.17762/turcomat.v12i10.5655
64. Fakoorziba, M. R., Eghbal, F., & Vijayan, V. A. (2009). Synergist efficacy of piperonyl butoxide with deltamethrin as pyrethroid insecticide onCulex tritaeniorhynchus(Diptera: Culicidae) and other mosquitoe species. Environmental Toxicology, 24(1), 19–24. https://doi.org/10.1002/tox.20386
65. Favia, P., d’Agostino, R., & Wertheimer, M. R. (2001). Plasmas and Polymers, 6(3), 121–122. https://doi.org/10.1023/a:1013100817883
66. Ferguson, H. M., & Read, A. F. (2002). Why is the effect of malaria parasites on mosquito survival still unresolved? Trends in Parasitology, 18(6), 256–261. https://doi.org/10.1016/s1471-4922(02)02281-x
67. Forouzannia, F., & Gumel, A. B. (2014). Mathematical analysis of an age-structured model for malaria transmission dynamics. Mathematical Biosciences, 247, 80–94. https://doi.org/10.1016/j.mbs.2013.10.011
68. Fraunholz, M. J. (2005). Systems biology in malaria research. Trends in Parasitology, 21(9), 393–395. https://doi.org/10.1016/j.pt.2005.07.007
69. Gallup, J., & Sachs, J. (2001). The economic burden of malaria. The American Journal of Tropical Medicine and Hygiene, 64(1_suppl), 85–96. https://doi.org/10.4269/ajtmh.2001.64.85
70. Garcia Guerra, G., Al Hamarneh, Y. N., Tsuyuki, R. T., & Garros, D. (2014). ABSTRACT 105. Pediatric Critical Care Medicine, 15, 29. https://doi.org/10.1097/01.pcc.0000448834.89804.0a
71. GARRETT-JONES, C. (1964). Prognosis for Interruption of Malaria Transmission Through Assessment of the Mosquito’s Vectorial Capacity. Nature, 204(4964), 1173–1175. https://doi.org/10.1038/2041173a0
72. Geall, A. J., Baugh, J. A., Loyevsky, M., Gordeuk, V. R., Al-Abed, Y., & Bucala, R. (2004). Targeting Malaria with Polyamines. Bioconjugate Chemistry, 15(6), 1161–1165. https://doi.org/10.1021/bc0499578
73. Gething, L. (2011). Editorial. Agenda, 25(3), 1–1. https://doi.org/10.1080/10130950.2011.621638
74. Gimnig, J. E., & Slutsker, L. (2009). House screening for malaria control. The Lancet, 374(9694), 954–955. https://doi.org/10.1016/s0140-6736(09)61078-3
75. Gulland, A. (2016). First malaria vaccine to be tested in pilot projects, WHO announces. BMJ, i6212. https://doi.org/10.1136/bmj.i6212
76. Gupta, P., Anvikar, A. R., Valecha, N., & Gupta, Y. K. (2014). Pharmacovigilance Practices for Better Healthcare Delivery: Knowledge and Attitude Study in the National Malaria Control Programme of India. Malaria Research and Treatment, 2014, 1–6. https://doi.org/10.1155/2014/837427
77. Harbach, R. E., & Besansky, N. J. (2014). Mosquitoes. Current Biology, 24(1), R14–R15. https://doi.org/10.1016/j.cub.2013.09.047
78. Helinski, M. E., Parker, A. G., & Knols, B. G. (2006). Radiation-induced sterility for pupal and adult stages of the malaria mosquito Anopheles arabiensis. Malaria Journal, 5(1). https://doi.org/10.1186/1475-2875-5-41
79. Himeidan, Y. E., Elbashir, M. I., & Adam, I. (2004). Attractiveness of pregnant women to the malaria vector,Anopheles arabiensis, in Sudan. Annals of Tropical Medicine & Parasitology, 98(6), 631–633. https://doi.org/10.1179/000349804225021307
80. Ingstad, B., Munthali, A. C., Braathen, S. H., & Grut, L. (2012). The evil circle of poverty: a qualitative study of malaria and disability. Malaria Journal, 11(1), 15. https://doi.org/10.1186/1475-2875-11-15
81. JAMES, S. P., & TATE, P. (1937). New Knowledge of the Life-Cycle of Malaria Parasites. Nature, 139(3517), 545–545. https://doi.org/10.1038/139545a0
82. Kalipeni, E., & Drakakis-Smith, D. (1993). Urban and Regional Change in Southern Africa. Geographical Review, 83(2), 213. https://doi.org/10.2307/215263
83. Kamimura, A. (2004). Regioselectivity for the Michael Addition of Thiols to Unsymmetrical Fumaric Derivatives. ChemInform, 35(11). https://doi.org/10.1002/chin.200411054
84. Katiku, O. O., Snounou, G., Olumese, P. E., Adeyemo, A. A., Yahaya, P. W., Amodu, O. K., Nwagwu, M. N., & Holder, A. A. (1998). Asymptomatic malaria and three singlecopy plasmodium falciparium genes innigerian children. Parasitology International, 47, 334. https://doi.org/10.1016/s1383-5769(98)80987-2
85. Keegan, L. T., & Dushoff, J. (2013). Population-level effects of clinical immunity to malaria. BMC Infectious Diseases, 13(1). https://doi.org/10.1186/1471-2334-13-428
86. Kelly-Hope, L. A., & McKenzie, F. E. (2009). The multiplicity of malaria transmission: a review of entomological inoculation rate measurements and methods across sub-Saharan Africa. Malaria Journal, 8(1). https://doi.org/10.1186/1475-2875-8-19
87. Killeen, G. F., & Chitnis, N. (2014). Potential causes and consequences of behavioural resilience and resistance in malaria vector populations: a mathematical modelling analysis. Malaria Journal, 13(1). https://doi.org/10.1186/1475-2875-13-97
88. Kirby, M. J., Green, C., Milligan, P. M., Sismanidis, C., Jasseh, M., Conway, D. J., & Lindsay, S. W. (2008). Risk factors for house-entry by malaria vectors in a rural town and satellite villages in The Gambia. Malaria Journal, 7(1). https://doi.org/10.1186/1475-2875-7-2
89. Koram, K. A., & Molyneux, M. E. (2007). When Is “Malaria” Malaria? The Different Burdens of Malaria Infection, Malaria Disease, and Malaria-Like Illnesses. The American Journal of Tropical Medicine and Hygiene, 77(6_Suppl), 1–5. https://doi.org/10.4269/ajtmh.77.6.suppl.1
90. Krishna, S., Bhandari, S., Bharti, P. K., Basak, S., & Singh, N. (2017). A rare case of quadruple malaria infection from the highly malaria-endemic area of Bastar, Chhattisgarh, India. PLOS Neglected Tropical Diseases, 11(7), e0005558. https://doi.org/10.1371/journal.pntd.0005558
91. Kumari, R. (2022). Transition of Malaria Control to Malaria Elimination in India. Journal of Communicable Diseases, 54(1), 124–140. https://doi.org/10.24321/0019.5138.202259
92. Kuntworbe, N., Martini, N., Shaw, J., & Al-Kassas, R. (2012). Malaria Intervention Policies and Pharmaceutical Nanotechnology as a Potential Tool for Malaria Management. Drug Development Research, 73(4), 167–184. https://doi.org/10.1002/ddr.21010
93. Labbo, R., Fouta, A., Jeanne, I., Ousmane, I., & Duchemin, J. (2004). Anopheles funestus in Sahel: new evidence from Niger. The Lancet, 363(9409), 660. https://doi.org/10.1016/s0140-6736(04)15606-7
94. Lamidi, B. T., Naphtali, R. S., Alo, E. B., & Oyeniyi, A. T. (2018). Malaria vector population density and man-biting rate in three selected areas of Taraba State, north-east Nigeria. Nigerian Journal of Parasitology, 39(2), 141. https://doi.org/10.4314/njpar.v39i2.5
95. Lee W-C, Malleret B, & Lau Y-L. Glycophorin C (CD236R) mediates vivax malaria parasite rosetting to normocytes. Blood. 2014;123(18):e100-e109. (2015). Blood, 126(25), 2765–2765. https://doi.org/10.1182/blood-2015-11-679795
96. Lindsley, C. W., & McKendrick, M. W. (2005). Allosteric Akt (PKB) Inhibitors: Discovery and SAR of Isozyme Selective Inhibitors. ChemInform, 36(25). https://doi.org/10.1002/chin.200525155
97. Liverani, M., Charlwood, J. D., Lawford, H., & Yeung, S. (2017). Field assessment of a novel spatial repellent for malaria control: a feasibility and acceptability study in Mondulkiri, Cambodia. Malaria Journal, 16(1). https://doi.org/10.1186/s12936-017-2059-6
98. Lonneux, M., & Hamoir, M. (2010). Reply to V. Paleri et al and J.A. de Souza et al. Journal of Clinical Oncology, 28(28), e517–e517. https://doi.org/10.1200/jco.2010.29.3688
99. Lorimer, J. (2010). Author’s response to Jepson et al.“Towards an intradisciplinary bio-geography.” Transactions of the Institute of British Geographers, 36(1), 175–177. https://doi.org/10.1111/j.1475-5661.2010.00418.x
100. M Dokunmu, T. (2019). Elimination and Eradication of Malaria: Nigeria in Perspective. Annals of Advanced Biomedical Sciences, 2(1). https://doi.org/10.23880/aabsc-16000117
101. Macdonald, G. (1965). Eradication of Malaria. Public Health Reports (1896-1970), 80(10), 870. https://doi.org/10.2307/4592560
102. Malaria Control. (1957). BMJ, 1(5027), 1108–1109. https://doi.org/10.1136/bmj.1.5027.1108
103. Malaria Deaths Following Inappropriate Malaria Chemoprophylaxis—United States, 2001. (2001). JAMA, 286(7), 783. https://doi.org/10.1001/jama.286.7.783-jwr0815-2-1
104. Malaria Policy Advisory Committee to the WHO: conclusions and recommendations of eighth biannual meeting (September 2015). (2016). Malaria Journal, 15(1). https://doi.org/10.1186/s12936-016-1169-x
105. Malaria policy advisory committee to the WHO: conclusions and recommendations of fifth biannual meeting (March 2014). (2014). Malaria Journal, 13(1), 253. https://doi.org/10.1186/1475-2875-13-253
106. Malaria Policy Advisory Committee to the WHO: conclusions and recommendations of September 2012 meeting. (2012). Malaria Journal, 11(1), 424. https://doi.org/10.1186/1475-2875-11-424
107. Malaria Policy Advisory Committee to the WHO: conclusions and recommendations of seventh biannual meeting (March 2015). (2015). Malaria Journal, 14(1). https://doi.org/10.1186/s12936-015-0787-z
108. Malaria Policy Advisory Committee to the WHO: conclusions and recommendations of sixth biannual meeting (September 2014). (2015). Malaria Journal, 14(1). https://doi.org/10.1186/s12936-015-0623-5
109. Malaria vaccine: WHO position paper, January 2016 – Recommendations. (2018). Vaccine, 36(25), 3576–3577. https://doi.org/10.1016/j.vaccine.2016.10.047
110. malERA: An updated research agenda for diagnostics, drugs, vaccines, and vector control in malaria elimination and eradication. (2017). PLOS Medicine, 14(11), e1002455. https://doi.org/10.1371/journal.pmed.1002455
111. Mandal, S., Sarkar, R., & Sinha, S. (2011). Mathematical models of malaria – a review. Malaria Journal, 10(1), 202. https://doi.org/10.1186/1475-2875-10-202
112. Mansell, H. L., & Lawford, H. (2006). Pyrrolo(iso)quinoline Derivatives as 5-HT2C Receptor Agonists. ChemInform, 37(18). https://doi.org/10.1002/chin.200618144
113. Martelli, G., Girometti, N., Vanino, E., Bottieau, E., & Viale, P. (2015). Plasmodium falciparum malaria in migrants who transited Libya – Where did they contract malaria? Travel Medicine and Infectious Disease, 13(6), 499–500. https://doi.org/10.1016/j.tmaid.2015.10.002
114. May 19, 1999. (1999). JAMA, 281(19), 1863. https://doi.org/10.1001/jama.281.19.1863
115. McCarroll, L., & Hemingway, J. (2002). Can insecticide resistance status affect parasite transmission in mosquitoes? Insect Biochemistry and Molecular Biology, 32(10), 1345–1351. https://doi.org/10.1016/s0965-1748(02)00097-8
116. McKenzie, F. E. (2014). Challenges in malaria modeling. Malaria Journal, 13(S1). https://doi.org/10.1186/1475-2875-13-s1-o14
117. MCNAMARA, D. (2005). CDC Web Site Offers Malaria Telediagnosis, Tx Guidelines. Internal Medicine News, 38(4), 68. https://doi.org/10.1016/s1097-8690(05)71660-7
118. Menze, B. D., Wondji, M. J., Tchapga, W., Tchoupo, M., Riveron, J. M., & Wondji, C. S. (2018). Bionomics and insecticides resistance profiling of malaria vectors at a selected site for experimental hut trials in central Cameroon. Malaria Journal, 17(1). https://doi.org/10.1186/s12936-018-2467-2
119. Minakawa, N., Seda, P., & Yan, G. (2002). Influence of host and larval habitat distribution on the abundance of African malaria vectors in western Kenya. The American Journal of Tropical Medicine and Hygiene, 67(1), 32–38. https://doi.org/10.4269/ajtmh.2002.67.32
120. Mokuolu, O. A., Ajumobi, O. O., Ntadom, G. N., Adedoyin, O. T., Roberts, A. A., Agomo, C. O., Edozieh, K. U., Okafor, H. U., Wammanda, R. D., Odey, F. A., Maikore, I. K., Abikoye, O. O., Alabi, A. D., Amajoh, C., & Audu, B. M. (2018). Provider and patient perceptions of malaria rapid diagnostic test use in Nigeria: a cross-sectional evaluation. Malaria Journal, 17(1). https://doi.org/10.1186/s12936-018-2346-x
121. Molinaro, A., & Lawford, H. (2015). ChemInform Abstract: Chemistry of Lipid A: At the Heart of Innate Immunity. ChemInform, 46(12), no-no. https://doi.org/10.1002/chin.201512327
122. Molineaux, C. (2012). The selection of arbitrators. Amicus Curiae, 1999(18). https://doi.org/10.14296/ac.v1999i18.1468
123. MOLINEAUX, L., DIEBNER, H. H., EICHNER, M., COLLINS, W. E., JEFFERY, G. M., & DIETZ, K. (2001). Plasmodium falciparum parasitaemia described by a new mathematical model. Parasitology, 122(4), 379–391. https://doi.org/10.1017/s0031182001007533
124. Molta, N. B., Shaa, K. K., Watila, I. M., & Oguche, S. O. (2007a). Malaria and malaria therapy in sickle cell disease patients in Northern Eastern Nigeria. International Journal of Malaria and Tropical Diseases (IJMTD), 1(3). https://doi.org/10.4314/ijmtd.v1i3.39303
125. Molta, N. B., Shaa, K. K., Watila, I. M., & Oguche, S. O. (2007b). Malaria and malaria therapy in sickle cell disease patients in Northern Eastern Nigeria. International Journal of Malaria and Tropical Diseases (IJMTD), 1(3). https://doi.org/10.4314/ijmtd.v1i3.39303
126. Monach, P. A. (2010). Global versus organ-specific outcome measures in systemic lupus erythematosus: Comment on the articles by Furie et al, Nikpour et al, Wallace et al, Burgos et al, and Ramos-Casals et al. Arthritis Care & Research, 62(4), 580–581. https://doi.org/10.1002/acr.20053
127. Moody, A., Hunt-Cooke, A., Gabbett, E., & Chiodini, P. (2000). Performance of the OptiMAL malaria antigen capture dipstick for malaria diagnosis and treatment monitoring at the Hospital for Tropical Diseases, London. British Journal of Haematology, 109(4), 891–894. https://doi.org/10.1046/j.1365-2141.2000.01974.x
128. Moreno, M., Marinotti, O., Krzywinski, J., Tadei, W. P., James, A. A., Achee, N. L., & Conn, J. E. (2010). Complete mtDNA genomes of Anopheles darlingi and an approach to anopheline divergence time. Malaria Journal, 9(1). https://doi.org/10.1186/1475-2875-9-127
129. Mugoyela, V., David, R., & Minzi, O. (2002). Perception on the Use of Sulfadoxine-Pyrimethamine Tablets in the Treatment of Uncomplicated Malaria in Adult Malaria Patients Residing in Dar es Salaam. East and Central African Journal of Pharmaceutical Sciences, 5(1). https://doi.org/10.4314/ecajps.v5i1.9681
130. Nacher, M. (2012). Helminth-infected patients with malaria: a low profile transmission hub? Malaria Journal, 11(1). https://doi.org/10.1186/1475-2875-11-376
131. Nakata, Y., & Kuniya, T. (2010). Global dynamics of a class of SEIRS epidemic models in a periodic environment. Journal of Mathematical Analysis and Applications, 363(1), 230–237. https://doi.org/10.1016/j.jmaa.2009.08.027
132. NETTLETON v. MOLINEAUX. (1876). Victorian Reports, 15 VLR, 13–15. https://doi.org/10.25291/vr/15-vlr-13
133. Ngáng’a, P., Shililu, J., Kimani, V. K., Jayasinghee, G., & Kabutha, C. (2008). Malaria Vector Control Practices in an Irrigated Agroecosystem in Central Kenya: Implications for Malaria Control. Epidemiology, 19(1), S215–S216. https://doi.org/10.1097/01.ede.0000291888.77714.81
134. O.C, A.-A., T.S, A., G.S, M., & H.B, M. (2017). Flaws In Housing Designs That Aid Malaria Vector Invasion of Human Habitat And Malaria Transmission –A Review. IOSR Journal of Environmental Science, Toxicology and Food Technology, 11(2), 61–69. https://doi.org/10.9790/2402-1102016169
135. OBISIKE, V. U. (2020). Effect of Extracts of Ocimum Gratissmum L. (Scent Leaves) on Some Mosquitoe Genera in Makurdi Metropolis, Benue Nigeria. International Journal of Zoology and Animal Biology, 3(3). https://doi.org/10.23880/izab-16000229
136. Ogbuehi, I. H., & Ebong, O. O. (2015). Traditional Medicine Treatment of Malaria in Onitsha, South East Nigeria. Greener Journal of Medical Sciences, 5(1), 011–018. https://doi.org/10.15580/gjms.2015.1.051114384
137. Okorie, P. N., McKenzie, F. E., Ademowo, O. G., Bockarie, M., & Kelly-Hope, L. (2011). Nigeria Anopheles Vector Database: An Overview of 100 Years’ Research. PLoS ONE, 6(12), e28347. https://doi.org/10.1371/journal.pone.0028347
138. Okwa, O., Akinmolayan, F., Carter, V., & Hurd, H. (2009). Transmission dynamics of malaria in four selected ecological zones of Nigeria in the rainy season. Annals of African Medicine, 8(1), 1. https://doi.org/10.4103/1596-3519.55756
139. Onyabe, D. Y., & Conn, J. E. (2001). The distribution of two major malaria vectors, Anopheles gambiae and Anopheles arabiensis, in Nigeria. Memórias Do Instituto Oswaldo Cruz, 96(8), 1081–1084. https://doi.org/10.1590/s0074-02762001000800009
140. Ouedraogo, B., Inoue, Y., Kambiré, A., Sallah, K., Dieng, S., Tine, R., Rouamba, T., Herbreteau, V., Sawadogo, Y., Ouedraogo, L. S. L. W., Yaka, P., Ouedraogo, E. K., Dufour, J.-C., & Gaudart, J. (2018). Spatio-temporal dynamic of malaria in Ouagadougou, Burkina Faso, 2011–2015. Malaria Journal, 17(1). https://doi.org/10.1186/s12936-018-2280-y
141. Oyewole, Isaac, O., Ibidapo, & Adejoke, C. (2007). Attitudes to malaria, prevention, treatment and management strategies associated with the prevalence of malaria in a Nigerian urban center. African Journal of Biotechnology, 6(21), 2424–2427. https://doi.org/10.5897/ajb2007.000-2381
142. Paaijmans, K. P., Imbahale, S. S., Thomas, M. B., & Takken, W. (2010). Relevant microclimate for determining the development rate of malaria mosquitoes and possible implications of climate change. Malaria Journal, 9(1). https://doi.org/10.1186/1475-2875-9-196
143. Pates, H. V., Takken, W., & Curtis, C. F. (2005). Laboratory studies on the olfactory behaviour of Anopheles quadriannulatus. Entomologia Experimentalis et Applicata, 114(2), 153–159. https://doi.org/10.1111/j.1570-7458.2005.00249.x
144. Patouillard, E., Griffin, J., Bhatt, S., Ghani, A., & Cibulskis, R. (2017). Global investment targets for malaria control and elimination between 2016 and 2030. BMJ Global Health, 2(2), e000176. https://doi.org/10.1136/bmjgh-2016-000176
145. Pearson, R. D. (2003). HIV (AIDS), maternal malaria and prolactin. AIDS, 17(13), 2002–2003. https://doi.org/10.1097/00002030-200309050-00027
146. PLOS Biology 2016 Reviewer and Editorial Board Thank You. (2017). PLOS Biology, 15(3), e2002409. https://doi.org/10.1371/journal.pbio.2002409
147. Poncon, N., Toty, C., Kengne, P., Alten, B., & Fontenille, D. (2008). Molecular Evidence for Similarity Between Anopheles hyrcanus (Diptera: Culicidae) and Anopheles pseudopictus (Diptera: Culicidae), Sympatric Potential Vectors of Malaria in France. Journal of Medical Entomology, 45(3), 576–580. https://doi.org/10.1093/jmedent/45.3.576
148. Rajeswari, A. R. (2017). MOSQUITOE DIVERSITY IN ERODE DISTRICT, TAMIL NADU, INDIA. World Journal of Pharmaceutical Research, 474–482. https://doi.org/10.20959/wjpr20179-8828
149. Rosanda, M. (2012). Malaria in Croatia: from eradication until today. Malaria Journal, 11(S1). https://doi.org/10.1186/1475-2875-11-s1-p135
150. Ross, C., & Fortini, L. (1981). Börje. World Literature Today, 55(2), 292. https://doi.org/10.2307/40136048
151. ROSS, R. (1905). THE PROGRESS OF TROPICAL MEDICINE. African Affairs, 4(XV), 271–289. https://doi.org/10.1093/oxfordjournals.afraf.a093902
152. Ross, R. (1911). THE MATHEMATICS OF MALARIA. BMJ, 1(2626), 1023–1023. https://doi.org/10.1136/bmj.1.2626.1023
153. Rossi, G. C., Stein, M., & Almiron, W. R. (2008). Psorophora (Grabhamia) varinervis (Diptera: Culicidae) Morphological Description Including Pupa and Fourth-Stage Larva Previously Unknown. Journal of Medical Entomology, 45(3), 342–346. https://doi.org/10.1093/jmedent/45.3.342
154. Samdi, L. M., Ajayi, J. A., Oguche, S., & Ayanlade, A. (2012). Seasonal Variation of Malaria Parasite Density in Paediatric Population of North Eastern Nigeria. Global Journal of Health Science, 4(2). https://doi.org/10.5539/gjhs.v4n2p103
155. Samdi, L. M., Oguche, S., Molta, N. B., Watila, I. M., Agomo, P. U., & Ene, A. C. (2005). Plasmodium Infection in Severely ill Children Aged 0-8 Years in Maiduguri Metropolis, North Eastern Nigeria. Journal of Medical Sciences, 5(4), 294–297. https://doi.org/10.3923/jms.2005.294.297
156. Sameer Dixit et al., S. D. et al. (2018). Impact of Phytohormones Auxin and Cytokinin on Mammalian Cells. International Journal of Bio-Technology and Research, 8(2), 7–12. https://doi.org/10.24247/ijbtrapr20182
157. Schofield, L., & Mueller, I. (2006). Clinical Immunity to Malaria. Current Molecular Medicine, 6(2), 205–221. https://doi.org/10.2174/156652406776055221
158. Scott, A. (2015). Online OMS Captures Key Knowledge. Opflow, 41(4), 32–32. https://doi.org/10.5991/opf.2015.41.0024
159. Shililu, J. I., Maier, W. A., Seitz, H. M., Kubasu, S. S., & Orago, A. S. (1998). Use of polymerase chain reaction to identifyAnopheles gambiaeGiles (Dipt., Culicidae) sibling species composition. Journal of Applied Entomology, 122(1-5), 461–464. https://doi.org/10.1111/j.1439-0418.1998.tb01527.x
160. Shulman, Shulman, Dorman, Dorman, Talisuna, Lowe, Lowe, Nevill, Nevill, Snow, Snow, Jilo, Peshu, Bulmer, Graham, Marsh, & Marsh. (2002). A community randomized controlled trial of insecticide-treated bednets for the prevention of malaria and anaemia among primigravid women on the Kenyan coast. Tropical Medicine & International Health, 3(3), 197–204. https://doi.org/10.1046/j.1365-3156.1998.00214.x
161. Sinden, R. E. (2017). Developing transmission-blocking strategies for malaria control. PLOS Pathogens, 13(7), e1006336. https://doi.org/10.1371/journal.ppat.1006336
162. Smith, B. M., & Oguche, S. O. (2005). Discovery and SAR of New Benzazepines as Potent and Selective 5-HT2 Receptor Agonists for the Treatment of Obesity. ChemInform, 36(28). https://doi.org/10.1002/chin.200528177
163. Smith, C., & Whittaker, M. (2014). Malaria elimination without stigmatization: a note of caution about the use of terminology in elimination settings. Malaria Journal, 13(1). https://doi.org/10.1186/1475-2875-13-377
164. Smith, D. L., & Ellis McKenzie, F. (2004). Malaria Journal, 3(1), 13. https://doi.org/10.1186/1475-2875-3-13
165. Smith, D. L., Guerra, C. A., Snow, R. W., & Hay, S. I. (2007). Standardizing estimates of the Plasmodium falciparum parasite rate. Malaria Journal, 6(1). https://doi.org/10.1186/1475-2875-6-131
166. SMITH, T., HUTTON, G., MOLINEAUX, L., KILLEEN, G. F., TEDIOSI, F., ROSS, A., TANNER, M., DIETZ, K., UTZINGER, J., & MAIRE, N. (2006). MATHEMATICAL MODELING OF THE IMPACT OF MALARIA VACCINES ON THE CLINICAL EPIDEMIOLOGY AND NATURAL HISTORY OF PLASMODIUM FALCIPARUM MALARIA: OVERVIEW. The American Journal of Tropical Medicine and Hygiene, 75(2_suppl), 1–10. https://doi.org/10.4269/ajtmh.2006.75.2_suppl.0750001
167. Speybroeck, N. (2011). Malaria Reports, a new journal. Malaria Reports, 1(1), 1. https://doi.org/10.4081/malaria.2011.e1
168. Stehr, J. (1998). Dietz et al: Selektionsprozesse. Neue Kriminalpolitik, 10(4), 41–41. https://doi.org/10.5771/0934-9200-1998-4-41
169. Sweileh, W. M., Al-Jabi, S. W., Sawalha, A. F., AbuTaha, A. S., & Zyoud, S. H. (2017). Bibliometric Analysis of Worldwide Publications on Antimalarial Drug Resistance (2006–2015). Malaria Research and Treatment, 2017, 1–13. https://doi.org/10.1155/2017/6429410
170. Tainchum, K., Kongmee, M., Manguin, S., Bangs, M. J., & Chareonviriyaphap, T. (2015). Anopheles species diversity and distribution of the malaria vectors of Thailand. Trends in Parasitology, 31(3), 109–119. https://doi.org/10.1016/j.pt.2015.01.004
171. Takken, W., Stuke, K., & Klowden, M. J. (2002). Biological differences in reproductive strategy between the mosquito sibling species Anopheles gambiae sensu stricto and An. quadriannulatus. Entomologia Experimentalis et Applicata, 103(1), 83–89. https://doi.org/10.1046/j.1570-7458.2002.00957.x
172. TIRADOS, I., COSTANTINI, C., GIBSON, G., & TORR, S. J. (2006). Blood-feeding behaviour of the malarial mosquito Anopheles arabiensis: implications for vector control. Medical and Veterinary Entomology, 20(4), 425–437. https://doi.org/10.1111/j.1365-2915.2006.652.x
173. Tobin-West, C., & Briggs, N. (2015). Effectiveness of trained community volunteers in improving knowledge and management of childhood malaria in a rural area of Rivers State, Nigeria. Nigerian Journal of Clinical Practice, 18(5), 651. https://doi.org/10.4103/1119-3077.158971
174. Townson, H. (2009). SIT for African malaria vectors: Epilogue. Malaria Journal, 8(S2). https://doi.org/10.1186/1475-2875-8-s2-s10
175. Traore, O., Ouedraogo, A., Compaore, M., Nikiema, K., Zombre, A., Kiendrebeogo, M., Blankert, B., & Duez, P. (2021). Social perceptions of malaria and diagnostic-driven malaria treatment in Burkina Faso. Heliyon, 7(1), e05553. https://doi.org/10.1016/j.heliyon.2020.e05553
176. Tsoka-Gwegweni, J., & Okafor, U. (2014). Haematological alterations in malaria-infected refugees in South Africa. Malaria Journal, 13(S1). https://doi.org/10.1186/1475-2875-13-s1-p88
177. Tyagi, B. K. (2004). A review of the emergence of Plasmodium falciparum-dominated malaria in irrigated areas of the Thar Desert, India. Acta Tropica, 89(2), 227–239. https://doi.org/10.1016/j.actatropica.2003.09.016
178. Tyagi, A. (2004) Physiology and Molecular Biology of Salinity Stress Tolerance in mosquito. Current Science, 86, 407-421.
179. UM, C., & AN, C. (2016). Malaria among the Geriatric Population in Parts of South-Eastern Nigeria: Prevalence, Complications and Co-morbidity with Non-communicable Diseases. Epidemiology: Open Access, 06(02). https://doi.org/10.4172/2161-1165.1000237
180. Urbinati, C., & Iorio, G. (2016). More on monitoring forest habitats: reply to Cutini et al. 2016 e Angelini et al. 2016. Forest@ – Rivista Di Selvicoltura Ed Ecologia Forestale, 13(1), 69–72. https://doi.org/10.3832/efor0080-013
181. Vanelle, P., & Tyagi, A. (2012a). ChemInform Abstract: Targeting the Human Malaria Parasite Plasmodium falciparum: In vitro Identification of a New Antiplasmodial Hit in 4-Phenoxy-2-trichloromethylquinazoline Series. ChemInform, 43(5), no-no. https://doi.org/10.1002/chin.201205194
182. Vanelle, P., & Ouedraogo, A. (2012b). ChemInform Abstract: 4-Thiophenoxy-2-trichloromethylquinazolines Display in vitro Selective Antiplasmodial Activity Against the Human Malaria Parasite Plasmodium falciparum. ChemInform, 43(9), no-no. https://doi.org/10.1002/chin.201209176
183. Vanelle, P., & & Klowden, M. J. (2012c). ChemInform Abstract: 4-Thiophenoxy-2-trichloromethylquinazolines Display in vitro Selective Antiplasmodial Activity Against the Human Malaria Parasite Plasmodium falciparum. ChemInform, 43(9), no-no. https://doi.org/10.1002/chin.201209176
184. Venturini, G., & Smallegange, R. C. (2005). Magnetic and Transport Properties of HfFe6Ge6-Type REMn6X6-xX?x Solid Solutions (RE: Rare Earth; X: Ge, Sn; X?: Ga, In). ChemInform, 36(4). https://doi.org/10.1002/chin.200504228
185. Verhulst, N. O., Mukabana, W. R., Takken, W., & Smallegange, R. C. (2011). Human skin microbiota and their volatiles as odour baits for the malaria mosquito Anopheles gambiae s.s. Entomologia Experimentalis et Applicata, 139(2), 170–179. https://doi.org/10.1111/j.1570-7458.2011.01119.x
186. Wardrop, N. A., Barnett, A. G., Atkinson, J.-A., & Clements, A. C. (2013). Plasmodium vivax malaria incidence over time and its association with temperature and rainfall in four counties of Yunnan Province, China. Malaria Journal, 12(1). https://doi.org/10.1186/1475-2875-12-452
187. Warrell, M. (2003). The challenge to provide affordable rabies post-exposure treatment. Vaccine, 21(7-8), 706–709. https://doi.org/10.1016/s0264-410x(02)00585-6
188. Webb, J. L. A. (2011). Malaria in Africa. History Compass, 9(3), 162–170. https://doi.org/10.1111/j.1478-0542.2010.00757.x
189. Weiss, D. J., Bhatt, S., Mappin, B., Van Boeckel, T. P., Smith, D. L., Hay, S. I., & Gething, P. W. (2014). Air temperature suitability for Plasmodium falciparum malaria transmission in Africa 2000-2012: a high-resolution spatiotemporal prediction. Malaria Journal, 13(1). https://doi.org/10.1186/1475-2875-13-171
190. White, N. J. (2017). Malaria parasite clearance. Malaria Journal, 16(1). https://doi.org/10.1186/s12936-017-1731-1
191. Who knows best about malaria? (2007). Nature India. https://doi.org/10.1038/nindia.2007.20
192. Wiese, M. (2012). Integrated approaches to malaria control – addressing new challenges to malaria research. Malaria Journal, 11(S1). https://doi.org/10.1186/1475-2875-11-s1-p104
193. Woo, M. Y. (2003). When the differential diagnosis of fever is malaria, malaria, malaria…. CJEM, 5(02), 127–129. https://doi.org/10.1017/s1481803500008319
194. World Health Organization. WHO malaria terminology Geneva: WHO; 2016. http://apps.who.int/iris/bitstream/10665/208815/1/WHO_HTM_GMP_2016.6_eng.pdf?ua=1
195. World Health Organization. Malaria rapid diagnostic test performance Geneva: WHO; 2015. http://apps.who.int/iris/bitstream/10665/204118/1/9789241510035_eng.pdf?ua=1
196. WHO (2015). WHO technical report 1972- 1975 on Field Research Project in Epidemiology and Control of Malaria inSavanna Africa, Kano, Nigerian Genera. MF/TN/72.1MPO/73.1MPD/TN/75.
197. WHO (2014). Report on the trend of Yellow Fever in Africa. WHO Annual Report, pp33- 67.
198. WHO (2013) Malaria desk situation analysis – Nigeria. WHO Annual Report, pp56-66 16 9 .
199. WHO (2014). Lymphatic Filariasis, Regional office for South East Asia. WHO Annual Report, pp.211.WHO ( 2015). World Malaria Report. Roll Back Malaria. New York: United Nations Children Fund, pp111.
200. WHO (2008). Yearly Malaria report. Geneva.
201. WHO (2004) World malaria report 2010. WHO Global Malaria Programme. Available:http://whqlibdoc.who.int/publications/2010/9789241564106.
202. WHO (World Health Organization). (2013). Manual on Practical Entomology in Malaria, part II. Methods and Techniques. Geneva, Italy: World Health Organization.
203. WHO Annual Report, pp58 WHO (2003). Yearly Malaria report. Geneva. WHO Annual Report, pp.90
204. WHO Expert Committee on malaria and World Health Organization (2002). WHO expert committee on malaria: twentieth report (No 892). World Health Organization, Geneva.
205. Zhang, W.-D., & et al. (2012). ChemInform Abstract: Two New Cycloheptapeptides from Psammosilene tunicoides. ChemInform, 43(40), no-no. https://doi.org/10.1002/chin.201240210
Cite
Atanyi Yusuf Emmanuel, H.K Oduwole, Utalor Kate Ifeoma “A Mathematical Measure to Fight Against Malaria and Exterminate Anopheles Mosquitoes ” International Journal of Research and Innovation in Applied Science (IJRIAS) volume-8-issue-1, pp.115-200 January 2023 URL: https://www.rsisinternational.org/journals/ijrias/DigitalLibrary/volume-8-issue-1/115-200.pdf
Full Text PDF
Download PDF

Enhanced Article (HTML)