Abstract
Food packaging has a significant impact on food preservation, thus prolonging the shelf-life and maintaining sustainable food quality and safety throughout the food supply chain and even during storage. Consumer desire for reliable, sustainable, organic, healthy, and unique products with “clean” labeling has risen as a result of technological advancement. Food packaging innovation is mainly described by the advancement of smart packaging technologies such as active and intelligent packaging. Active packaging is the use of active ingredients in more sustainable packaging materials to expand storability while ensuring product safety and quality. Intelligent packaging systems are developing to become more economical, efficient, and integrated matrices to deliver new packaging ideas that maintain the state of the packed food to deliver information on the product quality during shipping and storage. This review will provide a detailed overview of recent significant advancements and trends in the evolution of smart packaging
Page(s): 07-30 Date of Publication: 05 August 2022
Authors
K.G. Kaushani
Department of Materials and Mechanical Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama, Sri Lanka
N. L. Rathnasinghe
Department of Materials and Mechanical Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama, Sri Lanka
R.A Jayasinghe
Department of Civil and Environmental Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama, Sri Lanka
A.H.L.R. Nilmini
Department of Materials and Mechanical Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama, Sri Lanka
G. Priyadarshana
Department of Materials and Mechanical Technology, Faculty of Technology, University of Sri Jayewardenepura, Homagama, Sri Lanka
References
[1] Ghoshal, G., (2018). “Recent Trends in Active, Smart, and Intelligent Packaging for Food Products”, Food packaging and preservation, 10, 343-374.
[2] Ghaani, M., Cozzolino, C. A., Castelli, G., and Farris, S., (2016). “An overview of the intelligent packaging technologies in the food sector,” Trends in Food Science and Technology, 51, 1–11.
[3] Kuswandi, B., Wicaksono, Y., Abdullah, A., Heng, L.Y., Ahmad, M., (2011). Smart packaging: sensors for monitoring of food quality and safety, 5, 137–146
[4] Kuswandi, B., Jumina, (2019). Active and intelligent packaging, safety, and quality controls, Fresh-cut fruits and vegetables, 12, 243-294.
[5] Starkey, H., Chenoweth, A., Johnson, C., Salem, K. S., Jameel, H., & Pal, L. (2021). Lignin-containing micro/nanofibrillated cellulose to strengthen recycled fibers for lightweight sustainable packaging solutions. Carbohydrate Polymer Technologies and Applications, 2, 100135.
[6] Kuswandi, B., Jayus, Restyana, A., Abdullah, A., Heng, L.Y., Ahmad, M., (2012). A novel colorimetric food package label for fish spoilage based on polyaniline film. Food Control 25:184–189
[7] Ahmed, I., Lin, H., Zou, L., Brody, A. L., Li, Z., Qazi, I. M., Pavase, T. R., and Lv, L., (2017). “A comprehensive review on the application of active packaging technologies to muscle foods,” Food Control, 82, 163-78.
[8] Morone, P., Koutinas, A., Gathergood, N., Arshadi, M., Matharu, A., (2019). Food waste: Challenges and opportunities for enhancing the emerging bio-economy. Journal of Cleaner Production, 221:10–16.
[9] Realini, C. E., & Marcos, B. (2014). Active and intelligent packaging systems for a modern society. Meat Science, 98(3), 404–419.
[10] Drago, E., Campardelli, R., Pettinato, M., & Perego, P. (2020). Innovations in Smart Packaging Concepts for Food: An Extensive Review. Foods, 9(11), 1628.
[11] Salem, K. S., Starkey, H. R., Pal, L., Lucia, L., & Jameel, H. (2020). The Topochemistry of Cellulose Nanofibrils as a Function of Mechanical Generation Energy. ACS Sustainable Chemistry and Engineering, 8(3), 1471–1478.
[12] Salem, K. S., Naithani, V., Jameel, H., Lucia, L., & Pal, L. (2021). Lignocellulosic Fibers from Renewable Resources Using Green Chemistry for a Circular Economy. Global Challenges, 5(2), 2000065.
[13] Callaghan, K. A. M. O., & Kerry, J. P. (2016). Consumer attitudes towards the application of smart packaging technologies to cheese products. Food Packaging and Shelf Life, 9, 1–9.
[14] Salgado, P. R., Ortiz, C. M., Musso, Y. S., Di Giorgio, L., & Mauri, A. N. (2015). Edible films and coatings containing bioactives. Current Opinion in Food Science, 5, 86–92.
[15] Janjarasskul, T., & Suppakul, P. (2018). Active and intelligent packaging: The indication of quality and safety. Critical Reviews in Food Science and Nutrition, 58(5), 808–831.
[16] Katiyar, V., Tripathi, N., Patwa, R., & Kotecha, P. (2014). Environment Friendly Packaging Plastics. In Polymers for Packaging Applications (Issue December), 15.
[17] Yam, K. L., Takhistov, P. T., and Miltz, J., (2005). “Conceptual framework of intelligent packaging,” Journal of Food Science, 70, 1–10.
[18] Day, B. P. F., (2008). “Active Packaging of Food,” Smart Packaging Technologies for Fast Moving Consumer Goods, 9, 1–18.
[19] European Union, (2009). “Commission Regulation (EC) No. 450/2009 of 29 May 2009,” Official Journal of European Union, 135, 3–11.
[20] Dainelli, D., (2009). “Active and intelligent food packaging: legal aspects and safety concerns,” Trends in Food Science & Technology, 19, 103-112.
[21] Biji, K. B., Ravishankar, C. N., Mohan, C. O., & Srinivasa Gopal, T. K. (2015). Smart packaging systems for food applications: a review. Journal of Food Science and Technology, 52(10), 6125–6135.
[22] Brody, A. L., (2008). Innovative food packaging solutions, Journal of food science, 73, 107-116.
[23] Kuorwel, K. K., Cran, M. J., Orbell, J. D., Buddhadasa, S., & Bigger, S. W. (2015). Review of Mechanical Properties , Migration , and Potential Applications in Active Food Packaging Systems Containing Nanoclays and Nanosilver. 14, 411–430.
[24] Gibis, D., and Rieblinger, K., (2011). Oxygen scavenging films for food application, Italian Oral Surgery, 1, 229–234.
[25] Taylor, P., Choe, E., Min, D. B., Choe, E., and Min, D. B., (2015). Chemistry and Reactions of Reactive Oxygen Species in Foods, Critical Reviews in Food Science and Nutrition, 46, 37–41.
[26] Han, J., (2018). Food Packaging: A Comprehensive Review and Future Trends, 17, 860–877.
[27] Li, Y. H., Zhang, L. W., Wang, W. J., & Han, X. (2013). Differences in particle characteristics and oxidized flavor as affected by heat-related processes of milk powder. 1, 4784–4793. Y
[28] López-de-dicastillo, C., Gómez-estaca, J., Catalá, R., Gavara, R., & Hernández-muñoz, P. (2012). Active antioxidant packaging films : Development and effect on lipid stability of brined sardines. 131, 1376–1384.
[29] Kerry, J. P., O’Grady, M. N., & Hogan, S. A. (2006). Past, current and potential utilisation of active and intelligent packaging systems for meat and muscle-based products: A review. Meat Science, 74(1), 113–130.
[30] Yildirim, S., Röcker, B., Pettersen, M. K., Nilsen-Nygaard, J., Ayhan, Z., Rutkaite, R., Radusin, T., Suminska, P., Marcos, B., & Coma, V. (2018). Active Packaging Applications for Food. Comprehensive Reviews in Food Science and Food Safety, 17(1), 165–199.
[31] Dobrucka, R., & Przekop, R. (2019). New perspectives in active and intelligent food packaging. Journal of Food Processing and Preservation, 43(11), 1–9.
[32] Braga, B. L. R., Sarantópoulos, C. I. G. L., Peres, L., & Braga, J. W. B. (2010). Evaluation of Absorption Kinetics of Oxygen Scavenger Sachets Using Response Surface Methodology. August, 351–361.
[33] de Abreu, D. A. P., Cruz, J. M., & Losada, P. P. (2012). Active and Intelligent Packaging for the Food Industry. Food Reviews International, 28(2), 146–187.
[34] Nestorson, B. A., Neoh, K. G., Kang, E. T., & Järnström, L. (2008). Enzyme Immobilization in Latex Dispersion and Science. October 2007, 193–205.
[35] Perkins, B. M. L., Zerdin, K., Rooney, M. L., Arcy, B. R. D., & Deeth, H. C. (2007). Active Packaging of UHT Milk to Prevent the Development of Stale Flavour during Storage and Science. July 2006, 137–146.
[36] Lee, S. Y., Lee, S. J., Choi, D. S., & Hur, S. J. (2015). Current topics in active and intelligent food packaging for preservation of fresh foods. Journal of the Science of Food and Agriculture, 95(14), 2799–2810.
[37] Shin, Y., Shin, J., & Lee, Y. S. (2009). Effects of oxygen scavenging package on the quality changes of processed meatball product. In Food Science and Biotechnology (Vol. 18, Issue 1, pp. 73–78
[38] Yang, Z., Peng, H., Wang, W., & Liu, T. (2010). Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. Journal of Applied Polymer Science, 116(5), 2658–2667.
[39] Hurley, B. R. A., Ouzts, A., Fischer, J., & Gomes, T. (2013). PAPER PRESENTED AT IAPRI WORLD CONFERENCE 2012 Effects of Private and Public Label Packaging on Consumer Purchase Patterns. Packaging and Technology and Science, 29(January), 399–412.
[40] Lee, D. S. (2016). Trends in Food Science & Technology Carbon dioxide absorbers for food packaging applications. 57, 146–155.
[41] Gaikwad, K. K., & Lee, Y. S. (2017). Current Scenario of Gas Scavenging Systems Used in Active Packaging – A Review. 23(2), 109–117.
[42] Mehmet, B., Aday, S., & Caner, C. (2011). The Applications of ‘ Active Packaging and Chlorine Dioxide ’ for Extended Shelf Life of Fresh Strawberries. October 2010, 123–136.
[43] Crump, J. W., Hurley, T. J., Incorvia, S. A., Tonawanda, N., Payne, S., Seneca, W., Quinn, J., & Technologies, M. (2012). (12) Patent Application Publication (10) Pub. No.: US 2012/0171333 A1. 1(19).
[44] adeghi, K., Lee, Y., & Seo, J. (2019). Ethylene Scavenging Systems in Packaging of Fresh Produce : A Review Ethylene Scavenging Systems in Packaging of Fresh Produce : Food Reviews International, 00(00), 1–22.
[45] Tay, S. L., & Perera, C. O. (2004). Effect of 1-methylcyclopropene treatment and edible coatings on the quality of minimally processed lettuce. Journal of Food Science, 69(2), fct131–fct135.
[46] Edelky, W., Freitas, D. S., Lucilania, M., & Almeida, B. (2017). Potassium permanganate effects on the quality and post- harvest conservation of sapodilla ( Manilkara zapota ( L .) P . Royen ) fruits under modified atmosphere. 66, 331–337.
[47] Alam, A. U., Rathi, P., Beshai, H., Sarabha, G. K., & Jamal Deen, M. (2021). Fruit quality monitoring with smart packaging. Sensors, 21(4), 1–30.
[48] Guillen, F., Barret, D., Beaulieu, J. C., & Barret, D., (2006). Use of Activated Carbon inside Modified Atmosphere Packages To Maintain Tomato Fruit Quality during Cold Storage, Journal of Agricultural and Food Chemistry, 54, 2229-2235.
[49] Fernández, A., Picouet, P., & Lloret, E. (2010). Cellulose-silver hybrid materials to control spoilage related microflora in absorbent pads located in trays of fresh foods International Journal of Food Microbiology Cellulose-silver nanoparticle hybrid materials to control spoilage-related micro fl ora i. International Journal of Food Microbiology, 142(1–2), 222–228.
[50] Kaewklin, P., Siripatrawan, U., Suwanagul, A., & Lee, Y. S. (2018). Active packaging from chitosan-titanium dioxide nanocomposite film for prolonging storage life of tomato fruit, International Journal of Biological Macromolecules, 112, 523-529.
[51] Singh, R., & Giri, S. K. (2014). Shelf-life study of Guava (Psidium guajava L) under active packaging: An experiment with potassium permanganate salt as ethylene absorbent. Archiv Fur Lebensmittelhygiene, 65(2), 32–39.
[52] Chaix, E., & Guillaume, C. (2014). Oxygen and Carbon Dioxide Solubility and Diffusivity in Solid Food Matrices : A Review of Past and Current Knowledge. 13, 261–286.
[53] Singh, P., Wani, A. A., & Saengerlaub, S. (2011). Active packaging of food products: Recent trends. Nutrition and Food Science, 41(4), 249–260.
[54] Toldrá, F. (2008). Smart Packaging Technologies and Their Application in Conventional Meat Packaging Systems, Meat biotechnology, 19, 425.
[55] Hansen, A. Å., Moen, B., Rødbotten, M., Berget, I., & Pettersen, M. K. (2016). Effect of vacuum or modified atmosphere packaging (MAP) in combination with a CO2 emitter on quality parameters of cod loins (Gadus morhua). Food Packaging and Shelf Life, 9, 29–37.
[56] Kerry, J. P., (2014). New Packaging Technologies, Materials and Formats for Fast-Moving Consumer Products, Innovations in Food Packaging, 23, 554, Elsevier Ltd.
[57] Kontominas, M. G., Badeka, A. V., Kosma, I. S., & Nathanailides, C. I. (2021). Recent developments in seafood packaging technologies. Foods, 10(5).
[58] zdemir, M., & Floros, J. D. (2004). Active food packaging technologies. Critical Reviews in Food Science and Nutrition, 44(3), 185–193.
[59] Bhardwaj, A., Alam, T., & Talwar, N. (2019). Recent advances in active packaging of agri-food products : a review. Journal of Postharvest Technology, 07(1), 33–62.
[60] Taylor, P., Franke, I., Wijma, E., Bouma, K., Franke, I., Wijma, E., & Bouma, K., (2014). Shelf life extension of pre-baked buns by an Active Packaging ethanol emitter, Food Additives & Contaminants, 19, 37–41.
[61] Day, B. P. F., and Potter, L., (2011). Active Packaging, Food and Beverage Packaging Technology: Second Edition, 251–262.
[62] Stephen, W., (2003). Active Packaging Technologies with an Emphasis on Antimicrobial Packaging and its Applications, 68, 408–420.
[63] Gavara, R., Catalá, R., & Hernández-Muñoz, P. (2009). Extending the shelf-life of fresh-cut produce through active packaging. Stewart Postharvest Review, 5(4), 1–5.
[64] Chonhenchob, V., Tanafranca, D., & Singh, S. P. (2017). Packaging technologies for pineapple and pineapple products. 108–125.
[65] Youssef, K., Junior, O. J. C., Mühlbeier, D. T., & Roberto, S. R. (2020). Sulphur dioxide pads can reduce gray mold while maintaining the quality of clamshell-packaged ‘brs nubia’ seeded table grapes grown under protected cultivation. Horticulturae, 6(2).
[66] S. Saito, D. Obenland, and C. L. Xiao, (2020). “Influence of sulfur dioxide-emitting polyethylene packaging on blueberry decay and quality during extended storage,” Postharvest Biology and Technology, 160, 111045.
[67] Ribeiro-Santos, R., Andrade, M., Melo, N. R. de, & Sanches-Silva, A. (2017). Use of essential oils in active food packaging: Recent advances and future trends. Trends in Food Science and Technology, 61, 132–140.
[68] De Abreu, D. A. P., Losada, P. P., Maroto, J., and Cruz, J. M., (2010). Evaluation of the effectiveness of a new active packaging film containing natural antioxidants ( from barley husks ) that retard lipid damage in frozen Atlantic salmon ( Salmo salar L .), Food Research International, 43, 1277–1282.
[69] Beltran, J., Diaz, P. A., Camo, J., Beltrán, J. A., & Roncalés, P., (2015). “Extension of the display life of lamb with an antioxidant active packaging”, Meat Science, 80, 1086-1091.
[70] Bentayeb, K., Rubio, C., Batlle, R., & Nerín, C. (2007). Direct determination of carnosic acid in a new active packaging based on natural extract of rosemary. 1989–1996.
[71] Matan, N., Rimkeeree, H., Mawson, A. J., Chompreeda, P., Haruthaithanasan, V., & Parker, M. (2006). Antimicrobial activity of cinnamon and clove oils under modified atmosphere conditions. 107, 180–185.
[72] Torres-Arreola, W., Soto-Valdez, H., Peralta, E., Cárdenas-López, J.L., and Ezquerra-Brauer, J.M., (2007). Effect of a low-density polyethylene film containing butylated hydroxytoluene on lipid oxidation and protein quality of Sierra fish (Scomberomorus sierra) muscle during frozen storage, Journal of agricultural and food chemistry, 55, 6140-6146.
[73] Aardt, M. Van, Duncan, S. E., Marcy, J. E., Long, T. E., Keefe, S. F. O., & Sims, S. R. (2007). Original article Release of antioxidants from poly ( lactide- co -glycolide ) films into dry milk products and food simulating liquids. 1988, 1327–1337.
[74] Eça, K. S., Sartori, T., & Menegalli, F. C. (2014). Films and edible coatings containing antioxidants – a review. Brazilian Journal of Food Technology, 17(2), 98–112.
[75] Chen, H., Zhang, M., Bhandari, B., & Yang, C., (2018). “Development of a novel colorimetric food package label for monitoring lean pork freshness,” LWT – Food Science and Technology, 88, 105–112.
[76] Navikaite-snipaitiene, V., Ivanauskas, L., & Jakstas, V., (2018). Development of antioxidant food packaging materials containing eugenol for extending display life of fresh beef., Meat science, 145, Oxford: Elsevier
[77] Siripatrawan, U., and Noipha, S., (2012). Food Hydrocolloids Active fi lm from chitosan incorporating green tea extract for shelf life extension of pork sausages, Food hydrocolloids, 27, 102–108.
[78] Adilah, Z. A. M., Jamilah, B., & Hanani, Z. A. N., (2018). Functional and antioxidant properties of protein-based films incorporated with mango kernel extract for active packaging, Food Hydrocolloids, 74, 207-218.
[79] Lorenzo, J. M., Batlle, R., & Gómez, M. (2014). LWT – Food Science and Technology Extension of the shelf-life of foal meat with two antioxidant active packaging systems. LWT – Food Science and Technology, 1–8.
[80] Graciano-verdugo, A. Z., Soto-valdez, H., Peralta, E., Cruz-zárate, P., Islas-rubio, A. R., Sánchez-valdes, S., Sánchez-escalante, A., & González-méndez, N. (2010). Migration of a -tocopherol from LDPE films to corn oil and its effect on the oxidative stability. Food Research International, 43(4), 1073–1078.
[81] Tapia, M. S., Rojas-Graü, M. A., Carmona, A., Rodríguez, F. J., Soliva-Fortuny, R., & Martin-Belloso, O. (2008). Use of alginate- and gellan-based coatings for improving barrier, texture and nutritional properties of fresh-cut papaya. Food Hydrocolloids, 22(8), 1493–1503.
[82] Mahcene, Z., Khelil, A., Hasni, S., & Bozkurt, F., (2020). Home-made cheese preservation using sodium alginate based on edible film incorporating essential oils, Journal of Food Science and Technology, 58, 2406-2419.
[83] Amanatidou, A., Slump, R. A., Gorris, L. G. M., & Smid, E. J. (2000). High oxygen and high carbon dioxide modified atmospheres for shelf-life extension of minimally processed carrots. Journal of Food Science, 65(1), 61–66.
[84] House, M., Willige, R. W. G. Van, Linssen, J. P. H., Meinders, M. B. J., Voragen, A. G. J., Management, Q., & Sciences, F. (2010). Food Additives & Contaminants Influence of flavour absorption on oxygen permeation through LDPE , PP , PC and PET plastics food packaging. January 2015, 37–41.
[85] Prasad, P., & Kochhar, A. (2014). Active Packaging in Food Industry: A Review. IOSR Journal of Environmental Science, Toxicology and Food Technology, 8(5), 01–07.
[86] Morris, (1999). US Patent WO1999025625A1 .
[87] Chandler, B. B. V, Kefford, J. F., & Ziemelis, G., (1968). Removal of limonin from bitter orange juice, Journal of the Science of Food and Agriculture, 19, 83-86.
[88] Quintavalla, S., & Vicini, L., (2002). Antimicrobial food packaging in meat industry, Meat Science, 62, 373–380.
[89] Han, J. H., (2012). Active packaging research and development, Innovation in Food Packing, 61.
[90] Parreidt, T. S., Müller, K., & Schmid, M. (2018). Alginate-based edible films and coatings for food packaging applications. Foods, 7(10), 1–38
[91] Ye, M., Neetoo, H., & Chen, H. (2008). International Journal of Food Microbiology Effectiveness of chitosan-coated plastic fi lms incorporating antimicrobials in inhibition of Listeria monocytogenes on cold-smoked salmon. 127, 235–240.
[92] Ye, M., Neetoo, H., & Chen, H., (2008). Control of Listeria monocytogenes on ham steaks by antimicrobials incorporated into chitosan-coated plastic film, Food Microbiology, 25, 260–268.
[93] Foralosso, F. B., Fronza, N., Henrique, J., Capeletti, L. B., Gabriela, M., & Quadri, N., (2013). The Use of Duo-Functional PVC Film for Conservation of Minimally Processed Apples, Food and bioprocess technology, 7, 1483-1495.
[94] Gherardi, R., Becerril, R., Nerin, C., & Bosetti, O. (2016). LWT – Food Science and Technology Development of a multilayer antimicrobial packaging material for tomato puree using an innovative technology. LWT – Food Science and Technology, 72, 361–367.
[95] Arfat, Y. A., & Benjakul, S., (2015). Shelf-life extension of refrigerated sea bass slices wrapped with fish protein isolate / fish skin gelatin-ZnO nanocomposite film incorporated with basil leaf essential oil, J Food Sci Tech, 52, 6182–93.
[96] Lee, Ka-yeon, Lee, J., Yang, H., & Song, K. Bin. (2016). Characterization of a starfish gelatin film containing vanillin and its application in the packaging of crab stick. 25(4), 1023–1028.
[97] Park, S., Marsh, K. S., & Dawson, P. (2010). Application of chitosan-incorporated LDPE film to sliced fresh red meats for shelf life extension. Meat Science, 85(3), 493–499.
[98] Porta, R., Fechtali, T., & Mauriello, G., (2021). Basil essential oil: Composition, antimicrobial properties, and microencapsulation to produce active chitosan films for food packaging, Food Packaging, 10, 121.
[99] Persico, P., Persico, P., Ambrogi, V., Carfagna, C., Cerruti, P., Ferrocino, I., & Mauriello, G., (2009). Nanocomposite polymer films containing carvacrol for antimicrobial active packaging Nanocomposite Polymer Films Containing Carvacrol for Antimicrobial Active Packaging, Polymer Engineering & Science, 49, 1447-1455.
[100] Sothornvit, R., & Krochta, J. M. (2005). Plasticizers in edible films and coatings. Innovations in Food Packaging, 403–433.
[101] Campos, C. A., Gerschenson, L. N., & Flores, S. K. (2011). Development of Edible Films and Coatings with Antimicrobial Activity. Food and Bioprocess Technology, 4(6), 849–875.
[102] Bettina, R., and Kvalv, M., (2017). Active Packaging Applications for Food, Comprehensive Reviews in Food Science and Food Safety, 17, 165-199.
[103] Gouvêa, D. M., Mendonça, R. C. S., Lopez, M. E. S., & Batalha, L. S. (2016). Absorbent food pads containing bacteriophages for potential antimicrobial use in refrigerated food products. LWT – Food Science and Technology, 67, 159–166.
[104] Conte, A., Buonocore, G. G., Bevilacqua, A., & Sinigaglia, M., (2004). Controlled Release of Antimicrobial Compounds from Highly Swellable Immobilization of Lysozyme on Polyvinylalcohol Films for Active Packaging Applications, Journal of Food Protection, 69, 866-870.
[105] Mohamed, C., Clementine, K. A., Didier, M., Gérard, L., & Marie Noëlle, D. C. (2013). Antimicrobial and physical properties of edible chitosan films enhanced by lactoperoxidase system. Food Hydrocolloids, 30(2), 576–580.
[106] Millette, M., Tien, C. Le, Smoragiewicz, W., & Lacroix, M. (2007). Inhibition of Staphylococcus aureus on beef by nisin-containing modi W ed alginate W lms and beads. 18, 878–884.
[107] Azarakhsh, N., Osman, A., Ghazali, H. M., Tan, C. P., & Mohd Adzahan, N. (2014). Lemongrass essential oil incorporated into alginate-based edible coating for shelf-life extension and quality retention of fresh-cut pineapple. Postharvest Biology and Technology, 88, 1–7.
[108] Sanfuentes, E. A., (2015). The synergistic antimicrobial effect of carvacrol and thymol in clay/polymer nanocomposite films over strawberry gray mold, LWT – Food Science and Technology.
[109] Higueras, L., López-carballo, G., Gavara, R., & Hernández-muñoz, P., (2014). Reversible Covalent Immobilization of Cinnamaldehyde on Chitosan Films via Schiff Base Formation and Their Application in Active Food Packaging, Food Bioprocess Technol, 8, 526-538.
[110] Kavas, N., Kavas, G., & Saygili, D. (2016). Use of ginger essential oil-fortified edible coatings in Kashar cheese and its effects on Escherichia coli O157:H7 and Staphylococcus aureus. CYTA – Journal of Food, 14(2), 317–323.
[111] Sung, S., Tin, L., Tee, T., Bee, S., Rahmat, A. R., & Rahman, W. A. W. A. (2014). Control of bacteria growth on ready-to-eat beef loaves by antimicrobial plastic packaging incorporated with garlic oil. Food Control, 39, 214–221.
[112] Nair, M. S., & Saxena, A., (2018). Characterization and Antifungal Activity of Pomegranate Peel Extract and its Use in Polysaccharide-Based Edible Coatings to Extend the Shelf-Life of Capsicum ( Capsicum annuum L .), Food and Bioprocess Technology, 11, 1317-1327.
[113] Cha, D. S., Choi, J. H., Chinnan, M. S., & Park, H. J., (2002). Antimicrobial Films Based on Na-alginate and k -carrageenan. 719, 715–719.
[114] Hao, R., Liu, Y., Sun, L., Xia, L., Jia, H., & Li, Q., (2017). Sodium alginate coating with plant extract affected microbial communities, biogenic amine formation and quality properties of abalone ( Haliotis discus hannai Ino ) during chill storage, LWT – Food Science and Technology, 81, 1–9.
[115] Pavinatto, A., Victoria, A., Mattos, D. A., & Sanfelice, R. C., (2019). Coating with chitosan-based edible films for mechanical/ biological protection of strawberries, International Journal of Biological Macromolecules.
[116] Youssef, A. M., Assem, F. M., El-Sayed, S. M., Salama, H., & Abd El-Salam, M. H. (2017). Utilization of Edible Films and Coatings as Packaging Materials for Preservation of Cheeses. Journal of Packaging Technology and Research, 1(2), 87–99.
[117] Vásconez, M. B., Flores, S. K., Campos, C. A., Alvarado, J., & Gerschenson, L. N. (2009). Antimicrobial activity and physical properties of chitosan – tapioca starch based edible films and coatings. Food Research International, 42(7), 762–769.
[118] Deniz, E., Erdal, A., & Kaya, S. (2015). Effect of antimicrobial packaging on physicochemical and microbial quality of chicken drumsticks Çi g. 54, 294–299.
[119] Barbiroli, A., Bonomi, F., Capretti, G., Iametti, S., Manzoni, M., Piergiovanni, L., & Rollini, M. (2012). Antimicrobial activity of lysozyme and lactoferrin incorporated in cellulose-based food packaging. Food Control, 26(2), 387–392.
[120] Kim, Y., Paik, H., & Lee, D. (2002). Shelf-life characteristics of fresh oysters and ground beef as affected by bacteriocin-coated plastic packaging film. 1002(March 2001), 998–1002.
[121] Talita, B., Oliveira, M. De, Fátima, N. De, & Soares, F. (2007). Development and Evaluation of Antimicrobial Natamycin-incorporated Film in Gorgonzola and Science. October 2006, 147–153.
[122] Takala, P. N., Vu, K. D., Salmieri, S., Khan, R. A., & Lacroix, M. (2013). Antibacterial effect of biodegradable active packaging on the growth of Escherichia coli, Salmonella typhimurium and Listeria monocytogenes in fresh broccoli stored at 4°C. LWT – Food Science and Technology, 53(2), 499–506.
[123] Júnior, A. V., Fronza, N., Foralosso, F. B., Antônio, R., Machado, F., Gabriela, M., & Quadri, N., (2015). Biodegradable Duo-functional Active Film : Antioxidant and Antimicrobial Actions for the Conservation of Beef, Food Bioprocess and Technology, 8, 75-872014.
[124] Lucera, A., Mastromatteo, M., Conte, A., Zambrini, A. V., Faccia, M., & Del Nobile, M. A. (2014). Effect of active coating on microbiological and sensory properties of fresh mozzarella cheese. Food Packaging and Shelf Life, 1(1), 25–29.
[125] Cozmuta, A. M., Peter, A., Cozmuta, L. M., Nicula, C., Crisan, L., Baia, L., and Turila, A., (2014). Active Packaging System Based on Ag / TiO2 Nanocomposite Used for Extending the Shelf Life of Bread. Chemical and Microbiological Investigations, Packaging Technology and Science, 28, 271-284.
[126] Panea, B., Ripoll, G., González, J., Fernández-cuello, Á., & Albertí, P. (2014). Effect of nanocomposite packaging containing different proportions of ZnO and Ag on chicken breast meat quality. 123, 104–112.
[127] Rux, G., Mahajan, P. V., Linke, M., Pant, A., Sängerlaub, S., Caleb, O. J., & Geyer, M. (2016). Humidity-Regulating Trays: Moisture Absorption Kinetics and Applications for Fresh Produce Packaging. Food and Bioprocess Technology, 9(4), 709–716.
[128] Shirazi, A., & Cameron, A. C. (2019). Controlling Relative Humidity in Modified Atmosphere Packages of Tomato Fruit. HortScience, 27(4), 336–339.
[129] Mahajan, P. V, Rodrigues, F. A. S., Motel, A., & Leonhard, A. (2008). Development of a moisture absorber for packaging of fresh mushrooms ( Agaricus bisporous ). 48, 408–414.
[130] Mbuge, D. O., Negrini, R., Nyakundi, L. O., Kuate, S. P., Bandyopadhyay, R., Muiru, W. M., Torto, B., & Mezzenga, R. (2016). Application of superabsorbent polymers ( SAP ) as desiccants to dry maize and reduce aflatoxin contamination. Journal of Food Science and Technology, 53(8), 3157–3165.
[131] Fang, Z., Zhao, Y., Warner, R. D., & Johnson, S. K. (2017). Active and intelligent packaging in meat industry. Trends in Food Science and Technology, 61(December), 60–71.
[132] Barska, A., & Wyrwa, J. (2017). Innovations in the food packaging market – Intelligent packaging – A review. Czech Journal of Food Sciences, 35(1), 1–6.
[133] Müller, P., & Schmid, M. (2019). Intelligent packaging in the food sector: A brief overview. Foods, 8(1).
[134] Dodero, A., Escher, A., Bertucci, S., Castellano, M., & Lova, P. (2021). Intelligent packaging for real-time monitoring of food-quality: Current and future developments. Applied Sciences (Switzerland), 11(8).
[135] Han., J. H., (2005). Innovations in food packaging. Elsevier Academic.
[136] Un, J., Ghafoor, K., Ahn, J., Shin, S., Hyun, S., Shin, H., Kim, S., & Park, J., (2016). LWT – Food Science and Technology Kinetic modeling and characterization of a diffusion-based time- temperature indicator ( TTI ) for monitoring microbial quality of non- pasteurized angelica juice, LWT – Food Science and Technology, 67, 143-150.
[137] Wanihsuksombat, C., Hongtrakul, V., & Suppakul, P. (2010). Development and characterization of a prototype of a lactic acid – based time – temperature indicator for monitoring food product quality. Journal of Food Engineering, 100(3), 427–434.
[138] Lorite, G. S., Selkälä, T., Sipola, T., Palenzuela, J., Jubete, E., Viñuales, A., Cabañero, G., Grande, H. J., Tuominen, J., Uusitalo, S., Hakalahti, L., Kordas, K., & Toth, G. (2017). Novel, smart and RFID assisted critical temperature indicator for supply chain monitoring. Journal of Food Engineering, 193, 20–28.
[139] Wu, D., Hou, S., Chen, J., Sun, Y., Ye, X., Liu, D., Meng, R., & Wang, Y. (2015). Development and characterization of an enzymatic time-temperature indicator (TTI) based on Aspergillus niger lipase. LWT – Food Science and Technology, 60(2), 1100–1104.
[140] Wu, D., et al., (2013). Preliminary study on time-temperature indicator (TTI) system based on urease, Food Control, 34, 230–234.
[141] Pereira, V. A., de Arruda, I. N. Q., and Stefani, R., (2015). Active chitosan/PVA films with anthocyanins from Brassica oleraceae (Red Cabbage) as Time-Temperature Indicators for application in intelligent food packaging, Food Hydrocolloids, 43, 180–188.
[142] Lee, S. B., Kim, D. H., Jung, S. W., and Lee, S. J., (2019). Air-activation of printed time–temperature integrator: A sandwich package case study, Food Control, 101, 89–96.
[143] Warner, R. D., Fang, Z., Zhao, Y., Warner, R. D., and Johnson, S. K., (2017). Trends in Food Science & Technology, Trends in Food Science & Technology, 61, 60–71.
[144] Yoshida, C. M. P., Borges, V., Maciel, V., Eleonora, M., and Mendonça, D., (2014). LWT – Food Science and Technology Chitosan biobased and intelligent films : Monitoring pH variations, LWT – Food Science and Technology, 55, 83–89.
[145] K. Lee, H. Park, S. Baek, S. Han, D. Kim, S. Chung, J.Y. Yoon, and J. Seo, (2019). “Colorimetric array freshness indicator and digital color processing for monitoring the freshness of packaged chicken breast,” Food Packaging and Shelf Life, 22, 100408.
[146] Kuswandi, B., & Nurfawaidi, A. (2017). On-package dual sensors label based on pH indicators for real-time monitoring of beef freshness On-package dual sensors label based on pH indicators for real-time monitoring of beef freshness. Food Control, 82(October), e123–e123.
[147] Hamzah, H. M., Osman, A., Tan, C. P., & Mohamad Ghazali, F. (2013). Carrageenan as an alternative coating for papaya (Carica papaya L. cv. Eksotika). Postharvest Biology and Technology, 75, 142–146.
[148] Iskandar, A., Yuliasih, I., & Warsiki, E. (2020). Performance Improvement of Fruit Ripeness Smart Label Based On Ammonium Molibdat Color Indicators. 3(2), 48–57.
[149] Lang, C., and Hübert, T., (2012). A Colour Ripeness Indicator for Apples, Food and Bioprocess Technology, 5, 3244-3249.
[150] Fuertes, G., Soto, I., Carrasco, R., Vargas, M., Sabattin, J., & Lagos, C. (2016). Intelligent Packaging Systems: Sensors and Nanosensors to Monitor Food Quality and Safety, Journal of Sensors.
[151] Feldsine, P., Abeyta, C., & Andrews, W. H. (2002). AOAC International methods committee guidelines for validation of qualitative and quantitative food microbiological official methods of analysis. Journal of AOAC International, 85(5), 1187–1200.
[152] Niponsak, A., Laohakunjit, N., Kerdchoechuen, O., & Wongsawadee, P. (2020). Novel ripeness label based on starch / chitosan incorporated with pH dye for indicating eating quality of fresh – cut durian. Food Control, 107(July 2019), 106785.
[153] Pacquit, A., Frisby, J., Diamond, D., Lau, K. T., Farrell, A., Quilty, B., & Diamond, D. (2007). Development of a smart packaging for the monitoring of fish spoilage. Food Chemistry, 102(2), 466–470.
[154] Luoma, T., Alakomi, H., Smolander, M., & Hurme, E., (2002). Myoglobin-based indicators for the evaluation of freshness of unmarinated broiler cuts, Innovative Food Science & Emerging Technologies, 3, 279-288.
[155] Zhai, X., Shi, J., Zou, X., Wang, S., Jiang, C., Zhang, J., Huang, X., Zhang, W., & Holmes, M. (2017). Novel colorimetric films based on starch/polyvinyl alcohol incorporated with roselle anthocyanins for fish freshness monitoring. Food Hydrocolloids, 69, 308–317.
[156] Kuswandi, B., and Maryska, C., (2013). Real time on-package freshness indicator for guavas packaging, Journal of Food Measurement and Characterization, 7, 29–39.
[157] Vu, C. H. T., & Won, K. (2013). Novel water-resistant UV-activated oxygen indicator for intelligent food packaging. Food Chemistry, 140(1–2), 52–56.
[158] Hong, S., & Park, W. (2000). Use of color indicators as an active packaging system for evaluating kimchi fermentation. 46, 67–72.
[159] Park, Y. W., Kim, S. M., Lee, J. Y., & Jang, W. (2015). Application of biosensors in smart packaging. Molecular and Cellular Toxicology, 11(3), 277–285.
[160] Vanderroost, M., Ragaert, P., Devlieghere, F., & Meulenaer, B. De. (2014). Intelligent food packaging : The next generation. Trends in Food Science & Technology, 39(1), 47–62.
[161] Sun, X., Agate, S., Salem, K. S., Lucia, L., & Pal, L. (2021). Hydrogel-Based Sensor Networks: Compositions, Properties, and Applications – A Review. ACS Applied Bio Materials, 4(1), 140–162.
[162] Salem, K. S., Lubna, M. M., Rahman, A. M., Nurnabi, M., Islam, R., & Khan, M. A. (2015). The effect of multiwall carbon nanotube additions on the thermo-mechanical, electrical, and morphological properties of gelatin-polyvinyl alcohol blend nanocomposite. Journal of Composite Materials, 49(11), 1379–1391.
[163] Wen, Y., Li, Y., Si, Y., Wang, X., Li, F., Yu, J., & Ding, B. (2015). Talanta Ready-to-use strip for L -ascorbic acid visual detection based on polyaniline / polyamide 66 nano- fi bers / nets membranes. Talanta, 144, 1146–1154.
[164] Borchert, N. B., Kerry, J. P., & Papkovsky, D. B. (2013). Sensors and Actuators B : Chemical A CO 2 sensor based on Pt-porphyrin dye and FRET scheme for food packaging applications. Sensors & Actuators: B. Chemical, 176, 157–165.
[165] Scampicchio, M., Arecchi, A., Lawrence, N. S., & Mannino, S. (2010). Sensors and Actuators B : Chemical Nylon nanofibrous membrane for mediated glucose biosensing. Sensors & Actuators: B. Chemical, 145(1), 394–397.
[166] Bodenhamer, W. T., Jackowski, G., and Davies, E., (2004). US Patent 6,692,973 B1.
[167] Chowdhury, E. U., & Morey, A. (2019). Intelligent Packaging for Poultry Industry. Journal of Applied Poultry Research, 28(4), 791–800.
[168] Zhai, X., Li, Z., Zhang, J., Shi, J., Zou, X., Huang, X., Zhang, D., Sun, Y., Yang, Z., Holmes, M., Gong, Y., & Povey, M. (2018). Natural Biomaterial-Based Edible and pH-Sensitive Films Combined with Electrochemical Writing for Intelligent Food Packaging. Journal of Agricultural and Food Chemistry, 66(48), 12836–12846.
[169] Mirza Alizadeh, A., Masoomian, M., Shakooie, M., Zabihzadeh Khajavi, M., & Farhoodi, M. (2020). Trends and applications of intelligent packaging in dairy products: a review. Critical Reviews in Food Science and Nutrition, 62, 1–15.
[170] Mohebi, E., & Marquez, L., (2015). Intelligent packaging in meat industry : An overview, Journal of food science and technology, 52, 3947-3964.
[171] Mcfarlane, D., (2003). The Impact of Automatic Identification on Supply Chain Operations, 0–27.
[172] Gregor-Svetec, D., (2018). Intelligent packaging, 203-247.
[173] Vlachopoulou, M., and Lollar, J., (2001). Bar-code technology for inventory and marketing management systems : A model for its development and implementation, International Journal of Production Economics, 71, 157-164.
[174] Maleshliyski, S., and García, F., (2009). Integration of anti-counterfeiting features into conventional 2D barcodes for mobile tagging, Proceedings of the Technical Association of the Graphic Arts, TAGA, no. May, pp. 1–11.
[175] Kalpana, S., Priyadarshini, S. R., Maria Leena, M., Moses, J. A., & Anandharamakrishnan, C. (2019). Intelligent packaging: Trends and applications in food systems. Trends in Food Science and Technology, 93(October 2018), 145–157.
[176] Heilmann, J., Juhola, H., & Linna, H., (2019). New challenges of package-based communication In TAGA, 72-72 (1998).
[177] Mennecke, B. E., and Townsend, A. M., (2005). Radio Frequency Identification Tagging as a Mechanism of Creating a Viable Producer’ s Brand in the Cattle Industry,Midwest Agribusiness Trade Research and Information Center (MATRIC) Publications.
[178] Kumar, P., Reinitz, H. W., Simunovic, J., Sandeep, K. P., and Franzon, P. D., (2009). Overview of RFID technology and its applications in the food industry, Journal of Food Science, 74, 8.
[179] Sohail, M., Sun, D. W., & Zhu, Z. (2018). Recent developments in intelligent packaging for enhancing food quality and safety. Critical Reviews in Food Science and Nutrition, 58(15), 2650–2662.
[180] Shafiq, Y., Henricks, J., Ambulo, C. P., Ware, T. H., and Georgakopoulos, S. V., (2020). A Passive RFID Temperature Sensing Antenna with Liquid Crystal Elastomer Switching, IEEE Access, 8, 24443–24456.
[181] Eden, M., Raab, V., Kreyenschmidt, J., Hafliðason, T., Olafsdóttir, G., and Bogason, S. G., (2011). Continuous temperature monitoring along the chilled food supply chain, Food Chain Integrity, 8, 115–129.
[182] Nambi, S., Nyalamadugu, S., Wentworth, S. M., and Chin, B. A., (2003). Radio Frequency Identification Sensors.
[183] Shetty J., M. (2018). Time temperature indicators for monitoring environment parameters during transport and storage of perishables: A Review. Environment Conservation Journal, 19(3), 101–106.
[184] Othman, S. H. (2014). Bio-nanocomposite Materials for Food Packaging Applications : Types of Biopolymer and Nano-sized Filler. Italian Oral Surgery, 2, 296–303.
[185] Hernández-Muñoz, P., Cerisuelo, J. P., Domínguez, I., López-Carballo, G., Catalá, R., & Gavara, R., (2018). Nanotechnology in Food Packaging, 6, 151.
[186] An, J., Zhang, M., Wang, S., & Tang, J. (2008). Physical , chemical and microbiological changes in stored green asparagus spears as affected by coating of silver nanoparticles-PVP. 41, 1100–1107.
[187] Chawengkijwanich, C., and Hayata, Y., (2008). Development of TiO2 powder-coated food packaging film and its ability to inactivate Escherichia coli in vitro and in actual tests, 123, 288–292.
[188] Meira, S. M. M., Zehetmeyer, G., Jardim, A. I., Scheibel, J. M., de Oliveira, R. V. B., & Brandelli, A. (2014). Polypropylene/Montmorillonite Nanocomposites Containing Nisin as Antimicrobial Food Packaging. Food and Bioprocess Technology, 7(11), 3349–3357.
[189] Ahmed, I., Lin, H., Zou, L., Brody, A. L., Li, Z., Qazi, I. M., Pavase, T. R., & Lv, L., (2018). Active Chicken Meat Packaging Based on Polylactide Films and Bimetallic Ag–Cu Nanoparticles and Essential Oil, Journal of Food Science, 83, 1299–1310.
[190] im, S., & Song, K. Bin. (2018). Antimicrobial activity of buckwheat starch films containing zinc oxide nanoparticles against Listeria monocytogenes on mushrooms. International Journal of Food Science and Technology, 53(6), 1549–1557.
[191] Xiao-e, L., Green, A. N. M., Haque, S. A., Mills, A., & Durrant, J. R. (2004). Light-driven oxygen scavenging by titania/polymer nanocomposite films. Journal of Photochemistry and Photobiology A: Chemistry, 162(2–3), 253–259.
[192] Li, X., Li, W., Jiang, Y., Ding, Y., Yun, J., Tang, Y., & Zhang, P. (2011). Original article Effect of nano-ZnO-coated active packaging on quality of fresh-cut ‘ Fuji ’ apple. 1947–1955.
[193] Hu, Q., Fang, Y., Yang, Y., Ma, N., & Zhao, L. (2011). Effect of nanocomposite-based packaging on postharvest quality of ethylene-treated kiwifruit ( Actinidia deliciosa ) during cold storage. FRIN, 44(6), 1589–1596.
[194] ereira de Abreu, D. A., Lago, M. A., Sartal, A., Rodríguez-Bernaldo de Quirós, A., & Sendon, R. (2016). Evaluation of the effectiveness of a paper containing nanoparticles of silver combined with moisture absorbers over quality of tuna snacks. Journal of Food Chemistry and Nanotechnology, 2(2), 85–91.
[195] Eissa, S., Tlili, C., Hocine, L. L., & Zourob, M. (2012). Biosensors and Bioelectronics Electrochemical immunosensor for the milk allergen b -lactoglobulin based on electrografting of organic film on graphene modified screen-printed carbon electrodes. Biosensors and Bioelectronic, 38(1), 308–313.
[196] Ai, K., Liu, Y., & Lu, L. (2009). Hydrogen-Bonding Recognition-Induced Color Change of Gold Nanoparticles for Visual Detection of Melamine in Raw Milk and Infant Formula. 9496–9497.
[197] Burris, K. P., & Stewart, C. N. (2012). Fluorescent nanoparticles: Sensing pathogens and toxins in foods and crops. Trends in Food Science and Technology, 28(2), 143–152.
[198] Iliadis, A. A., & Ali, H. A. (2011). Properties of fast response room temperature ZnO-Si heterojunction gas nanosensors. IEEE Transactions on Nanotechnology, 10(3), 652–656.
[199] Mills, A., & Hazafy, D. (2009). Nanocrystalline SnO2-based, UVB-activated, colourimetric oxygen indicator. Sensors and Actuators, B: Chemical, 136(2), 344–349.
[200] Poyatos-Racionero, E., Ros-Lis, J. V., Vivancos, J. L., & Martínez-Máñez, R. (2018). Recent advances on intelligent packaging as tools to reduce food waste. Journal of Cleaner Production, 172, 3398–3409.
[201] Marchiore, N. G., Manso, I. J., Kaufmann, K. C., Lemes, G. F., Pizolli, A. P. de O., Droval, A. A., Bracht, L., Gonçalves, O. H., & Leimann, F. V. (2017). Migration evaluation of silver nanoparticles from antimicrobial edible coating to sausages. LWT – Food Science and Technology, 76, 203–208.
[202] Cerqueira, M. A., Costa, M. J., Fuciños, C., Pastrana, L. M., & Vicente, A. A. (2014). Development of Active and Nanotechnology-based Smart Edible Packaging Systems: Physical-chemical Characterization. Food and Bioprocess Technology, 7(5), 1472–1482.
Cite
K.G. Kaushani, N. L. Rathnasinghe, N. Katuwawila, R.A Jayasinghe, A.H.L.R. Nilmini, G. Priyadarshana “Trends in Smart Packaging Technologies for Sustainable Monitoring of Food Quality and Safety” International Journal of Research and Innovation in Applied Science (IJRIAS) volume-7-issue-7, pp.07-30 July 2022 URL: https://www.rsisinternational.org/journals/ijrias/DigitalLibrary/volume-7-issue-7/07-30.pdf
Full Text PDF
Download PDF

Enhanced Article (HTML)