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ABSTRACT 

In this research paper, a new regression model for the transmuted Weibull distribution was proposed, and the 

parameters of the new model were estimated by using the Maximum likelihood method, the different types of 

residuals were calculated for the new model, such as Cox and Snell Residual, Pearson Residuals, Deviance 

component Residual, and the martingale residual. The proposed model was applied to a set of real data 

representing bad debit rate, and the proposed model was also compared with some other models such as the 

Kumaraswamy Lindley regression model and the LG Weibull regression model. 

Keywords: Weibull distribution, transmutation map, regression approach, survival analysis, and residual 

analysis. 

INTRODUCTION 

Regression analysis is statistical modeling that can be used in financing, marketing, investing and other fields 

that utilized to infer the strength and direction of relationships between dependent variable and one or more 

independent variables. The dependent variable Y is also known as response variable or outcome, and the 

independent variables Xk where      k = (1, 2, …, p) as predictors, explanatory variables, or covariates. 

Regression analysis, more precisely, attempts identifying the mathematical formula that explains Y in terms of 

X as, Y = f (x). Sarstedt. M., & Mooi. E. (2014). Transmutation maps are generally a handy tool for creating a 

new distribution, especially, survival ones. Transmutation maps, defined by Shaw and Buckley (2009), are the 

functional composition of one distribution's inverse cumulative distribution (quantile) function and one 

distribution's cumulative distribution function. Recently, some studies involving the type of quadratic rank 

transmutation map (QRTM) and its application such as survival analysis. by applying QRTM Aryal and  

Toskes (2011) proposed Transmuted Weibull distribution, Aryal and Tsokos (2009) presented a 

generalization of the extreme value distribution applied this new distribution to analyze snowfall data at 

Midway Airport in the US state of Illinois, Merovci, F. (2013a) introduced transmuted Lindley distribution 

and applied the proposed distribution to an uncensored data of random sample from 128 bladder cancer 

patients, Merovci, F. (2013b) generalized the Rayleigh distribution and applied to Real data of nicotine 

measurements obtained from several brands of cigarettes for the year 1998. Louzada and Granzotto, (2016) 

proposed the transmuted log-logistic model and the regression one in the study of the time until the first calve 

of a polled Tabapua race. Dey. S, et al. (2021) stated that with increasing the variability of applications, the 

standard distributions were not sufficient for modeling complicated phenomena, therefore the need to 
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generalize standard distributions is required. It is necessary to emphasis transmutation map as generalization 

tool for obtaining new distributions that are more flexible, the new generalized distributions have the capacity 

for modeling complicated phenomena more accurately. These generalizations made a considerable 

advancement in the direction of constriction flexile distributions in order to facilitate good modeling of 

lifetime data. Recently some generalizations of Weibull distribution including exponentiated Weibull, 

modified Weibull, extended Weibull and transmuted Weibull that can be derived by using QRTM. The 

generalizations and modifications of Weibull distribution have been approved by Cordeiro, G. M. et al 

(2011), Elbatal. I and Aryal. G. (2013), Aryal and  Toskes (2013), Eltehiwy, et al. (2013), Merovice, et al. 

(2013), Afify. A. Z, et al. (2014), Al-Kadim, K. A. et al. (2017), Afify. A. Z, et al. (2017), Ahmed. Z. Afify, 

et al. (2018), Nofal, Z. M., et al. (2018), Khan. (2019). 

In this paper we introduced a New Regression Model for Transmuted Weibull with application. The 

background of transmuted weibull distribution will be presented at section (3) are divided into three 

subsections including the log transmuted regression weibull, inference about the parameters of regression 

model by using maximum likelihood estimation, and finally subsection is residual analysis. At section (3) the 

numerical experiment will be presented and classified to several subsections involving simulation study in 

order to assess the performance of T-W regression model, applications of T-W to real data set, goodness of fit 

to ensure that real data more fitted to the proposed model, and then comparing the T-W regression model with 

kumaraswamy Lindley regression model and MG  weibull regression model based on some goodness of fit 

criteria, and also the global influence will be presented to shows the sensitive analysis for T-W regression 

model. 

MATERIAL METHODS 

Definition of Transmuted Weibull distribution 

The Weibull distribution is playing very important role for modeling lifetime data in many filed for example 

medicine, biology, engineering and finance, a very small amount of the massive applications of Weibull 

model. let’s random variable x is said to have Weibull distribution with 2 parameters 𝛼 and 𝛽 if its probability 

function (pdf) is given by (Aryal and Tsokos 2009): 

𝑔(𝑥) =
𝛼

𝛽𝛼
  𝑥𝛼−1 𝑒

 −(
𝑥
𝛽
)𝛼 
        𝑥 > 0 𝑎𝑛𝑑 𝛼, 𝛽 > 0   (1) 

The corresponding cumulative distribution function of Weibull distribution (CDF) is given by: 

𝐺(𝑋) = 1 − 𝑒
 −( 

𝑥
𝛽
 )𝛼 
         𝑥 > 0 𝑎𝑛𝑑 𝛼, 𝛽 > 0   (2) 

By using methodology of QRTM shown by Shaw and Buckley (2007), Aryal and  Toskes (2011) proposed 

transmuted weibull distribution based on weibull distribution as baseline distribution. Let X is said to have 

transmuted distribution if its cumulative distribution (CDF) is given by: 

𝐹(𝑥) = (1 + 𝑘) 𝐺(𝑥) − 𝑘[𝐺(𝑥)]2 (3) 

Where 𝑘 ∈ [−1,1], F(x) is CDF of transmuted distribution, And G(x) is CDF of parent distribution. When 

K=0, the Transmuted distribution is the same as base distribution. The corresponding probability density 

function (pdf) is given by: 

𝑓(𝑥) = 𝑔(𝑥)[(1 + 𝑘) − 2𝑘𝐺(𝑥)]     (4) 

Hence, the pdf and CDF of Transmuted weibull distribution is given by respectively: 

𝑓(𝑥) =
𝛼

𝛽𝛼
  𝑥𝛼−1 𝑒

 −(
𝑥
𝛽
)𝛼 
[(1 + 𝑘)  − 2𝑘(1 − 𝑒

 −( 
𝑥
𝛽
 )𝛼 
)] (5) 

https://rsisinternational.org/journals/ijrias
https://rsisinternational.org/journals/ijrias
http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN APPLIED SCIENCE (IJRIAS) 
ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS |Volume IX Issue VIII August 2024 

 

 

 

 

 

Page 778 www.rsisinternational.org 

.9  

 

 

And 

𝐹(𝑥) = (1 + 𝑘) (1 − 𝑒
 −( 

𝑥
𝛽
 )𝛼 

 

) − 𝑘 [1 − 𝑒
 −( 

𝑥
𝛽
 )𝛼 
]
2

 (6) 

According to Aryal and Tsokos (2011); Transmuted Weibull distribution is extended model for analyzing 

data that is more complex and it generalizes some of widely used distributions. From equation (5) note that 

when parameters vary, there are special cases from Transmuted Weibull distribution will be placed as 

following:  

i. When 𝛼 = 1, transmuted exponential distribution (skew exponential) with two parameters  𝛽 and  

𝑘 will be placed. Shaw, et al. (2009). 

ii. By butting 𝑘 = 0, Weibull distribution is generated which is the base distribution. 

When  𝛼 = 1  and 𝑘 = 1, the Exponential distribution with parameter (
𝛽

2
) is given. 

 

Figure (1). the pdf and CDF of the transmuted weibull distribution at different value with k=0.6 

The Log Transmuted Weibull (T-W) Regression Model 

The main objective of this paper is to introduce a new application of the Transmuted Weibull distribution in 

regression modeling. The proposed model utilizes the log- Transmuted Weibull distribution, which is derived 

from the positive Transmuted Weibull random quantity through a log transformation. The log-location-scale 

regression models are popular models to analyze the censored response variable with some covariates. In the 

last decade, researchers have introduced flexible location scale regression models to analyze the different 

characteristics of the data sets. The important paper on location-scale can be cited as follows: log-generalized 

Transmuted-Weibull, suppose x is a random variable following the T-W density function in equation (5). and y 

is defined  𝑦 = 𝑙𝑜𝑔𝑥 , 𝑥 = 𝑒𝑦 , 𝛽 = 𝑒𝜇  , 𝛼 =
1

𝜎
 , It is easy to verify that the density function of 𝑦 reduces to: 

𝑓(𝑦) = (|𝐽|). 𝑓−1(𝑥)   (7) 

To obtain the value of the Jacobean transformation, the differential is with respect to x and we get  
𝑑𝑦

𝑑𝑥
=

1

𝑥
  and 

then substituting in equation (7). 

𝑓(𝑦, 𝜇, 𝜎) =
1

𝜎
𝑒𝑥𝑝 (

𝑦−𝜇

𝜎
) ∗  𝑒−𝑒𝑥𝑝(

𝑦−𝜇

𝜎
)
 

∗ [(1 + 𝑘) − 2𝑘(1 − 𝑒−𝑒𝑥𝑝(
𝑦−𝜇

𝜎
)
 

)]                             (8) 

By substituting in equation (8), let 𝑍 =
𝑦−𝜇

𝜎
 & 𝜎 𝑍 =  𝑦 − 𝜇   & 𝑦 =  𝜇 + 𝜎 𝑍 

𝑓(𝑧) =
1

𝜎
𝑒𝑥𝑝(𝑧) ∗  𝑒−𝑒𝑥𝑝(𝑧)

 
∗ [(1 + 𝑘)  − 2𝑘(1 − 𝑒−𝑒𝑥𝑝(𝑧)

 
)]                                               (9) 

https://rsisinternational.org/journals/ijrias
https://rsisinternational.org/journals/ijrias
http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN APPLIED SCIENCE (IJRIAS) 
ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS |Volume IX Issue VIII August 2024 

 

 

 

 

 

Page 779 www.rsisinternational.org 

.9  

 

 

where −∞ < 𝜇 < ∞ and σ > 0. The parameters μ and σ are the location and scale parameters of the T-W 

distribution. Hereafter, the pdf in (9) is called as log-transmuted weibull regression model. The corresponding 

survival function is given by:  

𝑆 (𝑦, 𝜇, 𝜎)  = 1 − (1 + 𝑘) (1 − 𝑒−𝑒𝑥𝑝(
𝑦−𝜇
𝜎
)) + 𝑘 [1 − 𝑒−𝑒𝑥𝑝(

𝑦−𝜇
𝜎

)]
2

  (10) 

Consider the following regression model: 

𝑦𝑖 = 𝑥𝑖
𝑇𝛽 + 𝜎𝑖𝑧𝑖    (11)  

where the response variable 𝑦𝑖 has the density function is given in (8). The covariates are linked to location of 

𝑦𝑖 with identity link function 𝜇 = 𝑥𝑇𝛽 . 

 Where 𝑋 = (𝑥1, 𝑥2, ………… . . 𝑥𝑝)
𝑇 is the model matrix consists of the observations of independent variables, 

and 𝜷 = (𝛽0, 𝛽1, ……… . 𝛽𝑝) is the unknown regression coefficients. 

Estimation of The Model Parameters 

Let the random sample (𝑦1, 𝑦2, … , 𝑦𝑛 ) follow a T-W distribution and the response variable is defined as 𝑦𝑛 =
𝑚𝑖𝑛(𝑥𝑖, 𝑐𝑖). Where 𝑐𝑖 is the censoring time and 𝑥𝑖 is the observed lifetime. Assume that the censoring times 

and lifetimes are independent. Let F and C are the sets representing the observed lifetimes and censoring 

times. The general formulation of the log-likelihood function for the model given in (8) is given by: 

𝐿(𝜃) =∑𝛿𝑖 log(𝑓(𝑦)) +∑(1 − 𝛿𝑖)log (𝑠(𝑦))

𝑛

𝑖=1

𝑛

𝑖=1

 (12) 

log(𝑓(𝑦)) = 𝛿𝑖𝑙𝑜𝑔 [
1

𝜎
(
𝑦 − 𝜇

𝜎
) ∗ 𝑒−𝑒𝑥𝑝(

𝑦−𝜇
𝜎

)
 

∗ [(1 + 𝑘)  − 2𝑘(1 − 𝑒−𝑒𝑥𝑝(
𝑦−𝜇
𝜎

)
 

)]] 

∑𝑙𝑜𝑔

𝑛

𝑖=1

(𝑓(𝑦)) = 𝛿𝑖 [∑𝑙𝑜𝑔 (
1

𝜎
)

𝑛

𝑖=1

+∑𝑙𝑜𝑔 (
𝑦 − 𝜇

𝜎
)

𝑛

𝑖=1

−∑𝑒𝑥𝑝 (
𝑦 − 𝜇

𝜎
)

𝑛

𝑖=1

+∑𝑙𝑜𝑔 [(1 + 𝑘)  − 2𝑘(1 − 𝑒−𝑒𝑥𝑝(
𝑦−𝜇
𝜎
)
 

)]

𝑛

𝑖=1

] 

∑𝑙𝑜𝑔

𝑛

𝑖=1

(𝑓(𝑦)) = 𝛿𝑖 [∑𝑙𝑜𝑔 (
1

𝜎
)

𝑛

𝑖=1

+∑𝑙𝑜𝑔 (
𝑦 − 𝛽0 − 𝑥𝛽1

𝜎
)

𝑛

𝑖=1

−∑𝑒𝑥𝑝 (
𝑦 − 𝛽0 − 𝑥𝛽1

𝜎
)

𝑛

𝑖=1

+∑𝑙𝑜𝑔 [(1 + 𝑘)  − 2𝑘(1 − 𝑒
−𝑒𝑥𝑝(

𝑦−𝛽0−𝑥𝛽1
𝜎

)
 

)]

𝑛

𝑖=1

] 

∑log (𝑠(𝑦)

𝑛

𝑖=1

) = (1 − 𝛿𝑖)∑𝑙𝑜𝑔 [1 − (1 + 𝑘) (1 − 𝑒−𝑒𝑥𝑝(
𝑦−𝜇
𝜎
)) + 𝑘 [1 − 𝑒−𝑒𝑥𝑝(

𝑦−𝜇
𝜎
)]
2

]

𝑛

𝑖=1

 

∑log (𝑠(𝑦)

𝑛

𝑖=1

) = (1 − 𝛿𝑖)∑𝑙𝑜𝑔 [1 − (1 + 𝑘) (1 − 𝑒
−𝑒𝑥𝑝(

𝑦−𝛽0−𝑥𝛽1
𝜎

)
) + 𝑘 [1 − 𝑒

−𝑒𝑥𝑝(
𝑦−𝛽0−𝑥𝛽1

𝜎
)
]

2

]

𝑛

𝑖=1

 

To estimate the coefficients of the proposed regression model, we deferential equation No. (12) with respect to 

the regression coefficients. 
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First, Estimation of parameter 𝜷𝟎:  

By using partials’ derivatives of log likelihood function of Transmuted Weibull at (12) with respect to 𝜷𝟎 as 

the following: 

𝜕𝐿(𝜃)

𝜕𝛽0
= ∑

𝜕𝑙og(𝑓(𝑦))

𝜕𝛽0
+ ∑

𝜕log (𝑠(𝑦))

𝜕𝛽0
)𝑛

𝑖=1𝑖=1 = 0 

∑𝑙𝑜𝑔

𝑛

𝑖=1

(𝑓(𝑦)) = (𝛿𝑖) [∑𝑙𝑜𝑔 (
1

𝜎
)

𝑛

𝑖=1

+∑𝑙𝑜𝑔 (
𝑦 − 𝛽0 − 𝑥𝛽1

𝜎
)

𝑛

𝑖=1

−∑𝑒𝑥𝑝 (
𝑦 − 𝛽0 − 𝑥𝛽1

𝜎
)

𝑛

𝑖=1

+∑𝑙𝑜𝑔 [(1 + 𝑘) − 2𝑘(1 − 𝑒
−𝑒𝑥𝑝(

𝑦−𝛽0−𝑥𝛽1
𝜎

)
 

)]

𝑛

𝑖=1

] 

𝜕 ∑ 𝑙𝑜𝑔𝑛
𝑖=1 (𝑓(𝑦))

𝜕𝛽0

= (𝛿𝑖)∑(
𝜎

𝑦 − 𝛽0 − 𝑥𝛽1
)

𝑛

𝑖=1

∗ (
−1

𝜎
) + (𝛿𝑖)∑𝑒𝑥𝑝 (

𝑦 − 𝛽0 − 𝑥𝛽1
𝜎

)

𝑛

𝑖=1

∗ (
−1

𝜎
)

+ (𝛿𝑖)∑

[
 
 
 +
2
𝜎 𝑘(𝑒

−𝑒𝑥𝑝(
𝑦−𝛽0−𝑥𝛽1

𝜎
)
 

∗ −𝑒𝑥𝑝 (
𝑦 − 𝛽0 − 𝑥𝛽1

𝜎
)

(1 + 𝑘) − 2𝑘(1 − 𝑒
−𝑒𝑥𝑝(

𝑦−𝛽0−𝑥𝛽1
𝜎

)
 )

]
 
 
 𝑛

𝑖=1

 

𝜕 ∑ log (𝑠(𝑦))𝑛
𝑖=1

𝜕𝛽0
= (1

− 𝛿𝑖)  

(1 + 𝑘)𝑒
−𝑒𝑥𝑝(

𝑦−𝛽0−𝑥𝛽1
𝜎

)
(−𝑒𝑥𝑝 (

𝑦 − 𝛽0 − 𝑥𝛽1
𝜎

))
−1
𝜎 −

1
𝜎 𝑒

−𝑒𝑥𝑝(
𝑦−𝛽0−𝑥𝛽1

𝜎
)
∗ 𝑒𝑥𝑝 (

𝑦 − 𝛽0 − 𝑥𝛽1
𝜎

) ∗

∑ 𝑙𝑜𝑔 [1 − (1 + 𝑘) (1 − 𝑒
−𝑒𝑥𝑝(

𝑦−𝛽0−𝑥𝛽1
𝜎

)
) + 1 − 𝑒

−𝑒𝑥𝑝(
𝑦−𝛽0−𝑥𝛽1

𝜎
)
]𝑛

𝑖=1

 

second; Estimation of parameter 𝜷𝟏: 

By using partials’ derivatives of log likelihood function of Transmuted Weibull at (12) with respect to 𝜷𝟏 as 

the following: 

𝜕𝐿(𝜃)

𝜕𝛽1
= (𝛿𝑖)∑

𝜕𝑙og(𝑓(𝑦))

𝜕𝛽1
+ (1 − 𝛿𝑖)∑

𝜕log (𝑠(𝑦)

𝜕𝛽1
)𝑛

𝑖=1𝑖=1 =0 

𝜕𝑙og(𝑓(𝑦))

𝜕𝛽1
=∑(

(𝛿𝑖)

𝑦 − 𝛽0 − 𝑥𝛽1
)

𝑛

𝑖=1

∗ (
−𝑥

𝜎
) +∑𝑒𝑥𝑝 (

𝑦 − 𝛽0 − 𝑥𝛽1
𝜎

)

𝑛

𝑖=1

∗ (
−𝑥

𝜎
)

+∑

[
 
 
 +
2𝑥
𝜎 𝑘(𝑒

−𝑒𝑥𝑝(
𝑦−𝛽0−𝑥𝛽1

𝜎
)
 

∗ −𝑒𝑥𝑝 (
𝑦 − 𝛽0 − 𝑥𝛽1

𝜎
)

(1 + 𝑘)  − 2𝑘(1 − 𝑒
−𝑒𝑥𝑝(

𝑦−𝛽0−𝑥𝛽1
𝜎

)
 )

]
 
 
 𝑛

𝑖=1

 

𝜕 ∑ log (𝑠(𝑦)𝑛
𝑖=1

𝜕𝛽1
= (1

− 𝛿𝑖)

(1 + 𝑘)𝑒
−𝑒𝑥𝑝(

𝑦−𝛽0−𝑥𝛽1
𝜎

)
(−𝑒𝑥𝑝 (

𝑦 − 𝛽0 − 𝑥𝛽1
𝜎

))
−𝑥
𝜎 −

𝑥
𝜎 𝑒

−𝑒𝑥𝑝(
𝑦−𝛽0−𝑥𝛽1

𝜎
)
∗ 𝑒𝑥𝑝 (

𝑦 − 𝛽0 − 𝑥𝛽1
𝜎

) ∗

∑ 𝑙𝑜𝑔 [1 − (1 + 𝑘) (1 − 𝑒
−𝑒𝑥𝑝(

𝑦−𝛽0−𝑥𝛽1
𝜎

)
) + 1 − 𝑒

−𝑒𝑥𝑝(
𝑦−𝛽0−𝑥𝛽1

𝜎
)
]𝑛

𝑖=1
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third; Estimation of parameter 𝜎: 

By using partials’ derivatives of log likelihood function of Transmuted Weibull at (12) with respect to 𝝈 as the 

following: 

𝜕𝐿(𝜃)

𝜕𝜎
= ∑

𝜕og(𝑓(𝑦))

𝜕𝜎
+ ∑

𝜕log (𝑠(𝑦)

𝜕𝜎
)𝑛

𝑖=1𝑖=1 =0 

𝜕og(𝑓(𝑦))

𝜕𝜎
=∑(

(𝛿𝑖)

𝑦 − 𝛽0 − 𝑥𝛽1
)

𝑛

𝑖=1

∗ (
−1

𝜎
) +∑𝑒𝑥𝑝 (

𝑦 − 𝛽0 − 𝑥𝛽1
𝜎

)

𝑛

𝑖=1

∗ (
−(𝛿𝑖)

𝜎2
)

+∑

[
 
 
 +

2
𝜎2
𝑘(𝑒

−𝑒𝑥𝑝(
𝑦−𝛽0−𝑥𝛽1

𝜎
)
 

∗ −𝑒𝑥𝑝 (
𝑦 − 𝛽0 − 𝑥𝛽1

𝜎
)

(1 + 𝑘)  − 2𝑘(1 − 𝑒
−𝑒𝑥𝑝(

𝑦−𝛽0−𝑥𝛽1
𝜎

)
 )

]
 
 
 

(−
(𝛿𝑖)

𝜎
)

𝑛

𝑖=1

 

𝝏𝐥𝐨𝐠(𝒔(𝒚))

𝝏𝝈

= (𝟏 − 𝜹𝒊)∑

𝟏
𝝈𝟐
∗ ((𝟏 + 𝒌) (𝟏 − 𝒆

−𝒆𝒙𝒑(
𝒚−𝜷𝟎−𝒙𝜷𝟏

𝝈
)
∗ 𝒆𝒙𝒑 (

𝒚 − 𝜷𝟎 − 𝒙𝜷𝟏
𝝈

) + 𝟐𝒌 [𝟏 − 𝒆
−𝒆𝒙𝒑(

𝒚−𝜷𝟎−𝒙𝜷𝟏
𝝈

)
] ∗ −𝒆𝒙𝒑 (

𝒚 − 𝜷𝟎 − 𝒙𝜷𝟏
𝝈

))

[𝟏 − (𝟏 + 𝒌) (𝟏 − 𝒆
−𝒆𝒙𝒑(

𝒚−𝜷𝟎−𝒙𝜷𝟏
𝝈

)
) + 𝒌 [𝟏 − 𝒆

−𝒆𝒙𝒑(
𝒚−𝜷𝟎−𝒙𝜷𝟏

𝝈
)
]

𝟐

]

𝒏

𝒊=𝟏

 

Therefore, the model of Transmuted weibull in (12) can be written as linear log location-scale regression 

model as following: 

𝑙𝑜𝑔𝜇(𝑦𝑖) = 𝛽0 + 𝛽1𝑥 (13) 

where 𝑦𝑖 is the dependent variable. 𝑥 is the independent variable, 𝛽0 is the intercept, 𝛽1 is the slope in which 

the relation between dependent and the independent variables are determined, and 𝜎𝑖𝑧𝑖 is the error term. 

Residual analysis 

Residual analysis is an important step of any regression analysis to check the sufficiency of the fitted model. If 

the fitted model is accurate for the data used, the residuals have to meet the distributional assumptions. Here, 

we used four kinds of residuals modified under T-W regression model including the Martingale Residual, 

Deviance Component Residual, Pearson Residuals and Cox and Snell Residual. 

The Martingale Residual: 

Is much used in the counting process These residuals are a symmetric and take maximum values (+1) and 

minimum values (-∞) (Alamoudi, et al. 2017): we defined the martingale residual as: 

𝒓𝑴𝒊 = 𝜹𝒊 + (∫ ℎ(𝑢) 𝑑𝑢
𝑦

0

) 

where  𝜹𝒊  = [𝟎  𝒕𝒉𝒆 𝒊𝒕𝒉𝒐𝒃𝒔𝒆𝒓𝒗𝒂𝒕𝒊𝒐𝒏 𝒊𝒔 𝒄𝒆𝒏𝒔𝒐𝒓𝒆𝒅
𝟏 𝒕𝒉𝒆 𝒊𝒕𝒉𝒐𝒃𝒔𝒆𝒓𝒗𝒂𝒕𝒊𝒐𝒏 𝒊𝒔 𝒖𝒏𝒄𝒆𝒏𝒔𝒐𝒓𝒆𝒅

 

As we known ∫ 𝒉(𝒖)
𝒚

𝟎
 𝒅𝒖 = 𝒍𝒐𝒈 [𝒔(𝒚𝒊)] 

Then, the martingale residual can be reduced to: 

𝒓𝑴𝒊 = 𝜹𝒊 +  𝒍𝒐𝒈 [𝒔(𝒚𝒊)] 

Here, the martingale residual for the log T-W regression model takes the following form: 
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𝒓𝑴𝒊 =

{
 
 

 
 
𝟏 + [𝒍𝒐𝒈 [𝟏 − (𝟏 + 𝒌) (𝟏 − 𝒆

−𝒆𝒙𝒑(
𝒚−𝜷𝟎−𝒙𝜷𝟏

𝝈
)
) + 𝒌 [𝟏 − 𝒆

−𝒆𝒙𝒑(
𝒚−𝜷𝟎−𝒙𝜷𝟏

𝝈
)
]

𝟐

]]     , 𝜹𝒊 = 𝟏 

   𝒍𝒐𝒈 [𝟏 − (𝟏 + 𝒌) (𝟏 − 𝒆
−𝒆𝒙𝒑(

𝒚−𝜷𝟎−𝒙𝜷𝟏
𝝈

)
) + 𝒌 [𝟏 − 𝒆

−𝒆𝒙𝒑(
𝒚−𝜷𝟎−𝒙𝜷𝟏

𝝈
)
]

𝟐

]       , 𝜹𝒊 = 𝟎

 

 

Figure (2). The martingale residual for transmuted weibull regression model 

Deviance component Residual: 

This residue was suggested to make the martingale residual more symmetric around zero (Alamoudi, et al. 

2017). The deviance component for the parametric regression model is given: 

𝑟̂𝐷𝑖  = 𝑠𝑖𝑔𝑛 (𝑟̂𝑀𝑖) {−2 [𝑟̂𝑀𝑖 + 𝑙𝑜𝑔 (1 − 𝑟̂𝑀𝑖)]}
1/2 

Where 𝑟𝑀𝑖  is the martingale residual. * sign () function is a function that drives the (+1) values if the argument 

is positive and (-1) is negative. The deviance component residual for the Transmuted Weibull model is given 

by: 

𝒓̂𝑫𝒊

=

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

𝐬𝐢𝐠𝐧 (𝐫̂𝐌𝐢) 

{
  
 

  
 

−𝟐 

[
 
 
 
 
 
 

𝟏 + [𝒍𝒐𝒈 [𝟏 − (𝟏 + 𝒌) (𝟏 − 𝒆
−𝒆𝒙𝒑(

𝒚−𝜷𝟎−𝒙𝜷𝟏
𝝈

)
) + 𝒌 [𝟏 − 𝒆

−𝒆𝒙𝒑(
𝒚−𝜷𝟎−𝒙𝜷𝟏

𝝈
)
]

𝟐

]]

+𝒍𝒐𝒈 [𝟏 − (𝟏 − [𝒍𝒐𝒈 [𝟏 − (𝟏 + 𝒌) (𝟏 − 𝒆
−𝒆𝒙𝒑(

𝒚−𝜷𝟎−𝒙𝜷𝟏
𝝈

)
) + 𝒌 [𝟏 − 𝒆

−𝒆𝒙𝒑(
𝒚−𝜷𝟎−𝒙𝜷𝟏

𝝈
)
]

𝟐

]])]

]
 
 
 
 
 
 

}
  
 

  
 
𝟏/𝟐

, 𝜹𝒊 = 𝟏

𝐬𝐢𝐠𝐧 (𝐫̂𝐌𝐢) 

{
  
 

  
 

−𝟐 

[
 
 
 
 
 
 

𝟏 + [𝒍𝒐𝒈 [𝟏 − (𝟏 + 𝒌) (𝟏 − 𝒆
−𝒆𝒙𝒑(

𝒚−𝜷𝟎−𝒙𝜷𝟏
𝝈

)
) + 𝒌 [𝟏 − 𝒆

−𝒆𝒙𝒑(
𝒚−𝜷𝟎−𝒙𝜷𝟏

𝝈
)
]

𝟐

]]  

+𝐥𝐨𝐠 (𝟏 − 𝟏 − [𝒍𝒐𝒈 [𝟏 − (𝟏 + 𝒌) (𝟏 − 𝒆
−𝒆𝒙𝒑(

𝒚−𝜷𝟎−𝒙𝜷𝟏
𝝈

)
) + 𝒌 [𝟏 − 𝒆

−𝒆𝒙𝒑(
𝒚−𝜷𝟎−𝒙𝜷𝟏

𝝈
)
]

𝟐

]])

]
 
 
 
 
 
 

}
  
 

  
 
𝟏/𝟐

, 𝜹𝒊 = 𝟎

           

Pearson Residuals: 

are used to detect outliers. It depends on the idea of subtracting the mean and dividing by the standard 

deviation. The Pearson Residual knows the bounded regression of the inverse of the exponential distribution as 

follows: 

𝑟𝑖 =
𝑦𝑖 − 𝜇̂

√𝑣𝑎𝑟( 𝑦)̂
 

(14) 
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Cox and Snell Residual:  

Cox and Snell (1968) residual defined as follows : 

𝑒𝑖 = −𝑙𝑖𝑛[1 − 𝐹(𝑦𝑖, 𝛽)]  (15) 

Substituting in equation No. (15) for the value of the Cumulative Function, we get the Cox and Cox and Snell 

residual for Transmuted Weibull regression model as the following:   

𝑒𝑖 = −𝑙𝑖𝑛 [1 − [(1 + 𝑘) (1 − 𝑒
−𝑒𝑥𝑝(

𝑦−𝛽0−𝑥𝛽1
𝜎

)
) − 𝑘 [1 − 𝑒

−𝑒𝑥𝑝(
𝑦−𝛽0−𝑥𝛽1

𝜎
)
]

2

]   ] 

Numerical Experiment 

simulation study 

In this section, a simulation study is given to evaluate the performance of coefficients for the proposed 

regression model according to Transmuted Weibull regression model. All results were obtained from 1,000 

Monte Carlo replications. The following steps is used in Monte Carlo simulation. 

1. Generate the data from this model with  𝛽0 = 0.8, 𝛽1 = 1.4, 𝐾 = 1 𝑎𝑛𝑑 𝜎 = 1 

2. Generate  𝑦~𝑇 −𝑊(𝜇, 𝜎) where  𝝁 = 𝛽0 + 𝛽1𝑥. 

3. Generate  𝑥~𝑈(0,1). 

4. Generate  𝑍~𝑈(0,1). 

5. The sample sizes are taken as n = 20, 100, 200. 

6. Each sample size is replicated 1000 times. 

7. For each generated sample sizes, the biases, (AS) and (MSE) are evaluates at level the three censoring 

rates (20%, 30%, 40%). 

The simulation results are reported in Table (1), Table (2) and Table (3). As seen from the results, the 

estimated biases, average of estimates (AS) and mean square error (MSEs) are near the desired value, zero. 

Table (1) Simulation Study Results of (T-W) Regression model at Censoring Rate=20% 

Censoring rate= 0.20 n=20 n=50 n=100 

Parameter AE Bias MSE AE Bias MSE AE Bias MSE 

𝐾̂ .324 0.351 0.626 .320 0.210 0.524 .189 0.023 0.241 

𝛽̂0 0.976 0.176 0.334 0.675 0.125 0.210 0.741 0.112 0.110 

𝛽̂1 1.923 0.477 0.830 1.624 0.211 0.622 1.522 0.110 0.322 

𝜎̂ 1.256 0.256 0.326 1.130 0.115 0.245 1.012 0.012 0006 

Table (1); explains that at censoring rate =0.20, Average Estimation (AE), Bias, and Mean square error 

(MSE) are estimated at different sample size n=20, n=50, n=100 for different parameters (𝐾̂, 𝛽̂0, 𝛽̂1, 𝜎̂). The 

previous table indicates that the estimated AE, Bias, MSE are tends to desire value (zero) as be shown in figure 
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(1). When the sample size increases, the estimated AE, Bias, MSE decreases, this mean that the difference 

between true and estimated values for parameters declines up to desired value (zero). 

  

Figure (3). The Bias and MSE for different sample sizes at censoring rate (20%) 

Table (2), Simulation Study Results of (T-W) Regression model at Censoring rate 30% 

Censoring rate= 0.30 n=20 n=50 n=100 

Parameter AE Bias MSE AE Bias MSE AE Bias MSE 

𝐾̂ .834 0.634 0.816 .623 0.423 0.629 .062 0.042 0.016 

𝛽̂0 0.843 0.312 0.147 0.712 0.213 0.131 0.613 0.113 0.013 

𝛽̂1 1.842 0.441 0.921 1.552 0.141 0.625 1.343 0.131 0.016 

𝜎̂ 1.239 0.239 0.412 1.220 0.020 0.312 1.125 0.021 0.022 

Table (2), Average Estimation (AE), Bias, and Mean square error (MSE) are estimated but at censoring rate 

=0.30 with different sample size n=20, n=50, n=100 for different parameters (𝐾̂, 𝛽̂0, 𝛽̂1, 𝜎̂). Also, as the 

sample size increases, the estimated AE, Bias, MSE decreases, this mean that the difference declines up to 

desired value (zero) and this can be explained by the figure (2) that shown the patterns of relationships 

between the different sample sizes and the estimated AE, Bias, MSE. 

 

Figure (4). The MSE and Bias for different sample sizes at censoring rate (30%) 
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It is clear from the previous figure (2) that the mean square error and bias estimators goes to zero when the 

sample size increases. 

Table (3) Simulation Study Results of (T-W) Regression model at censoring rate 40% 

Censoring rate 

0.40 

n=20 n=50 n=100 

Parameter AE Bias MSE AE Bias MSE AE Bias MSE 

𝑲̂ 2.456 0.456 0.562 2.342 0.342 0.413 2.023 0.023 0.004 

𝜷̂𝟎 0.842 0.242 0.423 0.624 0.024 0.462 0.321 0.321 0.023 

𝜷̂𝟏 0.795 0.195 0.423 0.675 0.075 0.049 0.657 0.057 0.054 

𝝈̂ 1.423 0.423 0.162 1.125 0.125 0.625 1.025 0.025 0.004 

Through Table (3), the Average Estimation (AE), Bias, and Mean square error (MSE) are estimated but at 

censoring rate =0.40 with different sample sizes. Also, the results of estimators ensure that there is negative 

relationship between the sample size and estimated AE, Bias, MSE. 

Table (4) coefficient of regression at different sizes of sample with different rates 

 Rate20% Rate30% Rate50% 

 n=20 n=50 n=100 n=20 n=50 n=100 n=20 n=50 n=100 

𝜷̂𝟎 0.976 0.675 0.741 0.843 0.712 0.613 0.242 0.624 0.321 

𝜷̂𝟏 1.923 1.624 1.522 1.842 1.552 1.343 0.195 0.675 0.657 

AIC 125.24 123.85 109.25 108.56 99.96 80.54 78.39 66.97 52.65 

BIC 124.37 122.56 115.86 114.67 97.35 83.96 82.42 78.54 53.54 

𝑅2 0.623 0.692 0.763 0.793 0.832 0.893 0.932 0.972 0.983 

-Table (4); illustrates the estimated values for coefficient of regression at different sample sizes 20, 50 and 100 

under different censoring rates = 20%, 30% and 50%. 

- Also noticed that coefficient of determination 𝑅2 increases when the censoring rates and sample size 

increases. At rate 50% with sample size 100, it is observed that 𝑅2 =.983 at higher level than other rates and 

sample size as be shown in figure (3). 

- also, it is observed from the previous table that goodness of fit criteria AIC, BIC declining with increasing 

censoring rates and sample size as be shown in figure (3). 

-it is concluded that the higher the censoring rates and sample size, the higher the quality of regression model 

for the real data sets. 
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Figure (5). Some Statistical Criteria to Judge the Quality of the Model 

From the previous figure (3), we notice that the coefficient of determination reaches its maximum value when 

the sample size increases, reaching .983 when the sample size was large, and that the statistical criteria through 

which the model was evaluated decrease with the increase in sample size. Therefore, it is necessary to use the 

proposed regression model with large samples . 

Applications to Real data 

This section provides the applications of Transmuted Weibull regression model on real data sets of firm’s 

accounting items, real data represents some accounting items of seven companies listed on the stock exchange 

and each company we took data for 3 years. The accounting data involving one dependent variable refer to bad 

debt rate, and three independent variables involving the cash ratio, the quick liquidity ratio, and the Rate of 

loan maturities granted to the company. 

Descriptive statistics:  

Through the following table, we notice that the bad debt rate had a mean value of .291429, that the median had 

a value of .22,  that the first quartile had a value of .09, and the third quartile had a value of .46.,and the cash 

ratio had a mean value 1.735831, that the median had a value of 1.065453,  that the first quartile had a value of 

.958781, and the third quartile had a value of 1.582895. and the quick liquidity had a mean value .397745, that 

the median had a value of .104810, that the first quartile had a value of .054675, and the third quartile had a 

value of .216721. and, the Rate of loan maturities had a mean value .844688, that the median had a value of 

.657652, that the first quartile had a value of .068553, and the third quartile had a value of .899976. 

Table (5). Summary of Real Data Set 

statistics y X1 X2 X3 

mean .291429 1.735831 .397745 .844688 

median .220000 1.065453 .104810 .657652 

min .0100 .0239 .0117 .0000 

max 0.780000 9.454016 5.388563 5.227127 
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Q1 .090000 .958781 .054675 .068553 

Q3 .460000 1.582895 .216721 .899976 

-The Relationship between bad debt rate, the liquidity ratio, the quick liquidity ratio, and the Rate of 

loan maturities: 

The following represent the Correlation matrix between bad debt rate (y), the liquidity ratio (x1), the quick 

liquidity ratio(x2), the Rate of loan maturities (x3) in order to determine the explanatory variable that is more 

related to the bad debt rate. 

1.0000000     -0.7841519   -0.6049875   -0.6484035

 -0.7841519   1.0000000    0.5753677    0.5796666
  

 -0.6049875   0.5753677    1.0000000    0.6705442

 -0.6484035   0.5796666     0.6705442    1.0000000

 
 
 
 
 
 

 

Through the correlation matrix, we notice that the maximum value of the correlation between the bad debt rate 

(y), the liquidity ratio (x1) reached -0.78, which is an inverse relationship as be shown in figure (4). 

 

Figure (4). Correlation matrix between dependent and independent variables 

Goodness- of – Fit Test of Real Data. 

some statistical criteria, such as the Kolmogorov- Smirnov test, the Cramer- von statistic test, and Anderson- 

darling will be presented to test that the data follows Transmuted weibull distribution. 

Table (4.6) Goodness- of – Fit Test of Real Data 

Goodness of fit statistics Transmuted Weibull Weibull MG-Weibull 

Kolmogorov- Smirnov 0.08707688 0.0989061 0.164695 

Cramer-Von statistic 0.01712300 0.0234912 0.097667 

Anderson- darling 0.14797663 0.1734884 0.624825 

From the previous table, we notice the following that the value of some statistical criteria, such as the 

Kolmogorov-Smirnov test, the Cramer- von statistic test, and Anderson- darling, for the Transmuted Weibull 

distribution is smaller than the rest of the other distributions, and thus the data represents the Transmuted 

Weibull distribution. 
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Figure (5). Goodness-of-fit 

The previous figure show that the data follows the transmuted Weibull distribution, then, Fit of The 

Regression Model for Transmuted Weibull 

Comparison between T-W With Kw-Lindley and MG Weibull regression model: 

The comparison between T-W With Kw-Lindley and MG Weibull regression model by using R-program 

according to AIC, BIC and HQIC criteria as the following:  

Table (7) The comparison between T-W With Kw-Lindley and MG Weibull regression 

𝑅2 AIC BIC HQIC 𝜷̂𝟏 𝜷̂𝟎 Regression model 

0.8986 124.5423 125.3456 132.2815 0.6234 0.42352 Transmuted Weibull 

0.4239 128.4213 130.7256 134.8452 0.5234 0.03465 Kumaraswamy Lindley 

0.3492 136.423 139.341 138.232 0.4652 0.34214 LG Weibull 

Table (7) displays the results of previous criteria which show that the T-W regression model is more 

appropriate model compared to the KW-Lindley and MG Weibull regression model according to smaller 

values of HQIC AIC and BIC for T-W. Additionally, the higher coefficient of R-square for T-W compared to 

the KW-Lindley and LG Weibull regression model as be shown in Figure (6).  

 

Figure (6) AIC, BIC and 𝑅2 for transmuted weibull regression model, kumaraswamy weibull Regression and 

MG  weibull regression Models 
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From Figures (6) we notice that each of the statistical criteria AIC, BIC, HQIC for the transmuted-Weibull 

regression is smaller than the rest of the same criteria for the other regressions. Thus, the transmuted Weibull 

regression is the best regression model. The same is true for the coefficient of determination, we note that the 

coefficient of determination for the transmuted Weibull regression is larger than the rest of the other 

regressions. Thus, the transmuted Weibull regression is the best regression model. According to equation (13) 

the regression model of T-W is: 

𝒍𝒐𝒈𝝁(𝒚) = 𝟎. 𝟒𝟐𝟑𝟓𝟐 + 𝟎. 𝟔𝟐𝟑𝟒 𝒙 (𝒍𝒊𝒒𝒖𝒊𝒅𝒊𝒕𝒚 𝒓𝒂𝒕𝒊𝒐) 

Global Influence 

Is the diagnostic influence depending on case drop that represents one of the tools to perform sensitivity 

analysis introduced by Cook case drop is a famous method depending on the influence of deleting the 

𝑖𝑡ℎobservation from the data on the parameter estimation. This method compares 𝜸𝒊 and 𝜸𝒊−1, where 𝜸𝒊 is 

MLE when the 𝑖𝑡ℎ observation is deleted from the original data. Then the 𝑖𝑡ℎ case could be considered as 

influential observation if 𝜸𝒊−1 is far from 𝜸𝒊 (De Bastiani, F, et al 2015). 

Table (8). Sensitive Analysis for regression   

A Min -log 

(Likelihood) 

HQIC BIC AIC 𝜷̂𝟏 𝜷̂𝟎 Case 

356.312 114.9633 115.432 112. 842 0.6234 0.3211 Before 

324.624 135.213 138.542 137.574 0. 3544 2.9364 After 

Source: Developed by the researcher. 

Cook =2 (A Min – log (Likelihood) before - A Min -log (Likelihood) After) 

Cook = (356.312- 324.624) = 63.376 

Noted that the cook is a positive value, meaning that the log-likelihood in small values (after deletion) is less 

than in large values (before deletion). This mean that the model is more sensitive to the data. 

CONCLUSION 

In this paper we introduce a new regression model for Transmuted Weibull distribution with application on 

real data set represent bad debit rate. The T-W regression model has wide contribution including flexibility, 

versatility and improved interpretability (reliability analysis, survival, environmental studies, finance, COVID 

19). The method of maximum likelihood was utilized to estimate the model parameters. As well as the 

residuals analysis for T-W regression model are provided. Monte Carlo simulation is conducted to assess the 

performance of parameters of T-W regression model. We conclude that the higher the censoring rate and 

sample size, we noted that coefficient of determination increasing and AIC, BIC, HQIC decreasing as be 

shown in table (4.4). Based on goodness of fit criteria it is shown that T-W regression model is more fitted to 

real data set than other compared model the KW-Lindley and LG Weibull regression model. Finally, the 

Global influence is conducted to assess the T-W regression model before and after the 𝑖𝑡ℎ observation is 

deleted shown that the cook is a positive value, meaning that the log-likelihood in small values is less than in 

large values.    

Highlights 

i. This paper focuses on the process of creating regression models for probability distributions. 

ii. The scope of this study is creating a regression model for the transmuted Weibull distribution. 

iii. A new Regression model was applied to real data. 
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