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ABSTRACT  

This study proposes an intelligent fault detection mechanism using artificial neural networks (ANNs) to detect 

faults on power system transmission lines. A prototype of Kaduna-to-Kano transmission line network was 

modeled in Simulink, and voltage and current data were extracted and trained using the Levenberg-Marquardt 

backpropagation algorithm. The results show that the ANN can detect both symmetrical and non-symmetrical 

faults, with validation plots and regression plots demonstrating its effectiveness. This technique is highly 

recommended for power system transmission line networks and can be extended to distribution networks. 
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INTRODUCTION  

Power systems, which provide power for residential, commercial, and industrial requirements, are the foundation 

of contemporary civilization. Transmission lines, which are in charge of sending electrical energy across long 

distances to end users, they are essential parts of power networks. These complex networks may, however, 

experience a variety of faults that might prevent them from functioning normally. System reliability, safety, and 

stability depend on comprehending these faults and putting in place efficient fault detection techniques [1]. 

abnormal connections or abnormal flow of current between two separate wires are known as faults. Faults may 

have a variety of sources, including inclement weather, human mistake, and malfunctioning equipment. 

Sometimes serious power system faults may harm individual pieces of equipment or the whole system. In 

addition, it affects the operational staff, starts fires, and may even be fatal [2]. 

Power systems are susceptible to a variety of faults. One of these factors is insulation failure, which may be 

brought on by mechanical force, pollution, or ageing. Short circuits or ground faults may result from faulty 

insulation, which permits current to flow in unwanted directions [3, 4]. When too much current flows through a 

low-resistance route, a short circuit may result. This might happen between two stages, three phases, or even 

between one phase and the ground. Such occurrences may endanger people as well as harm machinery and 

electricity cables. Electrical fires and overheating [5, 6]. Faults may also result from overvoltage circumstances 

such voltage surges, lightning strikes, or switching events. Elevated voltages strain apparatus and may cause 

insulation to fail [7, 8]. The efficiency of insulators might be decreased by dust accumulation. Dust accumulation 

increases the conductivity of insulators, which raises the possibility of failures [9, 10]. Line faults may be caused 

by broken conductors, such as falling power lines [11, 12]. These faults endanger safety and interfere with the 

power supply. Therefore, in order to avoid these faults and guarantee the grid's safe and effective functioning, it 

is essential that electricity systems be regularly maintained and monitored. Finding anomalous circumstances, 

or faults, in the power network is the main goal.  

Transmission lines, transformers, generators, and other parts may all have faults. Reduced downtime and 

cascaded failures are avoided with early identification of faults [13, 14]. For the last several decades, fault 

diagnosis and detection have been a busy study topic. Modern companies depend on fault identification and 
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diagnosis to guarantee product quality and safety [14]. There are three types of fault diagnostic approaches that 

have been proposed: data-driven methods, qualitative model-based methods, and quantitative model-based 

methods [15, 14]. It becomes harder to create a mathematical model that accurately depicts the dynamic 

behaviour of a system as current processes get more complicated. Consequently, there is a growing interest in 

data-driven approaches, which only use process-derived data [15]. 

Reliability, security, and efficiency are ensured by quickly identifying and categorizing faults in power systems. 

Protecting the transmission line network is essential. Therefore, in order to provide the best protection and 

prevent system failure, appropriate steps must be implemented. To stop the transmission line from being 

damaged, the fault must be located precisely to allow for quick line isolation. On the other hand, feedback from 

fault detection may greatly facilitate fault identification, leading to quicker fault clearance and power restoration 

[13]. Scholars have investigated many techniques for identifying and categorising faults in transmission lines 

[16]. Using artificial neural networks (ANNs) is one efficient method [17, 18]. ANNs are effective instruments 

for classifying faults and recognising patterns. A strong fault detection system makes relaying operations 

efficient, reducing downtime and averting disruptions. Thus, the artificial neural network approach is used in 

this study to diagnose transmission line faults. 

LITERATURE REVIEW 

 A power system is a complex network of interconnected electrical elements designed to generate, transmit, and 

distribute electric energy. A large-scale power system that supplies electricity to a significant area, including 

residential and industrial consumers, is referred to as a power grid or electrical grid. The power grid is a 

hierarchical structure comprising three primary components: generation, transmission, and distribution systems, 

which work in tandem to ensure reliable and efficient electricity supply [30]. Faults in a power system refer to 

unintended electrical connections between conductors, which can have devastating consequences. Various 

factors contribute to fault occurrences, including adverse weather conditions, human mistakes, and equipment 

malfunctions. These faults can significantly impact the power system, resulting in equipment damage, system-

wide disruptions, and even fires, posing a significant risk to operating personnel and potentially leading to 

fatalities [31] Power systems often encounter dynamic changes in their operation, commonly exhibited as 

transmission line fault [20]. Fault usually occurs in a power system due to insulation failure, flashover, physical 

damage such as wire blowing together in the wind, an animal coming in contact with the wire. In power systems, 

faults are broadly classified into two categories: short circuit faults, also known as shunt faults, and open circuit 

faults, referred to as series faults. Short circuit faults are further subdivided into symmetrical and unsymmetrical 

faults. Symmetrical faults, although rare (approximately 5% of all faults), are the most severe, affecting all three 

phases equally. Unsymmetrical faults, on the other hand, are unbalanced and involve a short circuit with ground, 

manifesting as line to ground, line to line, and double line to ground faults. Line to ground faults are the most 

prevalent (70% of all faults), often caused by lightning strikes or conductors coming into contact with grounded 

structures. The effects of faults can be far-reaching, leading to damaging electrical equipment, causing fires or 

explosions, compromising system stability, and potentially resulting in complete shutdowns and significant 

financial losses. Furthermore, faults can lead to significant voltage and frequency reductions, causing loads like 

motors to feed power to the fault location, exacerbating the situation. The severity of these faults underscores 

the importance of swift fault detection and clearance to prevent prolonged interruptions in power supply. [21]. 

Remarkably, transmission line faults account for about 85% of these contingencies [24]. Transmission lines are 

a crucial component of power infrastructure, spanning vast distances to transmit bulk power across various 

terrains and geographic locations. However, this widespread expansion exposes them to diverse atmospheric 

disturbances, which can lead to faults and disrupt the reliable transmission of power. To prevent excessive power 

losses through the faulted section and ensure a swift return to stable operation, it is essential to identify and 

isolate the faulty line promptly, thereby enabling the restoration of normal power flow and maintaining the 

reliability of the overall power system [22].  In power systems, transmission line faults come in two main types: 

open circuit (series) faults and short circuit (shunt) faults. Short circuit faults can be identified by unusual current 

values, while open circuit faults show up as unusual voltage values. Short circuit faults can be further divided 

into two categories: symmetrical (affecting all three phases equally) and asymmetrical (affecting one or two 

phases). Symmetrical faults include triple line and triple line to ground faults, while asymmetrical faults include 

line to ground, line to line, and double line to ground faults. Understanding these fault types is crucial for reliable  
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power system operation and maintenance [23]. 

The timely detection of faults is crucial from both economic and operational perspectives, as it enables proactive 

measures to mitigate potential disruptions to the power supply. Real-time fault detection is ideal, allowing for 

swift remedial action to be taken before minor issues escalate into major outages, thereby ensuring the reliability 

and efficiency of the power system [32]. Over the past decade, various techniques of fault diagnosis have been 

developed to ensure reliable and stable operation of power systems [20]. This research focuses primarily on the 

development of techniques specifically tailored to detect transmission line faults, while acknowledging the 

existence of other fault types that can affect overall power quality. By concentrating on transmission line fault 

detection, this study aims to enhance the reliability and efficiency of power transmission systems. There are two 

main types of fault diagnostic methods: methods based on processes and methods based on models. While 

process and traditional based approaches depend on empirical measurements to map inputs to desired outputs 

without previous mathematical estimate, model-based strategies use quantitative or qualitative models to 

characterise the system. Model-based techniques are less frequent in the setting of power systems because of 

their high computational burden and sensitivity to changes in parameters, which may result in a diagnosis that 

is inconsistent and takes a long time [25]. 

Process history-based models for pattern identification have become more and more popular. While these models 

are useful for identifying system faults, they may not fully represent the dynamic complexity of power systems. 

An important part of extracting meaningful information from empirical data is feature extraction. Direct 

measurement and transformation methods are the result of developments in power systems understanding and 

signal processing. Notably, wavelet and Fourier transforms are often used for feature extraction, successfully 

and precisely separating fault features. 

Techniques using artificial intelligence (AI) improve the accuracy of fault categorization. AI accurately 

characterises the properties of power systems since it is adaptable. Some of these artificial intelligence techniques 

includes: Wavelet Transformed based Technique of fault detection and diagnosis of overhead transmission lines 

by implementing Discrete Wavelet Transform (DWT). Faults in transmission line of various categories have 

been created using MATLAB/Simulink. The current signals of each phase are obtained from sending end, and 

then decompose using DWT to obtain the details coefficients up to five levels. Furthermore, normalized values 

are calculated from the norm of detail coefficients. In order to detect and diagnose the faults on transmission 

lines normalized values of each phase are compared with threshold values of the system [36]. Fuzzy state-

feedback control of uncertain nonlinear MIMO systems is also used to for unknown nonlinear multivariable 

systems for which the input-gains matrix is not necessarily symmetric and is characterized by non-zero leading 

principle minors. A linearly parameterized fuzzy system is used to appropriately model the uncertainties [37]. 

An Adaptive Neural Control for Unknown Nonlinear Time-Delay Fractional-Order Systems with Input 

Saturation which focuses on the adaptive neural control of a class of uncertain multi-input multi-output (MIMO) 

nonlinear time-delay non-integer order systems with unmeasured states, unknown control direction, and 

unknown asymmetric saturation actuator. The design of the controller follows a number of steps. Firstly, based 

on the semi-group property of fractional order derivative, the system is transformed into a normalized fractional 

order system by means of a state transformation in order to facilitate the control design. Then, a simple linear 

state observer is constructed to estimate the unmeasured states of the transformed system. A neural network is 

incorporated to approximate the unknown nonlinear functions while a Nussbaum function is used to deal with 

the unknown control direction. In addition, the strictly positive real (SPR) condition, the Razumikhin lemma, 

the frequency distributed model, and the Lyapunov method are utilized to derive the parameter adaptive laws 

and to perform the stability proof [38].Support vector machines (SVMs) and artificial neural networks (ANNs) 

are two of the most effective pattern recognition techniques. Through supervised and unsupervised learning, 

ANNs and SVMs effectively generalise dynamic parameters [26]. Furthermore, by applying unsupervised 

learning to power systems, the quarter-sphere support vector machine (QS-SVM) provides a paradigm change 

[27]. 

Artificial Neural Networks (ANNs) 

The applications of artificial neural networks (ANNs) in transmission line fault diagnosis are crucial for ensuring  
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reliable and efficient power system operation. ANNs can learn complex patterns in data and detect faults with 

high accuracy, reducing the likelihood of false alarms and missed detections, and enabling real-time diagnosis  

and prompt corrective action to prevent power outages and equipment damage. Additionally, ANNs can adapt to 

changing system conditions, such as varying load patterns and environmental factors, ensuring accurate fault 

diagnosis in diverse scenarios [28]. By automating the fault diagnosis process, ANNs reduce the need for human 

intervention and enable swift response to faults, improving maintenance and reducing downtime. Furthermore, 

ANNs can identify potential maintenance needs, allowing for proactive scheduling and reducing economic losses 

caused by power outages and equipment damage. With their scalability and flexibility, ANNs can be integrated 

with other technologies, such as IoT devices and SCADA systems, making them an essential tool for modern 

grid management, and contributing to improved power system reliability, reduced outage times, and enhanced 

overall efficiency. Artificial neural networks, provide a solution for challenging pattern-oriented faults in 

classification and time-series (trend analysis) faults [29]. Neural networks offer a robust approach to modeling 

power systems, as they don't require prior knowledge of data distribution or variable interactions, unlike 

traditional parametric statistical methods. This non-parametric nature enables neural networks to learn complex 

patterns in data, making them an attractive tool for power system analysis. Moreover, the increasing popularity 

of artificial neural networks in recent decades has been driven by their ability to handle complex data sets and 

provide accurate predictions, making them a key element in the advancement of artificial intelligence in power 

system engineering [29]. This is a result of the back-propagation technique, which allows modifications to be 

made to a network's hidden neuronal layers during human training. An artificial neural network is highly helpful 

in applications needing power systems since it can be taught offline using actual data. A transmission line failure 

detection artificial neural network (ANN) with improved zone-reaching capabilities was shown [29]. 

Limitations 

The application of Artificial Neural Networks (ANNs) in transmission line fault diagnosis has several limitations. 

One of the primary concerns is the quality and availability of data, which significantly impacts the performance 

of ANNs. Additionally, transmission systems are complex and dynamic, making it challenging to model and 

simulate faults accurately. As the size of the transmission system increases, the complexity of the ANN model 

also increases, making it difficult to train and implement [33]. 

Advantages 

Despite the limitations, ANNs offer several advantages in transmission line fault diagnosis. They can learn 

complex patterns in data and diagnose faults with high accuracy and speed. ANNs are also flexible and can be 

trained to diagnose various types of faults, adapting to changing system conditions. Furthermore, ANNs can 

automate the fault diagnosis process, reducing the need for human intervention [34]. 

Disadvantages 

However, ANNs also have some disadvantages. They require large amounts of data and computational resources 

to train, and their performance is heavily dependent on the quality of the data. ANNs can also be difficult to 

interpret, making it challenging to understand why a particular fault was diagnosed. Additionally, ANNs require 

significant computational resources, which can be a limitation in real-time applications. Finally, ANNs can suffer 

from overfitting, where the model becomes too specialized to the training data and fails to generalize well to 

new data [35].  

METHODOLOGY MODELLING OF THE TRANSMISSION LINE NETWORK 

The Kaduna to Kano 230 km 330 kV transmission line, a prototype of the case study transmission line network, 

is a sub-network of the total Nigerian power system transmission line network. A three-phase voltage source, a 

three-phase RLC load block, a three-phase Pi section line that acts as the transmission line, a three-phase voltage 

and current metre, and work areas make up this transmission line network, which was simulated using Matlab 

Simulink. We used a single-line power system network, which was formed by connecting these, for our  
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investigation 

 

Fig. 1: Modelled Kaduna to Kano transmission line 

The system was simulated in a fault-free environment to determine the pre-fault currents, pre-fault voltages, 

single-line to ground fault current and voltage, line-to-line fault currents and voltage, and three-phase fault 

current and voltage. These pre-fault and fault currents and voltages were supplied into the artificial neural 

network model, which trained and generated results for both no-fault and fault scenarios. 

Training of the Extracted Data Using Ann 

Given consistent data and sufficient neurons in its hidden layer, a two-layer feed-forward network with sigmoid 

hidden neurons and linear output neurons (fitnet) may fit multi-dimensional mapping faults arbitrarily 

effectively. Unless memory is limited, the network will be trained using the Levenberg-Marquardt 

backpropagation method (trainlm). In that scenario, scaled conjugate gradient backpropagation (trainscg) would 

be used. Using regression analysis and mean square fault, the Neural Fitting software will assist you in choosing 

data, building and training a network, and assessing the network's effectiveness. 

 

Fig 1: Neural Network Architecture 

The input 'data' is a 200001x7 matrix that contains 200001 samples of 7 elements, or static data. The 'data' target 

is a 200001x7 matrix that contains 200001 samples of 7 elements, or static data. 

For this investigation, a neural network architecture with seven input data sets, ten hidden layers, seven output 

layers, and seven outputs was used. 
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  Fig 2: Neural network architecture with number of hidden layer and output layer 

The input data set was trained using the Levenberg-Marquardt method, which normally needs more memory but 

less time. When a rise in the mean square fault of the validation samples indicates that generalisation is no longer 

improving, training automatically ends. The average squared difference between the objectives and the outputs 

is called the mean squared fault. It is preferable to have lower values. Zero indicates the absence of mistake. 

Regression The correlation between objectives and outputs is measured by R values. A connection is said to be 

close when the R value is 1, and random when it is 0. 

  

Fig. 3: Selection of Training Data for The Pre-Fault Steady State Voltage and Current Conditions 
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Validation data are used to measure network generalization, and to halt training when generalization stops 

improving. 

Use of Ann for Fault Detection 

We sampled the phase voltage and current on a per-unit basis, along with the objective values, and fed them into 

the input neurons of the selected ANN. The ANN was then trained to provide outputs for a variety of transmission 

line failures. The performance of the ANN fault detector depends on both the quality of the data used to train it 

and the accuracy of the measurements used as input.  

RESULTS AND DISCUSSION 

 

Fig. 4: Pre-fault steady state Artificial Neural Network Training data 

The neural network's capacity to learn from the data it is fed is shown by the best validation performance plot. 

It is provided with three types of data: training, validation, and test. The network's weights, which function as 

knobs to regulate how the network interprets inputs, are adjusted throughout the training phase. The validation 

phase is intended to determine whether or not the network is learning effectively. The purpose of the test phase 

is to assess the network's performance on fresh, unseen data. Two axes make up the plot: the vertical axis displays 

the fault, and the horizontal axis displays the number of epochs. An epoch is a single cycle in which the network 

is shown all of the training data. The degree to which the network's outputs deviate from the targets—the right 

responses you want the network to generate—is measured by the fault. The network's learning ability increases 

with decreasing inaccuracy. Three curves make up the plot: one for the test fault, one for validation fault, and 

one for training fault. The training fault illustrates how, as the network gains knowledge, its performance 

becomes better on the training set. The validation fault illustrates how, as the network learns, its performance 

varies on the validation data. The most crucial indicator of the network's quality is the test fault, which displays 

the network's performance on the test data. The graphic displays the best epoch of 73 as well as the best validation 

performance of 242972.9292. The network's lowest validation fault during training represents its highest 

validation performance. The network's greatest validation performance was attained during the best period. 

The graph indicates that the network reached its peak validation performance at epoch 73, indicating that the 

network's fault on the validation data set was at its lowest. It is also evident that the fault lines were gradually 

becoming smaller until epoch 73, indicating that the network was picking up new information quickly. 

Additionally, you can see that the value lines changed smoothly up until epoch 73, indicating that the network 

was learning quickly. 
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 Fig. 5: Pre-fault steady state Artificial Neural Network Error Histogram 

The distribution of the faults between the target values and the predicted values is shown by the fault histogram 

in the MATLAB neural network training result. The difference between the target values and the anticipated 

values—the neural network's outputs—is used to compute the faults. We can assess how well the neural network 

matches the data and how much fault variation there is by looking at the fault histogram. The range of fault 

values is split into 20 equal intervals, each of which is represented by a vertical bar in the fault histogram of 20 

bins. The number of samples or occurrences having an erroneous value during that period is shown by the height 

of the bar. The fault histogram aids in evaluating the neural network's performance and spotting any faults. The 

quality of your neural network is shown by the fault histogram. If the bars are close to the zero fault line, your 

neural network is very accurate, even if it did make a few little mistakes. If the bars deviate significantly from 

the zero fault line, your neural network is not doing well and has produced significant mistakes. Your neural 

network performs better the closer the bars are to the zero fault line. The neural network from the training has a 

low fault rate, as can be seen from the above fault histogram plot, which shows that the fault histogram has the 

largest bin bars centred around the Zero fault line. 

  

Fig. 6: Pre-fault steady state Artificial Neural Network Regression plot 
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The neural network regression plot in MATLAB illustrates how effectively a neural network can forecast values 

depending on input. Here, we used a neural network to forecast, using the voltage and current information, if a 

power system failure exists. The present signals and their failure state are the data that we utilised to train the 

neural network. The horizontal axis and the vertical axis are the two axes of the graph. The goal values, or 

anticipated or right values of the network we want to forecast, are shown on the horizontal axis. A line that 

extends from the bottom left corner to the top right corner of the graph is also present. The optimal connection 

between the goal and output values is shown by this line, which is known as the best fit line. All of the points 

will fall on this line if the goal and output values are precisely the same. Numerous dots are also strewn all across 

the graph, around the line. A single signal and its fault state are represented by each dot. The goal value and 

output value for that signal are shown by the dot's location. A dot that is near the line, for instance, indicates that 

the neural network was quite successful in predicting the signal's fault state. A dot that is far from the line 

indicates a very poor prediction of the signal's fault state by the neural network. You can observe how well the 

neural network predicts by looking at the graph.  In the figure above, the dots are perfectly aligned with the 

horizontal line, indicating that there is no fault situation. 

 

Fig. 7: Line to Ground Fault Detection results from the Artificial Neural Network Training data 

  

Fig. 8: Fault Histogram of Kaduna to Kano Line to Ground Fault 
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Fig.9: Regression Plot of Kaduna to Kano Line to Ground Fault 

Line to Line Fault Detection results from the Artificial Neural Network Training data 

  

Fig. 10: Validation Plot of Line to Line Fault on Kaduna to Kano transmission line 

  

Fig. 11: Fault Histogram Plot of Line to Line Fault on Kaduna to Kano transmission line 
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Fig. 12: Regression Plot of Line to Line Fault on Kaduna to Kano transmission line 

Line to Line to Ground Fault Detection results from the Artificial Neural Network Training data 

  

Fig. 13: Validation Plot of Line to Line to Ground Fault on Kaduna to Kano transmission line 

  

Fig. 14: Fault Histogram Plot of Line to Line to Ground Fault on Kaduna to Kano transmission line 
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Fig. 15: Regression Plot of Line to Line to Ground Fault on Kaduna to Kano transmission line 

Line to Line to Line Fault Detection results from the Artificial Neural Network Training data 

  

Fig. 16: Validation Plot of Line to Line to Line Fault on Kaduna to Kano transmission line 

  

Fig. 17: Fault Histogram Plot of Line to Line to Line Fault on Kaduna to Kano transmission line 
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Fig. 18: Regression Plot of Line to Line to Line Fault on Kaduna to Kano transmission line 

   

Fig. 19: Line to Lineto Line to Ground Fault Detection results from the Artificial Neural Network Training data 

CONCLUSION 

This study utilized artificial neural network for the detection of fault on Kaduna to Kano power system 

transmission line. The fault current and voltages for different fault conditions were utilized as the neural network 

inputs. These current and voltage data were trained and the results presented. The results shown in this paper 

includes the prefault steady state validation plot, fault histogram, regression plot. The results for the faults 

detected through the use of the artificial neural network were also presented in the validation plots, fault 

histograms and the regression plots. The various fault conditions which includes the line to ground fault, line to 

line fault, line to line to ground fault, line to line to line to ground fault adopted the use of back-propagation 

neural network architecture. This simulation results obtained prove that artificial neural network strategy can be 

used in the detection of various fault conditions on the current day dynamic interconnected power system 

transmission line. 
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