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ABSTRACT 

This research work succinctly investigated the solution of Nonlinear Optimization Problems using Karush-

Kuhn-Tucker (KKT) as optimality condition. The historical development of nonlinear optimization was 

discussed. The nonlinear constrained optimization problems with inequality constraints were solved with the 

method of Karush-Kuhn-Tucker (KKT). 

INTRODUCTION 

Optimization is the act of obtaining the best result under given circumstances. It is also finding solutions from 

set of admissible or feasible solutions that minimizes (or maximizes) a performance measure or objective, 

Asim Karim (2003).  The technique allows comparison of the different choices for determining which decision 

might be best. The goal of all such decisions is either to minimize the effort required or maximize the desired 

benefit. Since the effort required or the benefit desired in any practical situation can be expressed as a function 

of certain decision variables, optimization can be defined as the process of finding the conditions that give the 

maximum or minimum value of a function, f(x). According to Shang (1997), optimization problems are made 

up of three components: a set of unknowns (variables), an objective function to be minimized or maximized 

and a set of constraints that specify feasible values of the variables. These sets of unknown variables are called 

non-negativity constraints or decision variables. 

In Xue Jin (2021), the direct idea is to use mathematical tools such as differential calculus, variational method 

and Lagrange multiplier method to obtain the solution expression of the problem through logical derivation 

and analysis. Hence, we succinctly investigated classical optimization methods which are analytical in nature 

and make use of differential calculus to find optimal value for both unconstrained and constrained objective 

functions. We shall devote more time on the constrained optimization problems with equality and inequality 

constraints. 

According to Freund (2014), most of the theoretical and computational interest in nonlinear optimization has 

taken place since 1947. However, it is useful to note that nonlinear optimization was first studied as early as 

the 1600s. Indeed, both Fermat and Newton studied the 1-dimensional nonlinear optimization problem:  

𝑚𝑎𝑥 𝑓(𝑥) 𝑤ℎ𝑒𝑟𝑒 𝑥 ∈  𝑅 

and Newton developed the classical optimality condition:   

𝑑𝑓(𝑥)   

𝑑𝑥
= 0 

This was generalized by Euler to multivariable nonlinear optimization: 

𝑚𝑖𝑛 𝑓(𝑥1, . . . . , 𝑥𝑛); 

with the optimality condition:  

http://www.rsisinternational.org/
https://rsisinternational.org/journals/ijrias
https://rsisinternational.org/journals/ijrias
https://doi.org/10.51584/IJRIAS.2024.907043


Page 504 www.rsisinternational.org 

INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN APPLIED SCIENCE (IJRIAS) 
                                                     ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS |Volume IX Issue VII July 2024 

 

 

 

 

 

 
  

 

 

𝛻𝑓(𝑥)  =  0  

In the late 1700s both Euler and Lagrange examined problems in infinite dimensions and developed the 

calculus of variations. The study of optimization received very little attention thereafter until 1947, when 

modern linear optimization was developed by Dantzig. In the late 1940s and early 1950s Kuhn and Tucher 

(preceded by Karush) developed general optimization conditions for nonlinear constrained optimization. At 

that time, application of nonlinear optimization included problems in chemical engineering, portfolio 

optimization and a host of decision problems in management and industrial operations. The 1960s saw the 

development of larger scale nonlinear optimization coincident with the expanding capabilities of computers.  

According to Brain Wallace (2004), new possibilities in optimization methods were developed with 

Karmarkar’s interior-point method for linear optimization in 1984, which was extended to nonlinear convex 

optimization by Nesterov and Nemirovskii in 1994. In 1990s the important fields of semi definite optimization, 

conic optimization, and “robust optimization” were developed. Since 2000 there has been great interest and 

progress in “huge scale” nonlinear optimization, which considers problems in thousands or even millions of 

decision variables and constraints. 

Note that Kuhn-Tucker (KT) Theorem was called Karush-Kuhn-Tucker (KKT) Theorem in recognition of the 

fact that in 1939 William Karush produced the same result of the KT Theorem in his Master of Science degree 

thesis at the mathematics department of the University of Chicago, according to Richard W. Cottle (2012) 

Ejikeme C.L et al (2015) highlighted that Nonlinear Programming is of two types, viz: single-variable 

optimization and multivariable optimization. Our interest is to study solutions of Nonlinear Optimization 

Problems which can still be referred to as Nonlinear Programming Problems (NLPP’s). There are many 

methods of solving problems which are in the form of constrained multivariable optimization with equality 

constraints but in this paper, we investigate Karush-Kuhn-Tucker (KKT) Method that deals with the 

constrained multivariable optimization with inequality constraints. 

Preliminaries 

Karush-Kuhn-Tucker (KKT) conditions are first derivatives test for a solution in nonlinear programming to be 

optimal. With the inequality constraints the KKT generalizes the method of Lagrange multipliers which allows 

only equality constraints. According to Mikulas Luptacik (2010), the Kuhn–Tucker conditions are the natural 

generalization of the Lagrange multiplier approach, from classical differential calculus replacing equality 

constraints by inequality constraints, to take account of the possibility that the maximum or minimum in 

question can occur not only at a boundary point but also at an interior point.  

As stated by Scott Moura (2014), let us consider the general constrained optimization problem. 

𝑚𝑖𝑛 𝑓(𝑥) 

subject to 

 𝑔𝑖(𝑥) ≤  0, 𝑖 =  1, … , 𝑚  

 ℎ𝑗 (𝑥)  =  0, 𝑗 =  1, . . . , 𝑙 

Introduced the “Lagrange multipliers” 𝜆𝑗, 𝑗 =  1, . . . , 𝑙 each associate with equality constraints ℎ𝑗(𝑥), 𝑗 =

 1, . . . , 𝑙 and 𝜇𝑖  , 𝑖 =  1, . . . , 𝑚.  then we can augment the cost function to form the “Lagrangian” 𝐿(𝑥) as 

follows  

𝐿(𝑥) =  𝑓(𝑥) + ∑ 𝜇𝑖

𝑚

𝑖=1

𝑔𝑖(𝑥) + ∑ 𝜆𝑗

𝑙

𝑗=1

ℎ𝑗(𝑥) 
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                                                =  𝑓(𝑥)  +  𝜇𝑇  𝑔(𝑥)  +  𝜆𝑇  ℎ(𝑥)                                         (1) 

As before, when the equality constraints are satisfied, ℎ(𝑥)  =  0 then the third term becomes zero. Elements 

of the second term becomes zero in the two cases:  

1. An inequality constraint is active, that is 𝑔𝑖(x) = 0.  

2. The Lagrange multiplier 𝜇𝑖 = 0  

Consequently, the Lagrangian 𝐿(𝑥) can be constructed to have identical values of the cost function 𝑓(𝑥) of the 

conditions are applied. This motivates the first-order necessary conditions (FONC) for the general constrained 

optimization problem called the Karush Kuhn Tucker (KKT) conditions.  

Proposition 2.1. (KKT Conditions) If 𝑥* is a local minimum, then the following necessary conditions hold: 

                                𝐿(𝑥) =
𝜕𝑓

𝜕𝑥
(𝑥∗) + ∑ 𝜇𝑖

𝜕

𝜕𝑥
𝑔𝑖(𝑥∗) + ∑ 𝜆𝑗

𝑙
𝑗=1

𝑚
𝑖=1

𝜕

𝜕𝑥
ℎ𝑗(𝑥∗) = 0              (Stationality) 

                                                  𝑔𝑖(𝑥∗) ≤ 0       𝑖 = 1, . . . , 𝑚                                                 (Feasibility) 

                                                  ℎ𝑗(𝑥∗) = 0      𝑗 = 1, . . . , 𝑙                                                    (Feasibility) 

                                                   𝜇𝑖 ≥ 0             𝑖 = 1, . . . , 𝑚                                                 (Non-Negativity) 

                                              𝜇𝑖𝑔𝑖(𝑥∗) = 0       𝑖 = 1, . . . , 𝑚                               (Complementary Slackness)  

which can also be written in the matrix- vector form as 

                                             
 𝜕𝑓

𝜕𝑥
(𝑥∗) + 𝜇𝑇 𝜕

𝜕𝑥
𝑔 (𝑥∗) + 𝜆𝑇 𝜕

𝜕𝑥
ℎ (𝑥∗) = 0                            (Stationary) 

                                                                  𝑔 (𝑥∗) ≤ 0                                                          (Feasibility) 

                                                                  ℎ (𝑥∗) = 0                                                          (Feasibility) 

                                                                    𝜇 ≥ 0                                                            (Non-Negativity) 

                                                                 𝜇𝑇𝑔(𝑥∗) = 0                                     (Complementary Slackness)  

KARUSH-KUHN-TUCKER METHOD  

The Karush Kuhn Tucker method of solving nonlinear optimization problem uses the necessary and sufficient 

conditions for a local optimum. 

Kuhn Tucker Necessary Condition  

According to J. K Sharma, 2009, we have  

                                          𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒 𝑍 =  𝑓(𝑥)                                                   (2) 

subject to the constraints  

                     𝑔𝑖(𝑥) =  ℎ𝑗(𝑥)– 𝑏𝑖 ≤  0;         𝑖 =  1, 2, … , 𝑛.  𝑗 = 1,2, . . . , 𝑙                                 (3) 

  𝑤ℎ𝑒𝑟𝑒 𝑥 =  (𝑥1, 𝑥2, . . . , 𝑥𝑛)  
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Add non-negative slack variables 𝑠𝑖(𝑖 =  1, 2, . . . , 𝑚) in each of the constrained to convert them to equality 

constraints. The problem can then be restated as:  

                                         𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒 𝑍 =  𝑓(𝑥)                                                      (4) 

subject to the constraints 

                          𝑔𝑖(𝑥) + 𝑠𝑖
2 =  0,        𝑖 =  1, 2, . . . , 𝑚                                       (5) 

The 𝑠𝑖
2 has only be added to ensure non-negative value (feasibility requirement) of 𝑠𝑖 and to avoid adding 𝑠𝑖  ≤

 0 as an additional side constraint. Therefore, we now have constrained multivariable optimization problem 

with equality constraints with 𝑛 + 𝑚 variable. Thus, it can be solved by using the Lagrangian multiplier 

method. Hence, we form the Lagrangian function: 

                                       𝐿(𝑥, 𝑠, 𝜆) = 𝑓(𝑥) − ∑ 𝜆𝑖[𝑔𝑖(𝑥) + 𝑠𝑖
2]𝑚

𝑖=1                                    (6) 

where 𝜆𝑖 = (𝜆1, 𝜆2, . . . , 𝜆𝑚)𝑇  is the vector of Lagrange multiplier. 

The necessary conditions for an extreme point to be local optimum can be obtained by solving the following 

equations, 

         
𝜕𝐿

   𝜕𝑥𝑖
=

𝜕𝑓(𝑥)

𝜕𝑥𝑗
− ∑ 𝜆𝑖

𝜕𝑔𝑖(𝑥)

𝜕𝑥𝑗
= 0  𝑖 = 1, . . . , 𝑚𝑚

𝑖=1                              (7) 

                
𝜕𝐿

 𝜕𝜆𝑖
= −[𝑔𝑖(𝑥) + 𝑠𝑖

2] = 0    𝑖 = 1, . . . , 𝑚                               (8) 

            
𝜕𝐿

𝜕𝑠𝑖
= −2𝑥𝑖𝜆𝑖 = 0                𝑖 = 1, . . . , 𝑚                                        (9) 

The eqn (8) gives us back the original set of constraints: 𝑔𝑖(𝑥) +  𝑠𝑖
2  =  0. If a constraint is satisfied with 

equality sign, 𝑔𝑖(𝑥)  =  0 at the optimum point 𝑥, then it is called an active (binding or light) constraint, 

otherwise it is known as inactive (slack) constraint. The equation (9) provides us the set of rules: −2𝜆𝑖𝑠𝑖  =
 0 𝑜𝑟 𝜆𝑖𝑠𝑖 =  0 for finding the unconstrained optimum. The condition 𝜆𝑖𝑠𝑖 =  0 implies that either 𝜆𝑖 = 0 or 

𝑠𝑖 =  0. If 𝑠𝑖 =  0 and 𝜆𝑖 >  0, then eqn (8) gives 𝑔𝑖(𝑥) = 0. This means either 𝜆𝑖  =  0 or 𝑔𝑖(𝑥) = 0, and 

therefore we may also write 𝜆𝑖𝑔𝑖(𝑥)  =  0. Since  𝑠𝑖
2 has been taken to be a non-negative (≥) slack variable, 

therefore 𝑔𝑖(𝑥) <  0, 𝜆𝑖  =  0 and when 𝑔𝑖(𝑥) = 0, 𝜆𝑖  >  0. However, 𝜆𝑖 is unrestricted in sign corresponding 

to 𝑔𝑖(𝑥) = 0. But if 𝜆𝑖  =  0and 𝑠𝑖
2  >  0, then the 𝑖𝑡ℎ constraint is inactive. (i.e., this constraint will not change 

the optimum value of 𝑍 because 𝜆 =  
𝜕𝑍

𝜕𝑏𝑖
=  0 and hence can be discarded). Thus, the Kuhn-Tucker necessary 

conditions (When active constraints are known) to be satisfied at a local optimum (Maximum or Minimum) 

point can be stated as follows: 

                                                            
𝜕𝐹

𝜕𝑥𝑗
− ∑ 𝜆𝑖

𝜕𝑔𝑖

𝜕𝑥𝑗

𝑛
𝑖=1 = 0    𝑖 = 1, . . . , 𝑛                                           (10) 

                                                                           𝜆𝑖𝑔𝑖(𝑥) = 0                                                                (11) 

                                                                           𝑔𝑖(𝑥) ≤ 0                                                                   (12) 

                                                          𝜆𝑖 ≥ 0                 𝑖 = 1, . . . , 𝑚                                                  (13) 

Kuhn Tucker Sufficient Conditions 

J. K Sharma (2009) stated the following theorem as the Kuhn Tucker Sufficient conditions for solving 

nonlinear optimization problem.  
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Theorem 3.3.1 (Sufficiency of Kuhn Tucker Conditions). The Kuhn Tucker necessary conditions for the 

problem  

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑍 =  𝑓(𝑥)  

subject to the constraints 

𝑔𝑖(𝑥)  ≤  0, 𝑖 =  1, 2, . . . , 𝑚 

are also sufficient conditions if 𝑓(𝑥) is concave and all 𝑔𝑖(𝑥) are convex functions of 𝑥  

Proof. The Lagrangian function of the problem  

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑍 =  𝑓(𝑥)  

subject to the constraints  

𝑔𝑖(𝑥) ≤  0, 𝑖 =  1, 2, . . . , 𝑚  

can be written as: 

                                                     𝐿(𝑥, 𝑠, 𝜆)  =  𝑓(𝑥)  − ∑ 𝜆𝑖
𝑚
𝑖=1  [𝑔𝑖(𝑥) + 𝑠𝑖

2]                                        (14) 

If 𝜆𝑖 ≥  0, then 𝜆𝑖𝑔𝑖(𝑥) is convex and −𝜆𝑖𝑔𝑖(𝑥) is concave. Further, since  𝜆𝑖𝑠𝑖 = 0, we get 𝑔𝑖(𝑥) +  𝑠𝑖
2 = 0. 

Thus, it follows that 𝐿(𝑥, 𝑠, 𝜆) is a concave function. We have derived that necessary condition for 𝑓(𝑥) to be a 

relative maximum at an extreme point is that 𝐿(𝑥, 𝑠, 𝜆) also have the same extreme point. However, if 

𝐿(𝑥, 𝑠, 𝜆) is concave, its first derivative must be zero at one point and obviously this point must be an absolute 

maximum for 𝑓(𝑥). 

Examples 

Using Karush Kuhn Tucker method to solve optimization problems. 

Problem 4.1 

                                                                 Maximize 𝑈 = 𝑥𝑦                                                     (15) 

Subject to  

                                                                          100 ≥ 𝑥 + 𝑦                                                             (16) 

and 

                                                                          𝑥 ≤ 40                                                                      (17) 

Solution 

The Lagrange is 

𝐿(𝑥, 𝑦; 𝜆1;  𝜆2) = 𝑥𝑦 + 𝜆1(100 − 𝑥 − 𝑦) + 𝜆2(40 − 𝑥) 

and the KKT conditions become 

𝐿𝑥 = 𝑦 − 𝜆1 − 𝜆2 = 0;          𝑥 ≥ 0 

𝐿𝑦 = 𝑥 − 𝜆1 = 0;                 𝑦 ≥ 0 
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𝐿𝜆1
= 100 − 𝑥 − 𝑦 ≥ 0;   𝜆1 ≥ 0  

𝐿𝜆2
= 40 − 𝑥 ≥ 0;             𝜆2 ≥ 0  

Which gives us four equations with four unknowns: 𝑥, 𝑦, 𝜆1, 𝜆2. To solve, we typically approach the problem in 

a stepwise manner. First, ask if any 𝜆𝑖 could be zero. Try 𝜆2 = 0 (𝜆1 = 0 does not make sense, given the form 

of the utility function), then 

𝑥 − 𝜆1 = 𝑦 − 𝜆1 

                                                                                 𝑥 = 𝑦 

from the constraint 100 − 𝑥 − 𝑦 we have 

                                                                             𝑥 = 𝑦 = 50 

which violates our constraint 𝑥 ≤ 40. Therefore,  

                                                                    𝑥 = 40  and 𝑦 = 60 

also 

                                                                   𝜆1 = 40 and 𝜆2 = 20 

then the maximum value of the function 

𝑈(40, 60) = 40 × 60 = 2400 

Problem 4.2 

                                                          Maximize 𝑓(𝑥, 𝑦) = 𝑥𝑦                                                    (18) 

Subject to  

                                                                          𝑥 + 𝑦2 ≤ 2                                                                (19) 

and  

                                                                            𝑥, 𝑦 ≥ 0                                                                  (20) 

Solution 

Note that the feasible region is bounded, so a global maximum must exist: a continuous function on a closed 

and bounded set has a maximum there. We write the constraints as 

𝑔1(𝑥, 𝑦) = 𝑥 + 𝑦2 ≤ 2, 

𝑔2(𝑥, 𝑦) = −𝑥 ≤ 0 

𝑔3(𝑥, 𝑦) = −𝑦 ≤ 0 

Thus, the KKT conditions can be written as 

𝑦 − 𝜆1 + 𝜆2 = 0 

𝑥 − 2𝑦𝜆1 + 𝜆3 = 0 
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𝜆1(2 − 𝑥 − 𝑦2) = 0 

𝜆2𝑥 = 0 

𝜆3𝑦 = 0 

𝑥 + 𝑦2 ≤ 2 

𝑥, 𝑦, 𝜆1, 𝜆2, 𝜆3  ≥ 0  

In each of the “complementary slackness” equations 𝜆𝑖(𝑏𝑖 − 𝑔𝑖(𝑥1, . . . 𝑥𝑛)) = 0, at least one of the two factors 

must be 0. With 𝑛 such conditions, there would potentially be 2𝑛 possible cases to consider. However, with 

some thought we might be able to reduce that considerably. 

Case 1: Suppose 𝜆1 = 0, then the first KKT condition says 𝑦 + 𝜆2 = 0 and the second says 𝑥 +  𝜆3 = 0. Since 

each term is nonnegative, the only way that can happen is if 𝑥 = 𝑦 = 𝜆2 = 𝜆3 = 0. Indeed, KKT conditions 

are satisfied when 

𝑥 = 𝑦 = 𝜆1 = 𝜆2 = 𝜆3 = 0 

(although clearly this is not a local maximum since 𝑓(0,0) = 0 while 𝑓(𝑥, 𝑦) > 0 at points in the interior of 

the feasible region). 

Case 2: Suppose 𝑥 + 𝑦2 = 2. Now at least one of 𝑥 = 2 − 𝑦2 and 𝑦 must be positive. 

Case 2a: Suppose 𝑥 > 0, then 𝜆2 = 0. The first KKT condition says 𝜆1 = 𝑦.  The second KKT condition then 

says 𝑥 − 2𝑦𝜆1 + 𝜆3 = 2 − 3𝑦2 + 𝜆3 = 0, so  

3𝑦2 = 2 + 𝜆3 > 0 and 𝜆3 = 0 

Thus  

𝑦 = √
2

3
 and 𝑥 = 2 −

2

3
=

4

3
 

Again, all the KKT conditions are satisfied.  

Case 2b: Suppose 𝑥 = 0, i.e. 𝑦 = √2. Since 𝑦 > 0, we have 𝜆3 = 0. From the second KKT condition we must 

have 𝜆1 = 0. But that take us back to Case 1. We conclude that there are only two conditions for local 

maximum: (0,0) and (
4

3
, √

2

3
), The global maximum is at (

4

3
, √

2

3
). 

Problem 4.3 

Minimize                   𝑓(𝑥, 𝑦) = (𝑥 − 3)2 + (𝑦 − 2)2                                                            (21) 

Subject to      

                                                                    𝑥3 − 𝑦 − 3 ≤ 0                                                         (22) 

                                                                        𝑦 − 1 ≤ 0                                                              (23) 

 −𝑥 ≤ 0                                                (24) 

Solution 
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The objective function and the inequality constraints are: 

𝑓(𝑥, 𝑦) = (𝑥 − 3)2 + (𝑦 − 2)2 

𝑔1(𝑥, 𝑦) = 𝑥2 − 𝑦 − 3 

𝑔2(𝑥, 𝑦) = 𝑥 − 1 

𝑔3(𝑥, 𝑦) = −𝑥 

The figure below illustrates the feasible region. The problem then, is to find a point in the feasible region with 

the smallest possible value of (𝑥 − 3)2 + (𝑦 − 2)2. Note that point (𝑥, 𝑦) with (𝑥 − 3)2 + (𝑦 − 2)2 = 𝑐 are 

circles with radius √𝑐 and center (3,2). This circle is called the contour of the objective function having the 

value c. To minimize c, we must find the circle with the smallest radius that intersects the feasible region. As 

shown in the figure below, the smallest circle corresponds to 𝑐 = 2 and intersects the feasible region at the 

point (2,1). Hence the optimal solution occurs at the point (2,1) and has objective value equal to 2. The 

graphical approach is the smallest objective value that intersect the feasible region, is only suitable for small 

problems, it becomes intractable for problems containing more than three variables, as well as for problem 

having complicated objective and/or constraint function.  This is from Benoit. C. Chachuat (2007) 

 

Figure 1.1 

CONCLUSION 

We have established that the methods of Karush-Kuhn-Turker are used in making best choice in economic 

decisions and other vital areas of life. The nonlinear constrained optimization problems with inequality 

constraints are solved with the method of Karush-Kuhn-Tucker. The nonlinear program must include at least 

one nonlinear function, which could be the objective function or some or all the constraints. We have also seen 

that it is necessary to consider optimization approach when it comes to profit maximization and cost 

minimization. Moreover, Karush-Kuhn-Turker is a useful mathematical tool in dealing with economic and 

other issues of life. 
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