
INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN APPLIED SCIENCE (IJRIAS) 

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS | Volume IX Issue II February 2024 

Page 291 

 

 
 

www.rsisinternational.org 

Theoretical and Simulation Finite Element Modal Analysis of 

Rotating Cantilever Beam 

Ilechukwu Anthonia Ekene, Omenyi Sam, Abonyi Sylvester Emeka*, Okafor Anthony Amaechi, Odeh 

Calistus Princewill 

Mechanical Engineering Department, Nnamdi Azikiwe University Awka, Nigeria; 

Electrical Engineering Department, Nnamdi Azikiwe University Awka, Nigeria 

*Corresponding Author 

DOI: https://doi.org/10.51584/IJRIAS.2024.90225 

Received:  15 January 2024; Accepted: 12 February 2024; Published: 21 March 2024 

ABSTRACT 

The finite element method is used to carry out modal analysis of rotating cantilever beam. The virtual work 

method is then used to derive the stiffness matrix of a rotating beam element. The stiffness matrix of a 

rotating beam element is simply seen to be sum of the stiffness matrix of the non-rotating beam and an 

incremental stiffness matrix induced by rotation. This work presents a novel generalized incremental 

stiffness matrix that takes care of any element at any distance from the rotation axis. The established 

rotational stiffness matrix is then used together with consistent mass matrix (not affected by rotation) to 

carry out modal analysis of rotating cantilever beam. Theoretical computations were validated by 

simulations from ANSYS. It is seen that the contribution to modal frequencies and shapes of the blade of 

rotation via incremental stiffness matrix is very marginal at low rotational speeds.  For exampleit is seen for 

a numerical case study that five-element model computes slight increase in fundamental natural frequency 

due to rotation relative to that of the non-rotating blade as 0.000195% for rotational speed of 300rpm. It is 

also seen that ten times increase in speed leads to about hundred times increase in rotational contribution 

meaning that it becomes more imperative to model rotation as speed of the blade increases. Points are also 

made regarding application to avoiding resonance of rotating cantilever beam. 

Keyword: cantilever beam,helicopter blades, modal analysis, vibration 

INTRODUCTION 

Rotating beams are of two types ofapplication. The first type isshaftrotating about its longitudinal axis [1-4] 

which has application in power transmission. The second type involves a blade rotating about its normal axis 

[5-10] which has application aerospace. The second type is of interest in this work thus given a more 

detailed review. At the beginning of the last century Southwell and Gough [5] pioneered research on modal 

analysis of rotating cantilever beams. Yntema [6] presented and demonstrated use of simplified procedures 

and charts for the rapid estimation of bending frequencies of rotating beams. In [9] warping inhibition 

andcentrifugal force in addition to free vibration behaviour of rotating blades modelled as hollow boxed 

beams were considered. Huang et al. in the work [10] considered slender beam rotating at high angular 

velocity and proposed a method based on the power series solution to determine the modal frequencies of 

such system. A very popular application of the second type in aerospace industry is in modal analysis 

helicopter blades. Helicopters are of very popular use in civilian, executive and military transport. They are 

https://rsisinternational.org/journals/ijrias/
https://rsisinternational.org/journals/ijrias/
http://www.rsisinternational.org/
https://doi.org/10.51584/IJRIAS.2024.90225


INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN APPLIED SCIENCE (IJRIAS) 

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS | Volume IX Issue II February 2024 

Page 292 

 

 
 

www.rsisinternational.org 

very convenient for transportation because of their capacity to hover and take off or land vertically. 

Vibrations stemming from the rotating blades are always a source of inconvenience for passengers in the 

cabin. Other major negative effects of these vibrations are degradation of structural integrity, reduction in 

component fatigue life, impairment of computerized control systems essential in navigation, and crash due to 

catastrophic failure of any of the blades. A basic reason for catastrophic failure of any of the blades is 

excitation that occurs at any of the blade natural frequencies due to excessive resonant vibrations. Blade 

loads are comprised of both aerodynamic and inertial contributions at harmonics of the rotor speed, 

The sectional inertial and aerodynamic blade loads can be integrated along the blade length to obtain 

the blade root loads, also at harmonics of . These blade root loads from every blade are summed at the 

rotor hub to yield periodic hub loads which could be very catastrophic at resonant conditions. Over the years 

performance of helicopters has been optimized. A passive strategy that has been employed to minimize 

vibrations is blade design optimization. Blade design optimization includes proactive measures in rotor blade 

structural and aerodynamic properties leading to reduced overall vibration [12, 13]. The classical design 

parameters always mentioned are rotor tip sweep, taper, non-structural mass distribution, structural stiffness, 

elastic tailoringand spar cross-sectional geometry [14]. The interest in this work is to use the method of finite 

element in forestalling resonant vibration in the flap-wise direction of rotating cantilever beam by 

investigating the effect of rotation on natural response to initial conditions. Theoretical computation will be 

validated by additional results from ANSYS simulation.  This is geared towards excessive resonant response 

to rotational harmonic forces. The blades are also subjected to lag and torsion vibrations in addition to flap 

vibrations as shown in figure 1. It is also noteworthy the three kinds of rigid motion of a helicopter; yaw, roll 

and pitch as also shown in figure1. The presentations in this work will subsequently be applied to study of 

flap-wise vibration of the blades considering the aforementioned design parameters. The flap-wise vibration 

is normally studied because structural weakness of blade in this direction that exposes it to sudden failure. 

 

Fig.1. A typical helicopter showing the three kinds of rigid motion; yaw, roll and pitch and blade vibrations; 
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Flap, Lag and torsion. Adapted from [11]. 

1. General beam Finite element modelling 

The matrix model for transient response of a non-rotating beam finite element shown in fig.2is  

𝒎̅𝒆𝒖̈ + 𝒌̅𝒆𝒖 = 𝟎     (1) 

The stiffness matrix 𝒌̅𝒆and the consistent mass matrix𝒎̅𝒆are given by [15], [16] 

𝒌̅𝒆 =
𝐸𝐼

𝑙3
[

12
6𝑙
−12
6𝑙

6𝑙
4𝑙2

−6𝑙
2𝑙2

−12
−6𝑙
12
−6𝑙

6𝑙
2𝑙2

−6𝑙
4𝑙2

]     (2) 

𝒎̅𝒆 =
𝑚𝑙

420
[

156
22𝑙
54
−13𝑙

22𝑙
4𝑙2

13𝑙
−3𝑙2

54
13𝑙
156
−22𝑙

−13𝑙
−3𝑙2

−22𝑙
4𝑙2

]    (3) 

Where 𝐸, 𝐼, 𝑚 and 𝑙 are the young modulus, area moment of inertia about the neutral axis, mass per unit 

length and length of the beam respectively.  

 

Fig. 2. A finite non-rotating beam element 

Suppose the beam is then subjected to some form of time-invariant distributed force per unit length of the 

element 𝑓(𝑥), the nodes of the element will experience nodal force vector 𝒇𝒆that corresponds to the 

distributed force 𝑓(𝑥) such that equation (1) becomes 

𝒎̅𝒆𝒖̈ + 𝒌̅𝒆𝒖 = 𝒇𝒆    (4) 

The general form for 𝒇𝒆when 𝑓(𝑥) is proportional to the local coordinate 𝑥is 

𝒇𝒆 = 𝒌̅𝒆,𝒊𝒏𝒖      (5) 

Where 𝒌̅𝒆,𝒊𝒏is the incremental stiffness due to thedistributed force 𝑓(𝑥). Inserting “(4)” in“(5)” and re-

arranging gives the transient response 

𝒎̅𝒆𝒖̈ + (𝒌̅𝒆 − 𝒌̅𝒆,𝒊𝒏)𝒖 = 𝟎    (6) 

AEI ,, dx
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1node 2node
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The principle of virtual work is used in determining thenodal force vector 𝒇𝒆to have the form𝒌̅𝒆,𝒊𝒏𝒖. 

2. Incremental stiffness matrix of the rotating beam element 

The rigour associated with handling the rotating beam element revolves around derivation of the incremental 

stiffness𝒌̅𝒆,𝒊𝒏. Fig. 3 depicts a beam element rotating at angular speed  Ω [rpm]. 

 

Fig. 3. A finiterotating beam element 

A differential element  𝑑𝑥 of the beam is then subjected to the centrifugal force(
2𝜋

60
)
2
(Ω)2𝑚𝑥𝑑𝑥. This 

means that the distributed force 𝑓(𝑥) reads 

𝑓(𝑥) = (
2𝜋

60
)
2
(Ω)2𝑚𝑥     (7) 

The distributed force will do a virtual work given by 

𝑑(𝛿𝑊) = −𝑓(𝑥)𝑑𝑥 ∫
𝒅

𝒅𝑠
𝑢(𝑠)

𝑥

0
𝛿 (

𝒅

𝒅𝑠
𝑢(𝑠)) 𝑑   (8) 

The cumulative virtual work done by the element becomes 

𝛿𝑊 = −∫ 𝑓(𝑥)
𝑙

0
∫

𝒅

𝒅𝑠
𝑢(𝑠)

𝑥

0
𝛿 (

𝒅

𝒅𝑠
𝑢(𝑠))𝑑𝑠𝑑𝑥   (9) 

The distributed deformation 𝑢(𝑥) along the beam element is given by finite element formulation in terms of 

nodal displacements 𝑢𝑖 using the Hermite shape functions 𝑁𝑖(𝑥) as 

𝑢(𝑥) = ∑ 𝑁𝑖(𝑥)
4
𝑖=1 𝑢𝑖     (10) 

Where 

𝑁1(𝑥) = 1 − 3
𝑥2

𝑙2
+ 2

𝑥3

𝑙3
     (11) 

𝑁2(𝑥) = (
𝑥

𝑙
− 2

𝑥2

𝑙2
+

𝑥3

𝑙3
) 𝑙    (12) 

AEI ,,, dx
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𝑁3(𝑥) = 3
𝑥2

𝑙2
− 2

𝑥3

𝑙3
     (13) 

𝑁4(𝑥) = (−
𝑥2

𝑙2
+

𝑥3

𝑙3
) 𝑙     (14) 

Inserting “(10)” into“(9)” and re-arranging gives 

𝛿𝑊 = −∑ ∑ 𝑢𝑗𝛿𝑢𝑖
4
𝑖=1

4
𝑖=1 ∫ 𝑓(𝑥)

𝑙

0
∫

𝒅

𝒅𝑠
𝑁𝑖(𝑠)

𝑥

0

𝒅

𝒅𝑠
𝑁𝑗(𝑠)𝑑𝑠𝑑𝑥  (15) 

The I th term of the nodal force vector 𝒇𝒆 becomes  

𝑓𝑖
𝑒 =

𝛿𝑊

𝛿𝑢𝑖
= −∑ 𝑢𝑗

4
𝑗=1 ∫ 𝑓(𝑥)

𝑙

0
∫

𝒅

𝒅𝑠
𝑁𝑖(𝑠)

𝑥

0

𝒅

𝒅𝑠
𝑁𝑗(𝑠)𝑑𝑠𝑑𝑥   (16) 

In view of“(16)” it is seen that the element 𝒌̅𝒆,𝒊𝒏(𝑖, 𝑗) = 𝑘𝑖,𝑗
𝑒,𝑖𝑛

of the incremental stiffness matrix is given 

generally by  

𝑘𝑖,𝑗
𝑒,𝑖𝑛 = −∫ 𝑓(𝑥)

𝑙

0
∫

𝒅

𝒅𝑠
𝑁𝑖(𝑠)

𝑥

0

𝒅

𝒅𝑠
𝑁𝑗(𝑠)𝑑𝑠𝑑𝑥   (17) 

In light of “(7)”, “(17)” becomes  

𝑘𝑖,𝑗
𝑒,𝑖𝑛 = −(

2𝜋

60
)
2
(Ω)2𝑚∫ 𝑥

𝑙

0
∫

𝒅

𝒅𝑠
𝑁𝑖(𝑠)

𝑥

0

𝒅

𝒅𝑠
𝑁𝑗(𝑠)𝑑𝑠𝑑𝑥   (18) 

Suppose a beam of length 𝑛𝑙 is regularly discretized into 𝑛 elements and the 𝑒th element where 𝑒 =
1, 2, 3,… . . 𝑛 is considered. The location of the differential element 𝑑𝑥 from rotational axis becomes 𝑟𝑙 + 𝑥 

where 𝑥 is used as the local coordinate of the 𝑒th element.“(7)” for centripetal force becomes 𝑓(𝑥) =

(
2𝜋

60
)
2
(Ω)2𝑚[(𝑒 − 1)𝑙 + 𝑥] which is then re-written as 

𝑓(𝑥) = (
2𝜋

60
)
2
(Ω)2𝑚(𝑒 − 1)𝑙 + (

2𝜋

60
)
2
(Ω)2𝑚𝑥  (19) 

The element of incremental stiffness matrix given in“(18)” becomes 

𝑘𝑖,𝑗
𝑒,𝑖𝑛 = −(

2𝜋

60
)
2

(Ω)2𝑚(𝑒 − 1)𝑙 ∫ ∫
𝑑

𝑑𝑠
𝑁𝑖(𝑠)

𝑥

0

𝑑

𝑑𝑠
𝑁𝑗(𝑠)𝑑𝑠𝑑𝑥

𝑙

0

− (
2𝜋

60
)
2

(Ω)2𝑚∫ 𝑥
𝑙

0

∫
𝑑

𝑑𝑠
𝑁𝑖(𝑠)

𝑥

0

𝑑

𝑑𝑠
𝑁𝑗(𝑠)𝑑𝑠𝑑𝑥 

(20) 

“(20)” is the general equation for populating the incremental stiffness matrix 𝒌̅𝒆,𝒊𝒏of the 𝑒th rotating beam 

element about the rotational axis. It should be noted that“(18)” and “(20)” are identical for the first element. 

The first term of‘(20)” is increment to 𝑘𝑖,𝑗
𝑒,𝑖𝑛

as given in“(18)” for the first element due to displacement of the 

first local node from the rotational axis.The incremental stiffness matrix of a one-element beam resulting 

from use of“(18)” with notation 𝜛 =
2𝜋

60
Ω is 
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𝒌̅1,𝑖𝑛 = 𝑚𝜛2𝑙 

[
 
 
 
−3 7⁄

−𝑙 70⁄

3 7⁄

−9𝑙 140⁄

−𝑙 70⁄

−2𝑙2 35⁄

𝑙 70⁄

𝑙2 105⁄

3 7⁄

𝑙 70⁄

−3 7⁄

9𝑙 140⁄

−9𝑙 140⁄

𝑙2 105⁄

9𝑙 140⁄

− 𝑙2 42⁄ ]
 
 
 

  (21) 

It must be noted that inserting 𝑒 = 1 in “(20)” gives same result as“(21)”.It must always be recalled that 𝑙 
refers to length of beam element and not the length of the studied beam. With this in mind, a rotating beam 

of five elements each of length 𝑙 is then considered.  The incremental stiffness matrix of the first element 

will have same form as“(21)”. For the second element,“(20)” is used with 𝑒 = 2 to give. 

𝒌̅2,𝑖𝑛 = 𝑚𝜛2𝑙 

[
 
 
 
−36 35⁄

−𝑙 70⁄

36 35⁄

−23𝑙 140⁄

−𝑙 70⁄

−11𝑙2 70⁄

𝑙 70⁄

11𝑙2 420⁄

36 35⁄

𝑙 70⁄

−36 35⁄

23𝑙 140⁄

−23𝑙 140⁄

11𝑙2 420⁄

23𝑙 140⁄

−2 𝑙2 35⁄ ]
 
 
 

   (22) 

The incremental stiffness matrices of the third, fourth and fifth elements are derived using“(20)” with𝑒 =
3, 4 and 5 to give. 

𝒌̅3,𝑖𝑛 = 𝑚𝜛2𝑙 

[
 
 
 
−57 35⁄

−𝑙 70⁄

57 35⁄

−37𝑙 140⁄

−𝑙 70⁄

−9𝑙2 35⁄

𝑙 70⁄

3𝑙2 70⁄

57 35⁄

𝑙 70⁄

−57 35⁄

37𝑙 140⁄

−37𝑙 140⁄

3𝑙2 70⁄

37𝑙 140⁄

−19 𝑙2 210⁄ ]
 
 
 

  (23) 

𝒌̅4,𝑖𝑛 = 𝑚𝜛2𝑙 

[
 
 
 
−78 35⁄

−𝑙 70⁄

78 35⁄

−51𝑙 140⁄

−𝑙 70⁄

−5𝑙2 14⁄

𝑙 70⁄

5𝑙2 84⁄

78 35⁄

𝑙 70⁄

−78 35⁄

51𝑙 140⁄

−51𝑙 140⁄

5𝑙2 84⁄

51𝑙 140⁄

−13 𝑙2 105⁄ ]
 
 
 
  (24) 

𝒌̅5,𝑖𝑛 = 𝑚𝜛2𝑙 

[
 
 
 
−99 35⁄

−𝑙 70⁄

99 35⁄

−13𝑙 28⁄

−𝑙 70⁄

−16𝑙2 35⁄

𝑙 70⁄

8𝑙2 105⁄

99 35⁄

𝑙 70⁄

−99 35⁄

13𝑙 28⁄

−13𝑙 28⁄

8𝑙2 105⁄

13𝑙 28⁄

−11 𝑙2 70⁄ ]
 
 
 
  (25) 

3. Incremental global stiffness matrix of rotating beam 

The rotating beam of length 𝑛𝑙 is regularly discretized into 𝑛 elements. Since the beam is a cantilever the 

degree of freedom becomes 2𝑛 such that the representative global vector of nodal displacements becomes 

𝑼 = {𝑈1𝑈2𝑈3⋯⋯𝑈2𝑛}
𝑇    (26) 

The nodal displacements of the𝑒th element where 𝑒 = 2, 3,… . . 𝑛 corresponds to the coordinates 
{𝑈2𝑒−3𝑈2𝑒−2𝑈2𝑒−1𝑈2𝑒}

𝑇 in the global vector 𝑼. This means that the second node of the (𝑒 − 1)th and the 

first node of the 𝑒th element associate in the global matrix. This is the rule in assemblage of elements 

modelling the beam. The first node of the first element is fixed by boundary conditions imposed on 

cantilever beam such that the corresponding two degree of freedom coordinate becomes {𝑈1𝑈2}
𝑇. Modelling 

the blade with one beam element give the global incremental stiffness matrix 

𝑲̅(1),𝑖𝑛 = 𝑚𝜛2𝑙 [
−3 7⁄ 9𝑙 140⁄

9𝑙 140⁄ − 𝑙2 42⁄
]    (27) 
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Modelling the blade with three beam elements gives the global incremental stiffness matrix 

𝑲3,𝑖𝑛 = 𝑚𝜛2𝑙 

[
 
 
 
 
 
 
−36 35⁄ −3 7⁄ −𝑙 70⁄ + 9𝑙 140⁄ 36 35⁄ −23𝑙 140⁄ 0 0

−𝑙 70⁄ + 9𝑙 140⁄ −11𝑙2 70⁄ − 𝑙2 42⁄ 𝑙 70⁄ 11𝑙2 420⁄ 0 0
36 35⁄ 𝑙 70⁄ −36 35⁄ −57 35⁄ 23𝑙 140⁄ −𝑙 70⁄ 57 35⁄ −37𝑙 140⁄

− 23𝑙 140⁄ 11𝑙2 420⁄ 23𝑙 140⁄ −𝑙 70⁄ −2 𝑙2 35⁄ −9𝑙2 35⁄ 𝑙 70⁄ 3𝑙2 70⁄

0 0 57 35⁄ 𝑙 70⁄ −57 35⁄ 37𝑙 140⁄

0 0 − 37𝑙 140⁄ 3𝑙2 70⁄ 37𝑙 140⁄ −19 𝑙2 210⁄ ]
 
 
 
 
 
 

  

(28) 

Modelling the blade with five beam elements gives the global incremental stiffness matrix 

𝑲5,𝑖𝑛 = 

𝑚𝜛2𝑙 

[
 
 
 
 
 
 
 
 
 
 
−36 35⁄ −3 7⁄ −𝑙 70⁄ + 9𝑙 140⁄ 36 35⁄ −23𝑙 140⁄ 0 0 0 0 0 0

−𝑙 70⁄ + 9𝑙 140⁄ −11𝑙2 70⁄ − 𝑙2 42⁄ 𝑙 70⁄ 11𝑙2 420⁄ 0 0 0 0 0 0
36 35⁄ 𝑙 70⁄ −36 35⁄ −57 35⁄ 23𝑙 140⁄ −𝑙 70⁄ 57 35⁄ −37𝑙 140⁄ 0 0 0 0

−23𝑙 140⁄ 11𝑙2 420⁄ 23𝑙 140⁄ −𝑙 70⁄ −2 𝑙2 35⁄ −9𝑙2 35⁄ 𝑙 70⁄ 3𝑙2 70⁄ 0 0 0 0
0 0 57 35⁄ 𝑙 70⁄ −57 35⁄ −78 35⁄ 37𝑙 140−𝑙 70⁄⁄ 78 35⁄ −51𝑙 140⁄ 0 0

0 0 −37𝑙 140⁄ 3𝑙2 70⁄ 37𝑙 140⁄ −𝑙 70⁄ −19 𝑙2 210⁄ −5𝑙2 14⁄ 𝑙 70⁄ 5𝑙2 84⁄ 0 0
0 0 0 0 78 35⁄ 𝑙 70⁄ −78 35⁄ −99 35⁄ 51𝑙 140⁄ −𝑙 70⁄ 99 35⁄ −13𝑙 28⁄

0 0 0 0 −51𝑙 140⁄ 5𝑙2 84⁄ 51𝑙 140⁄ −𝑙 70⁄ −13𝑙2 105⁄ −16𝑙2 35⁄ 𝑙 70⁄ 8𝑙2 105⁄
0 0 0 0 0 0 99 35⁄ 𝑙 70⁄ −99 35⁄ 13𝑙 28⁄

0 0 0 0 0 0 −13𝑙 28⁄ 8𝑙2 105⁄ 13𝑙 28⁄ −11𝑙2 70⁄ ]
 
 
 
 
 
 
 
 
 
 

 

(29) 

4. The stiffness and mass matrices of non-rotating beam 

The corresponding assembled stiffness matrices of the non-rotating mode of the beam are  

𝑲̅(1) =
𝐸𝐼

𝑙3
[ 12 −6𝑙
−6𝑙 4𝑙2

]     (30) 

𝑲̅(3) =
𝐸𝐼

𝑙3

[
 
 
 
 
 
24 0 −12 6𝑙 0 0
0 8𝑙2 −6𝑙 2𝑙2 0 0
−12 −6𝑙 24 0 −12 6𝑙
6𝑙 2𝑙2 0 8𝑙2 −6𝑙 2𝑙2

0 0 −12 −6𝑙 12 −6𝑙
0 0 6𝑙 2𝑙2 −6𝑙 4𝑙2 ]

 
 
 
 
 

{
 
 

 
 
𝑈1
𝑈2
𝑈3
𝑈4
𝑈5
𝑈6}
 
 

 
 

   (31) 

𝑲̅(5) =
𝐸𝐼

𝑙3

[
 
 
 
 
 
 
 
 
 
24 0 −12 6𝑙 0 0 0 0 0 0
0 8𝑙2 −6𝑙 2𝑙2 0 0 0 0 0 0
−12 −6𝑙 24 0 −12 6𝑙 0 0 0 0
6𝑙 2𝑙2 0 8𝑙2 −6𝑙 2𝑙2 0 0 0 0
0 0 −12 −6𝑙 24 0 −12 6𝑙 0 0
0 0 6𝑙 2𝑙2 0 8𝑙2 −6𝑙 2𝑙2 0 0
0 0 0 0 −12 −6𝑙 24 0 −12 6𝑙
0 0 0 0 6𝑙 2𝑙2 0 8𝑙2 −6𝑙 2𝑙2

0 0 0 0 0 0 −12 −6𝑙 12 −6𝑙
0 0 0 0 0 0 6𝑙 2𝑙2 −6𝑙 4𝑙2 ]

 
 
 
 
 
 
 
 
 

 (32) 

The corresponding assembled mass matrices of the non-rotating mode of the beam are  

𝑴̅(1) =
𝑚𝑙

420
[ 156 −22𝑙
−22𝑙 4𝑙2

]     (33) 
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𝑴̅(3) =
𝑚𝑙

420

[
 
 
 
 
 
312 0 54 −13𝑙 0 0
0 8𝑙2 13𝑙 −3𝑙2 0 0
54 13𝑙 312 0 54 −13𝑙
−13𝑙 −3𝑙2 0 8𝑙2 13𝑙 −3𝑙2

0 0 54 13𝑙 156 −22𝑙
0 0 −13𝑙 −3𝑙2 −22𝑙 4𝑙2 ]

 
 
 
 
 

  (34) 

𝑴̅(5) = 

𝑚𝑙

420

[
 
 
 
 
 
 
 
 
 
312 0 54 −13𝑙 0 0 0 0 0 0
0 8𝑙2 13𝑙 −3𝑙2 0 0 0 0 0 0
54 13𝑙 312 0 54 −13𝑙 0 0 0 0
−13𝑙 −3𝑙2 0 8𝑙2 13𝑙 −3𝑙2 0 0 0 0
0 0 54 13𝑙 312 0 54 −13𝑙 0 0
0 0 −13𝑙 −3𝑙2 0 8𝑙2 13𝑙 −3𝑙2 0 0
0 0 0 0 54 13𝑙 312 0 54 −13𝑙
0 0 0 0 −13𝑙 −3𝑙2 0 8𝑙2 13𝑙 −3𝑙2

0 0 0 0 0 0 54 13𝑙 156 −22𝑙
0 0 0 0 0 0 −13𝑙 −3𝑙2 −22𝑙 4𝑙2 ]

 
 
 
 
 
 
 
 
 

  (35) 

5. Numerical modal analysis and Discussions 

The governing equation of transient response of the assembled model reads 

𝑴̅(𝑒)𝑼̈ + (𝑲̅(𝑒) − 𝑲̅(𝑒),𝒊𝒏)𝑼 = 𝟎    (36) 

Where 𝑒 is the number of elements of a chosen model. Modal analysis requires that the rotating structure is 

subjected to harmonic excitation. The resultingEigen-value problem becomes 

[𝜔2𝑴̅(𝑒) − (𝑲̅(𝑒) − 𝑲̅(𝑒),𝒊𝒏)]𝑼 = 𝟎    (37) 

For which 𝜔 is the circular frequency of the harmonic response. Post-multiplying with (𝑴̅(𝑒))
−1

 gives 

[𝜔2𝑰 − (𝑲̅(𝑒) − 𝑲̅(𝑒),𝒊𝒏)(𝑴̅(𝑒))
−1
]𝑼 = 𝟎   (38) 

It is seen from this form that 𝜔2 is the eigen-value of the square symmetric matrix (𝑲̅(𝑒) −

𝑲̅(𝑒),𝒊𝒏)(𝑴̅(𝑒))
−1

. The trivial solution of the homogenous“(37)” is of form 𝑼 = 𝟎. The non-trivial solution of 

the homogenous“(37)” requires a null determinant; 

|𝜔2𝑰 − (𝑲̅(𝑒) − 𝑲̅(𝑒),𝒊𝒏)(𝑴̅(𝑒))
−1
| = 0   (39) 

Since the degree of freedom of the studied system is 2𝑛 there will then 2𝑛 eigen-values designated 𝜔1, 

𝜔2........𝜔2𝑛−1 and 𝜔2𝑛 where the corresponding eigen-vectors satisfying“(37)” are designated𝑼(1), 
𝑼(2)........𝑼(2𝑛−1) and 𝑼(2𝑛). 

A typical kinematic, dimensional and material specification for design of a real helicopter blade presented in 

[17] is adopted for numerical simulation. The helicopter blade is made of aluminium material, rotates at Ω =
300rpm and has the dimensions; 0.0254m (thickness) by 0.3048m (width) by 1.2192m (length).The relevant 

mechanical properties of pure aluminium are [18]; density 𝜌 = 2.7 × 103 𝑘𝑔𝑚−3 and young modulus 𝐸 =
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70.5 𝐺𝑃𝑎. The blade is recommended to be modelled with beam elements. The area moment of inertia for 

transverse vibration is given as 𝐼 =
𝐵𝐷3

12
=

0.3048×0.02543

12
= 4.162314256 × 10−3 where B is the width and 

thickness D is the thickness. The mass per unit length 𝑚 becomes 𝜌𝐵𝐷 = 2.7 × 103 × 0.3048 × 0.0254 =

20.903184𝑘𝑔𝑚−1. The matrix (𝑲̅(𝑒) − 𝑲̅(𝑒),𝒊𝒏)(𝑴̅(𝒆))
−1

 for the one element model (1 = 1) becomes 

(𝑲̅(𝑒) − 𝑲̅(𝑒),𝒊𝒏)(𝑴̅(𝑒))
−1
= 1010 [

−0.16010762814665 −1.05057571640220
0.14872644181357 0.93777445184506

] (40) 

The eigen-values, circular frequencies and the corresponding eigen-vectors of the modal matrix are 

𝜔1
2 = 79293855.70296 

𝜔1 = 8904.7097483840 

𝑼1
(1)
= {

𝑈1 = −0.98744871018922
𝑈2 = 0.15794000362685

} 

𝜔2
2 = 7697374381.28120 

𝜔2 = 87734.6817471928 

𝑼2
(1)
= {

𝑈1 = 0.74882334419592
𝑈2 = −0.66276964262648

} 

The modal matrix (𝑲̅(𝟑) − 𝑲̅(𝟑),𝒊𝒏)(𝑴̅(𝟑))
−1

 for the three element model (𝑒 = 3) is computed to have the 

eigen-values and the corresponding eigen-vectors presented in the matrix forms 𝑫̅(𝟑) and 𝑽̅(𝟑) respectively 

where the matrix of eigenvalues (𝑫̅(𝟑)) and eigenvectors (𝑽̅(𝟑)) of matrix (𝑲̅(𝟑) − 𝑲̅(𝟑),𝒊𝒏)(𝑴̅(𝟑))
−1

 are such 

that (𝑲̅(𝟑) − 𝑲̅(𝟑),𝒊𝒏)(𝑴̅(𝟑))
−1

= 𝑽̅(𝟑) × 𝑫̅(𝟑) × (𝑽̅(𝟑))
−𝟏

. The Matrix 𝑫̅(𝟑) is the canonical form of (𝑲̅(𝟑) −

𝑲̅(𝟑),𝒊𝒏)(𝑴̅(𝟑))
−1

; a diagonal matrix with eigenvalues(𝑲̅(𝟑) − 𝑲̅(𝟑),𝒊𝒏)(𝑴̅(𝟑))
−1

 on the main diagonal. 

Matrix 𝑽̅(𝟑) is the modal matrix; its columns are the eigenvectors of (𝑲̅(𝟑) − 𝑲̅(𝟑),𝒊𝒏)(𝑴̅(𝟑))
−1

. The 

numerical results read 

𝑫̅(𝟑)

=

[
 
 
 
 
 
1769881460725.26 0 0 0 0 0

0 445309257708.885 0 0 0 0
0 0 125724882734.395 0 0 0
0 0 0 24791281975.1399 0 0
0 0 0 0 3105033609.81419 0
0 0 0 0 0 78560468.4754556]

 
 
 
 
 

 

𝑽̅(𝟑) = 

[
 
 
 
 
 
0.238450041827694 −0.377379556820973 −0.857507116800326 0.779474702113523 −0.777457275077148 −0.24856582758577
0.0708697457591269 −0.237943637865176 0.283121002315134 −0.0183171956152963 −0.0189336472901222 −0.0109877416022728
0.485703503467436 0.862727498932853 −0.193396451098483 −0.586573866257866 −0.489508925126606 −0.762186591576994
0.203119730017383 −0.147059325615569 −0.270005270562845 −0.00993576267233607 0.0367231309716018 −0.0161305206259848
−0.790443019945875 −0.168063290679287 0.267120234287813 0.218882928760009 0.392276269580879 −0.596190786699781
0.190140397875824 0.0824441808358809 0.0535330709906331 −0.00251249889254285 −0.0188003890027865 0.0382393863700671 ]

 
 
 
 
 

 

The square root of the diagonal matrix 𝑫̅(𝟑) is also a diagonal matrix √𝑫̅(𝟑) with square root of eigenvalues 

(𝑲̅(𝟑) − 𝑲̅(𝟑),𝒊𝒏)(𝑴̅(𝟑))
−1

, that is the natural frequencies of the blade on the main diagonal. 
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√𝑫̅(𝟑) = 

[
 
 
 
 
 
1330368.91903158 0 0 0 0 0

0 667314.96140045 0 0 0 0
0 0 354577.04767003 0 0 0
0 0 0 157452.475290609 0 0
0 0 0 0 55722.8284441322 0
0 0 0 0 0 8863.43434992642]

 
 
 
 
 

 

It is seen from √𝑫̅(𝟑) that the fundamental natural frequency is 𝜔1 = 8863.43434993196rad/s with the 

corresponding eigenvector as the sixth column of 𝑽̅(𝟑). The fundamental mode of the blade corresponding to 

the fundamental natural frequency is 𝜔1  is a plot of the sixth column of 𝑽̅(𝟑) as shown in figure4.4.  

  

Fig.4(a). The fundamental Mode shape of the three-element rotating beam. (Linear mode shape) 

 

Fig. 4(b). The fundamental Mode shape of the three-element rotating beam.  (Angular mode shape) 
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Following similar procedure, the diagonal matrix of eigenvalues 𝑫̅(𝟓) of the matrix (𝑲̅(𝟓) −

𝑲̅(𝟓),𝒊𝒏)(𝑴̅(𝟓))
−1

 is computed as 

𝑫̅(𝟓) = 

[
 
 
 
 
 
 
 
 
 
14197875683931.8 0 0 0 0 0 0 0 0 0

0 6560951014174.29 0 0 0 0 0 0 0 0
0 0 3251158940966.74 0 0 0 0 0 0 0
0 0 0 1545859519327.61 0 0 0 0 0 0
0 0 0 0 722726796722.298 0 0 0 0 0
0 0 0 0 0 261872828243.156 0 0 0 0
0 0 0 0 0 0 95061472492.481 0 0 0
0 0 0 0 0 0 0 24358887247.2914 0 0
0 0 0 0 0 0 0 0 3087821542.30981 0
0 0 0 0 0 0 0 0 0 78546469.1516677]

 
 
 
 
 
 
 
 
 

 

The corresponding diagonal matrix √𝑫̅(𝟓) containing the natural frequencies becomes 

√𝑫̅(𝟓) = 

[
 
 
 
 
 
 
 
 
 
3768006.8583 0 0 0 0 0 0 0 0 0

0 2561435.3426 0 0 0 0 0 0 0 0
0 0 1803097.0415 0 0 0 0 0 0 0
0 0 0 1243325.9908 0 0 0 0 0 0
0 0 0 0 850133.3994 0 0 0 0 0
0 0 0 0 0 511735.1153 0 0 0 0
0 0 0 0 0 0 308320.4056 0 0 0
0 0 0 0 0 0 0 156073.3393 0 0
0 0 0 0 0 0 0 0 55568.1702 0
0 0 0 0 0 0 0 0 0 8862.6446]

 
 
 
 
 
 
 
 
 

 

It is seen that the fundamental natural frequency of the five-element model is 𝜔1 =

8862.64459129822rad/s. this is given in four decimal places as seen in√𝑫̅(𝟓) to be 𝜔1 = 8862.6446rad/s. 

The corresponding fundamental eigen vector 

is{−0.070236 −0.0019302 −0.232762 −0.003277 −0.46043 −0.004058 −0.721594 −0.004385 −0.455875 0.017971}𝑇. The 

fundamental mode shape is shown in fig. 5(a) and fig. 5(b). 

 

                      Fig. 5(a). Mode shape of the five-element rotating beam model. (Linear mode shape) 
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                        Fig. 5(b). Mode shape of the five-element rotating beam model.(Angular mode shape) 

A good degree of agreement is seen between the mode shapes of the three and five-element models. This is 

an indication of validity of analysis. The fundamental natural frequency of the one, three and five-element 

models are 𝜔1 = 8904.7097, 𝜔1 = 8863.4343 and 𝜔1 = 8862.6446.  Fast rise in accuracy with increase 

in number of elements is seen. Relative to the five-element model the accuracy of the one and three-element 

models are respectively 0.47463% and 0.00891%. It is seen from these percentages that the one-element 

model is relatively accurate meaning that the three and five-element models can be considered accurate. 

Since the studied blade rotates at Ω = 300rpm which translates to circular frequency of 𝜛 = 31.4159rad/s 

the problem of resonance during start-up is precluded since the fundamental natural frequency of the system 

is higher than the excitation frequency. The question of degree of contribution of rotation to transient 

response of the blade needs to be addressed. If there was no rotation, The fundamental natural frequency of 

the one, three and five-element models respectively become 𝜔1 = 8904.6427, 𝜔1 = 8863.4056 and 𝜔1 =
8862.6273. It is seen that the one, three and five-element models respectively compute slight increase in 

fundamental natural frequency due to rotation relative to that of the non-rotating blade as 0.0007524%, 

0.000323% and 0.000195%. These percentages translate to mean that effect of rotation could be marginal 

meaning that rotational motion can be ignored under this condition.  Suppose that the rotational speed were 

to be increased to Ω = 3000rpm which translates to circular frequency of 𝜛 = 314.159265 rad/s. The 

corresponding fundamental natural frequency of the one, three and five-element models are 𝜔1 =
8911.34492,𝜔1 = 8866.27918, and 𝜔1 = 8864.35757. A 900% increase in rotational speed respectively 

incurred 0.075267%, 0.032421% and 0.019523% increase in fundamental frequency relative to the non-

rotating the one, three and five-element models. This can be seen to mean that ten times increase in speed 

leads to about hundred times increase in rotational contribution. It can be said in conclusion that rotational 

effects in finite element modelling of helicopter blade can be ignored at law rotational speeds but should be 

taken into account when the rotational speed is high. 

6. Validity of Calculations 
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One element model has been used to analyze rotating cantilever beam in the work [19]. The beam in the 

work [19] was subjected to a rotational velocitygiven in the relation 𝑚𝜛2𝑙𝑒
4 𝐸𝐼⁄ = 1 such that 

𝜛 = √
𝐸𝐼

𝑚𝑙𝑒
4      (41) 

Inserting the numerical values of this work; 𝑙𝑒 =1.2192m, 𝐸 = 70.5 𝐺𝑃𝑎, 𝐼 = 4.162314256 × 10−3 and 

𝑚 = 20.903184𝑘𝑔𝑚−1 in the modal matrix (𝑲̅(1) − 𝑲̅(1),𝒊𝒏)(𝑴̅(1))
−1

 for the one element model (𝑒 = 1) 
gives 

(𝑲̅(𝑒) − 𝑲̅(𝑒),𝒊𝒏)(𝑴̅(𝑒))
−1
= 1010 [

−0.15953590369818 −1.05151358459194
0.14934603865585 0.94215767261662

]   (42) 

The natural frequencies become 

𝜔1 = 9326.1834200071     (43a) 

𝜔2 = 87972.9503427093     (43b) 

The calculated natural frequencies in the work [19] are given by 

𝜔1 = 3.70√
𝐸𝐼

𝑚𝑙𝑒
4 = 3.70𝜛 = 9330.722377353426   (44a) 

𝜔1 = 34.89√
𝐸𝐼

𝑚𝑙𝑒
4 = 34.89𝜛 = 87946.98583544731  (44b) 

A good agreement is seen between the two computations pointing to validity of method and computational 

procedure of this work. The difference between the two stem from small number of decimal places used in 

the coefficient of 𝜛 in“(44)”. Further validation of this work is derived from ANSYS. The analysis of the 

beam is carried out in three stages in ANSYS. The stages are Pre-processing, Solution and Post-processing. 

The three steps are detailed as follows; the first step of pre-processing required creation of the cross-section 

as a rectangular area by dimension which is to be meshed and extruded. The material properties are then 

imputed through the link of material models. The 2-D element and a 3-D elements needed are define. The 2-

D element is needed for the beam cross-sectional area while the 3-D element is needed to extrude the cross-

section along with the geometry of the beam. Five elements are prescribed in the extrusion. The 2-D element 

used in this work is the Quad 4 node (PLANE182) while the 3-D element is the Brick 8 node (SOLID185). 

Two kinds of loads are then applied. The first load is furnished by the boundary condition of constrained 

junction between the beam and the body. The other load is supplied as the rotational velocity of the beam. 

The solution stage required solving the problem as modal analysis type of problem. The post-processor is 

then used to view the results and various animations of the mode shapes of the rotating beam as shown in 

fig.6(a), fig. 6(b), fig 6(c) and fig 6(d). It should be seen from figure that the natural frequency arising from 

ANSYS tally with the corresponding natural frequencies in the matrix √𝑫̅(𝟓). It should be noted that 

frequencies in fig. 4 to fig. 6(d) are given in Hz while those in the matrix √𝑫̅(𝟓) are given in rad/s. Thus 

frequency values in the figures should be multiplied 2𝜋 to correspond with those in √𝑫̅(𝟓). 
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Fig 6(a) Solution of the studied rotational beam from ANSYS 

 

Fig 6(b) The first (fundamental) natural frequency [Hz] and mode shaped of the studied rotational beam 

 

Fig. 6(c) The second natural frequency [Hz] and mode shaped of the studied rotational beam 
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Fig. 6(d) (d)The fifth natural frequency [Hz] and mode shaped of the studied rotational beam. 

CONCLUSION 

Rotational effect on beam-finite element model of rotating cantilever is studied theoretically and validated 

with ANSYS simulation. The incremental stiffness matrix occasioned by rotation is derived using the 

principle of virtual work and given a generalized novel form that takes care of rotational stiffness 

contribution of any element in a multi-element model. The total stiffness matrix (sum of stiffness of non-

rotating element and the rotational incremental stiffness matrix) is applied in the modal analysis of cantilever 

beam. Sensitivity analysis of the arising modal parameters to extent of discretization is carried out. The 

specific sensitivity results are given in what follows;One, three and five-element models where considered 

and fast rise in accuracy with increase in number of elements is seen. For examplethe fundamental natural 

frequency of the one, three and five-element models are respectively 𝜔1 = 8904.7097 rad/s, 𝜔1 =
8863.4343rad/s and 𝜔1 = 8862.6446 rad/s. This is interpreted to mean that relative to the five-element 

model the accuracy of the one and three-element models are respectively 0.47463% and 0.00891%. These 

percentages rather mean that the one-element model is relatively accurate meaning that the three and five-

element models can be considered accurate.The one, three and five-element models respectively computed 

slight increase in fundamental natural frequency due to rotation relative to that of the non-rotating blade as 

0.0007524%, 0.000323% and 0.000195%. The rotational speed is increased to Ω = 3000rpm which 

translates to circular frequency of 𝜛 = 314.159265 rad/s and it is seen that corresponding fundamental 

natural frequency of the one, three and five-element models are 𝜔1 = 8911.34492, 𝜔1 = 8866.27918, and 

𝜔1 = 8864.35757. Thus a 900% increase in rotational speed respectively incurred 0.075267%, 0.032421% 

and 0.019523% increase in fundamental frequency relative to the non-rotating the one, three and five-

element models. This can be seen to mean that ten times increase in speed leads to about hundred times 

increase in rotational contribution. In conclusion, rotational effects are marginal at low rotational speeds 

meaning that they can be ignored under this condition. Rotational effect should be taken into account when 

the rotational speed is high because rotational effect rises faster than rise of the causative rotational speeds. 

REFERENCES 

1. S. E. Singh, and K. Gupta,“Free damped flexural vibration analysis of composite cylindrical tubes 

using beam and shell theories.” J Sound Vibration.1994, 172(2)171–90. 

2. W. Kim, A. Argento, and R. A.Scott,“Free vibration of a rotating tapered composite Timoshenko 

shaft”. J Sound Vibration, 1999, vol.226(1), pp.25–47. 

3. S. Na, H. Yoon, and L. Librescu, “Effect of taper ratio on vibration and stability of a composite thin-

walled spinning shaft”. Thin-Walled Structure, 2006,vol. 44, pp.62–71. 

4. R. Sino, T. N. Baranger, E. Chatelet, and G. Jacquet,“Dynamic analysis of a rotating composite 

https://rsisinternational.org/journals/ijrias/
https://rsisinternational.org/journals/ijrias/
http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN APPLIED SCIENCE (IJRIAS) 

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS | Volume IX Issue II February 2024 

Page 306 

 

 
 

www.rsisinternational.org 

shaft”. Compos Sci Technology, 2008, vol.68, pp.37–45. 

5. R. Southwell, and F. Gough, “The free transverse vibration of airscrew blades,” British A.R.C. 

Reports and Memoranda, No. 766, 1921. 

6. R. Yntema, “Simplified procedures and charts for the rapid estimation of bending frequencies of 

rotating beams,” NACA 3459, 1955. 

7. M. Schilhansl, “Bending frequency of a rotating cantilever beam”, Journal of Applied Mechanics, 

1958,vol.25, pp.  28–30. 

8. W. Carnegie,“Vibrations of rotating cantilever blading: theoretical approaches to the frequency 

problem based on energy methods”, Journal of Mechanical Engineering Science 1,1959,pp. 235–240. 

9. N. K. Chandiramani, L. Librescu, and C. D. Shete,“On the free-vibration of rotating composite 

beams using a higher-order shear formulation”. Aeros Sci Technology, 2002,6, 545–61. 

10. C. Huang, W. Lin, and K. Hsiao,“Free vibration analysis of rotating Euler beams at high angular 

velocity”.Comput Structure, 2010, 88, pp.991–1001. 

11. B. Vikas,A. Dhar, “Simple finite element for dynamic analysis of rotating composite beams: Master 

of Science thesis”, Virginia Polytechnic Institute and State University. 

12. P. P. Friedmann,“Helicopter Vibration Reduction Using Structural Optimization With 

Aeroelastic/Multidisciplinary Constrains – A Survey”, Journal of Aircraft, Vol. 28, No. 1, January 

1991, pp. 8-21. 

13. R. Ganguli, and I.Chopra,“Aeroelastic Optimization of an Advance Geometry Helicopter Rotor”,  

Journal of the American Helicopter Society, Vol. 41 (1), January 1996, pp. 18-28. 

14. A. Phuriwat, “Semi-active control of helicopter vibration using controllable stiffness and damping 

devices.” PhD thesis: The Pennsylvania state university, 2002. 

15. C. C. Ihueze, P. C. Onyechi, H. Aginam, and C. G. Ozoegwu, “Finite Design against Buckling of 

Structures under Continuous Harmonic Excitation,” International Journal of Applied Engineering 

Research, 2011,6(12), pp.1445-1460.  

16.  C. C. Ihueze, P. C. Onyechi, H. Aginam and C. G. Ozoegwu, “Finite Design against Buckling of 

Structures under Continuous Harmonic Excitation,” International Journal of Applied Engineering 

Research, ISSN 0973-4562 V, 6(12), (2011), pp. 1445-1460.  

17. S. S. Rao, “Mechanical Vibrations(4th ed.)”,Dorling Kindersley, India, 2004. 

18. V. John, “Introduction to Engineering Materials (3rd ed.)”, Palgrave, Hampshire, 1992, p.3. 

19. W. T. Thompson, and M. D. Dahleh,“Theory of vibration with applications (5th ed.)”. Prentice Hall, 

upper saddle river, New-Jersey. 

https://rsisinternational.org/journals/ijrias/
https://rsisinternational.org/journals/ijrias/
http://www.rsisinternational.org/

