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Abstract: In this study, we consider one of the generalizations of the well-known Mittag-Leffler function, namely Eg‘ﬁ (z). We

normalize the latter by multiplication with the factor zI'(8) to generate a power series that belongs to the well-known class of
analytic functions A , in the unit disk D. Consequently, and using spiral-like functions, we investigate some inclusion results.
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I. Preliminaries

One of the functions that characterize exponential behavior was developed by a Swedish mathematician and is known as "The
Mittag-Leffler Function” (see [1]). The Mittag-Leffler function (M-L) has become more significant due to its widespread
applicability in many scientific and technical domains. In some branches of the physical and applied sciences, including
probability and statistical distribution theory, fluid mechanics, biological issues, electrical networks, and others, the (M-L)
function has been used recently. Levy flights, random walks, and—most importantly—generalization of Kinetic equations are
examples of integro-differential equations in which this function naturally occurs [2, 3]. The (M-L) function has been studied
extensively in the literature for its normalization, generalization, characteristics, applications, and extension. One can check out
[4, 5] and [6] for further information. The study of fractional generalization of kinetic equations, random walks, Levy flights,
super-diffusive transport, complex systems, and delayed fractional reaction diffusion all involve fractional-order differential and
integral equations; the solutions invariably contain (M-L) function (see [7-10]). Recently, the one-parameter (M-L) function has
also been suggested as a solution for mathematical models in biology and tourism (see [11,12]).

Initially, the one-parameter (M-L) function E, (z) for « € C, with Re (a > 0) (see [13] and [14]) is defined as:

ey P ec
«(2) ~ F(an+1)Z

then, the extension of (M-L) function in two-parameters was studied by Wiman [15]. For all «, 8 € C, with Re (a, 8 > 0), the
two parameters function E, z(2) is defined as:

Py
Ea,ﬁ(z):=; m,zec.

Many studies have provided some generalizations of the (M-L) function (see [16-19]). The main focus of this study is the form
given by Prabhakar [20]:

) z"
6 D= n il .
Ealﬁ(z). 2, Fan+ ) nl’ z,B,0 € C; Rea > 0.
Note that (8),, denotes the familiar Pochhammer symbol which is defined as:
re+
©), = %: (1, ifv=00€C\{0}0(8+1)..0+n—1), ifv=neNbeC,

(1, =n!, n € Ny,N, =N U {0}, N=1{123..}
and(q EN,j=123,..q; Re{Hj, ,Bj} > 0,and Re a; > max{O,Re k]- —1; Re k]-}; Re k]- > 0).
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Let A be the class of analytic functions in the open unit disk D: = {z € C:|z| < 1} and normalized by the conditions £(0) =
f'(0) — 1 = 0 with the form

f(z)=z+nz:; a,z",z € D. 11)

By observing that the above generalized (M-L) function Eg_ﬁ does not belong to family A, we follow the same method of Bansal
and Prajapat [21] to obtain the following normalization of the generalized (M-L) function as follows:

ree,
nram-D+p~" 1.2)

B0y (2= 2M(PESp(D =2+ )

that holds for parameters a, § € C with Rea > 0,Re 8 > 0 and z € C. In this study, we discuss the special case when a and 8
are real-valued parameters. For functions f and g in A4, f of the form (1.1) and g(z) = z+ Y-, b, z", , z € D, the Hadamard
product is defined by

Fxg)@):=z+ Z a,b,z",z € D.
n=2

Let S be the subclass of A whose members are univalent in D. Robertson [22] studied two well-known subclasses of S, namely,
the classes of starlike and convex functions. Function f € A given by (1.1) is said to be starlike of order y,0 <y < 1, if and only

if Re (zf—(z)) > y,z € D,and the function class is denoted as S*(y). We also write $*(0) = : S*, where S* denotes the classof

f(2)
functions f € A such that f(D) is starlike domain with respect to the origin. Function f € A is said to be convex of order y,0 <
y <1, if and only if Re (1 + Z}’:,—(S)) > y,z € D and the class is denoted as K (y). Furthermore, K: = K(0) represents the well-

known standard class of convex functions. By Alexander's duality relation (see [23]), we know that f € K & zf'(z) € S™.
Function f € A is said to be spiral-like if
L Zf'(z
Re (e—lf S )> >0,z€D,

f(@)

for some & € C with |€] < % these classes were introduced in [24].

In this study, we consider the subclasses of spiral-like functions S(¢,y, p)andK(¢,y, p),that were introduced and studied by
Murugusundramoorthy [25,26] and the class R* (¥, §) that was introduced by Swaminathan [27].

Definition 1.1. For0 <p <10<y<1land|¢| < g define the class S(¢, v, p) by
zf'(2)

A =p)f(2) + pzf'(2)

Definition L.2.For0 < p < 1,0<y <1land|{]| < g define the class K (¢,v, p) by

e 2@ +f'(2)

'@ +pzf"(2)

Next, Murugusundramoorthy [25,26], provided sufficient conditions for function f to be in the above classes.

S(f,y,p):={f€A:Re (e"f ) >ycosf,zED}

K(E,y,p):z{f&A:Re(e )>ycosf,zED}.

Lemma 1.1. Function f given by (1.1) is a member of S(&,v, p) if

[ee]

Y. [A=p)@—Dsecs + A= +np—pllanl <1 -y

n=2

where|§| <~,0<p<10<y<1.
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Lemma 1.2. Function f given by (1.1) is a member of K (¢, vy, p) if

(o0}

> al-p)n - sect + A —n)A+np—p)lla, <17,

n=2

Where|E|<§,0Sp<1,0Sy<1.

Definition 1.3. Function f € A is said to be in class R* (9, 8), where t € C \ {0}, 0 <9 < 1,and § < 1, if it satisfies the
inequality
| a-92+orem-1
|21(1 -5 +a-92 9@ -1

<1,ze€eD.

Lemma 1.3. If f € R* (9, 9) is of the form (1.1), then
2|7l(1 - 6)

|an|Sm,n€N\{1} L3)

The bound given in (1.3) is sharp for

1 z 1 2(1 = &)™t
T e
1921—5 0 1-2

Next, we obtain sufficient conditions for the function Egig (z) to be in the classes S(&,v, p) and K(&,y, p) respectively.

I1. Inclusion Results for The Normalized (M-L.)

We follow the same approach of authors in [28-30], who studied the two-parameter (M-L): E, 4(z). Prior to proving our main
results, we compute the following:

N (6).I'(B)
ES,()—-1=

nlan—-1)+p) (2.1)
: N (6)nT'(B)
(Eg'ﬁ) W-1= ; m=-D!Tlan—-1)+p) (2.2)
R § (0).I"(B)
(Eg'ﬁ) @) = Z n=2)!ran—-1+p) (2.3)

n=2
Theorem 2.1. If

(1= p)secE +p(1 = MI(ESR) (1) + (1 = p)(A —y — sec ES 5 (1 < 2(1 —y),

(2.4)
thenE? ; € S(&, v, p) whereE] ; is defined by (1.2)
Proof. Because E,ff,[g are defined by (1.2), according to Lemma 1.1 it is sufficient to show that
N ONIG)
— — — — <1-—v.
D, [0=pn=Dset + Q=N +np =)l et <1y 5

n=2

Because the left-hand side of inequality (2.5) could be written as
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(0),.I'(B)
n!'I'an—1)+p)

(0),.I'(B)
m=—D!I'(a(n—1)+p)

(o0}

LGy p)= Z [(1-p)secEm—1)+ (1 —y)A+np—p)]

n=2

=[(1 = p)sec +p(1 =] ). +1-p)(1-y

N 0).I'(B)
~secs) HZZ T (am—1)+pB)

therefore, by using (2.1) and (2.2), we get
LEv.p) = - p)sect + p(1 -] |(ES5) (D) —1] +(1=p)(AL—y—sec§[E5(1) — 1]
= [(1 = p)secé + p(1 —]( a,B) WD +A=-p)(A -y —secdEsz(1) —(1-v)

Thus, from assumption (2.4), it follows that J,(§,y,p) <1—y, that is, (2.5) holds;, therefore, EaﬁeS(f ¥, P)-
O

Theorem 2.2.1f

[(1 - p)secE +p(1—NI(ESL) (D) + A -1(EL) (1) <21 —7),

(2.6)
thenEeﬁ € K(&,y,p). whereE? «,p 15 defined by (1.2)
Proof. Using definition (1.2) of E, ﬁ, in view of Lemma 1.2 it is sufficient to prove that
(6)I'(B)
— — — <1-—yvy.
Z nl(1 = p)n— Diset + (1 =YL +np = Pl e et <1 -y o

The left-hand side of inequality (2.7) could be written as

[oe]

).
G r.x= Y. All—p)—Dsect + (1~ +np—p)) (i ()n _(f))+ﬁ)

(©)u(B) N 0)I'(B)
m—irem-n+p ¢ _V)Z =D Tamn-1+8)

n=2
[oe]

=[(1 = p)sec +p(1 =] ).

n=2

and from (2.2) and (2.3) we get
& v.p) = [(1 = p)sec sec € +p(1—P)(ELp)" (1) + (1 -1 [(ELs) M - 1].
Hence, assumption (2.6) implies that J,(¢,y,p) <1—y that is (2.7) holds, and consequently, Eo‘fﬁeK(E,y,p).

O

I11. Inclusion Results for The Image ofa Linear Operator

First, we introduce the following linear operator A5: A — A by the means of Hadamard product

0),I
AFf(2):= f(2) * ES 4(2) _Z+z n!I"(fx()n _(1'8))_'_'8) a,z",z € D.

Next, we explore the sufficient conditions for the images of the linear operator Az on functions of the class R* (9, 8). Thus, we
provide sufficient conditions such that these images are in the classes S(¢,y, p) and K(¢,v, p), respectively.

Theorem 3.1.For f(z) € A. If
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27|(1 =8 L (EQp(t
%[(1 —p)secsecé +p(1— y)][Eg_B(l) — 1] +1-p)A—y—sec secf)f <%()— 1) dt<1-y
0
(3.1)
then
AERT(S,8)) < S, p).

Proof. Let f € R*(J, §) be of the form (1.1). To prove that Az (f) € S(§,v,p), from Lemma 1.1 it is necessary to show that
), I
0).I'(B) o, <1—7y.

Z [(1=p)(n = Dsecs + (1 =V +np =P e =

n=2

We denote the left-hand side of the above inequality by

0),.I
I3, p)i= Enza [ = p)(n = Dsec$ + (1 —y)(1 +np — p)] ©.rE) la, |-

nr'an—1)+p)

Because f € R*(9,8), by Lemma 1.3 we have
2[7|(1 = 8)
< EN\{1

(6)aI(B)
nflam—1)+p)

and using the inequality 1 + 9(n — 1) = 9In we obtain

2ri(1-8) 1
€0 ST [ )= Dsect + (1=1)(1+np = p)] X
0).I'
OB

C2[(1-6) X
=T, A pysect + o -]t

—secé) i
n=2

From the above inequality, using (2.1), we get
2lt|(1-6 1 (ED (¢
—lfl(ﬁ D11 - pysece +p(1 - MIED) —1] + (1 - p)(A —y - sec E)f <—‘;( L 1) dt,
0
O

n=2
ORI
nn!l'(a(n—1) + ,8)}

L& v.p) <
hence, the assumption (3.1) implies then J3(§, v, p) < 1 — v, thatis Az (f) € S(§,v, p).
Using Lemma 1.2 and following the same procedure as in the proof of Theorem 2.2, we obtain the following result:.

Theorem 3.2. For f(z) € A. If

Z'T'% D11 = p)sec sec +p(1—PI(EL,) (1) + (1 — p)(A — y —sec sec £ ES ;(1) — (1~} S 1—y
(3.2)
then
AZ(R(9,8)) € K(,v,p)
Proof. Let f € R™(9, &) be of the form (1.1). In view of Lemma 1.2, to prove that Az () € K(§,y, p) we must show that
O® a5

; n[(1—p)(n—1)secsec§ +(1—y)(1+np— p)]n! Fan—1 +p)

Because f € R™(9, ), then by Lemma 1.3 we have
Page 80
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2lt|(1 =6
la,| < |7]( )

STrom—1 eV
and 1 + 9(n — 1) = IYn. Denoting the left-hand side of the inequality (3.3) by

(o0}

@),.I'(B)
n=2
We deduce that

Ji&y,p)= )l =)= Dseg + (L= (A +np—p)) et slal

.G v.p) < wz [A—-p)secé(m—1)+ (1 —y)A +np—p)] x 6Dl B)

nll(a(n—1)+p)
207|(1 - &) N n(6),.I'(B)

= S - pysec +p(1 —m; e st S (DI
S SR OV, ()

nll'lan—1) + ,8)}
Now, using (2.1) and (2.2), the above inequality yields

JiGyrpy <A1A=0)

)

(- pysecg + p(1 = P|(ESp) W — 1] + (1 = p)(A — ¥ — sec H[ELp(1) — 1]}
2|7|(1 — &) N )

=————{[(A = p)sec§ +p(L=MI(ESp) (1) + (1 = p)(1 —y —sec ES 5 (1) — (1 = 1)}

Therefore, assumption (3.2) vyields

O

Ja(v,p) <1—y, which implies inequality (3.3), that is Az(f) € K(&,v,p).
IV. Inclusion Results for The Alexander Integral Operator

Theorem 4.1.For the Alexander Integral Operator ¥ be given by

z 0
vi= [ e

dt,z €D
0 t (4.2)
z E9(t
'Pg‘(z)=j a‘ﬁ()dt,zeD.
t
0
If

[(1— p)secé +p(L—MI(ELS) (D) + L —p)(L —y — sec OEL 4(1) < 2(1 — ),
then¥g € K(§,v,p).
Proof. Since

=zt OISO 7
n=2

-—,z€D.
nfam—-1)+p) n z
According to Lemma 1.2, it is sufficient to prove that

4.2)
) 0

Sl =)= Dsect + (L -1+ np - pyl s LD
n=2

nlan—1)+p) =1-vy
or, equivalently

oo

0),.I
> 1= g - Dsect + 1= )L +np - )]l &)

n!F(a(n—1)+,[>’)S1_y
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The proof of Theorem 4.1 is parallel to that of Theorem 2.1. o
Theorem 4.2.Let the function ¥z be given by (4.1). If

Eg,g ®)
t

[(1—p)secsecé +p(1—}/)](Eg_B(1)—1) +(1—p)(1—y—secsec€)f ( —1)dt§1—y,
0

4.3)
then?g € S(§,v,p).

Proof. Because ¥ has the power series expansion (4.2), then by Lemma 1.1 it is sufficient to prove that

(oo}

Z 1[(1— Y(n—1secé+ (1 —y)(1+np—p)] @)l (B) ~
i n p Y pP—pP ATr@m-—D+p) Y.
The left-hand side of the above inequality could be rewritten as

) @)l (B)

1
Js@&v.p) = Z 5[(1 —p)(n—Dsecé+ (A —-y)A+np—p)] x

n=2

nl(an—1)+p)

[oe]

=) [ -psect +p(1 -]

O
nll'lan—1)+p)

(6).I'(B) N
n!r(a(n—1)+5)+(1_p)(1_y_secf); n

and using (2.1), we get

2] ! Eg,ﬁ(t)
Js(v.p) < [(1 = p)sec +p(1 = MI[EG(1) — 1] + (1 = p)(1 —y = sec?) fo ——1)at.

Therefore, if the assumption (4.3) holds, then J5(§,v,p) < 1 —y. Hence, ¥ € S(5,v,p). o
V. Conclusions

In this study, we normalized the generalized (M-L) to deduce the analytic form Egﬁ, that we investigated its inclusion results in
the subclasses the classes S(&,y,p) and K(¢&,y,p). In addition, we discuss sufficient conditions for the linear operator
AZ(f), f € R*(¥,8) to be a member of the same subclasses, i.e. S(§,y,p) and K(¢,y,p). Finally, the investigation has been
extended to involve Alexander operator ¥ by the means of Hadamard product.
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