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ABSTRACT 

This study reviews optical satellite image classification methods for identifying and classifying vegetation types, 

focusing on reliable techniques and methodologies. Traditional pixel-based approaches have limitations, 

particularly with high spatial resolution images, where the "salt-and-pepper effect" and "H-resolution problem" 

can occur. Object-based Image Analysis (OBIA) has emerged as a powerful alternative, grouping pixels into 

spectrally homogeneous objects and leveraging spatial and contextual features to improve accuracy. Supervised 

and unsupervised classification methods are recognized, with supervised classification offering greater precision 

and control, while unsupervised classification provides flexibility and exploratory data analysis.  Machine 

learning algorithms, such as Support Vector Machines (SVM), Random Forest (RF), and Artificial Neural 

Networks (ANN), have demonstrated superior applicability and achieved higher classification accuracy in 

vegetation research. Deep learning architectures, including Convolutional Neural Networks (CNN), U-Net, and 

ResNet, have proven highly effective in extracting complex features from high-dimensional data. The study 

highlights that no single method is universally superior, and the most effective approach is determined by the 

intrinsic properties of the data and the precise objectives of the classification endeavor. Neural Networks (NN) 

generally demonstrate the highest median overall accuracy, and deep learning models frequently achieve 

superior overall accuracy, while traditional machine learning algorithms remain widely adopted and deliver 

satisfactory results. This study contributes to the development of more accurate and efficient methods for 

vegetation identification and classification using optical satellite images, and has implications for remote sensing 

applications in environmental monitoring and management. 

Keywords: Optical satellite image classification, Vegetation mapping, Object-based Image Analysis (OBIA), 

Machine learning (SVM, RF, ANN), Deep learning (CNN, U-Net, ResNet) 

INTRODUCTION 

The process of classifying vegetation from optical satellite imagery involves converting discernible spectral 

characteristics into identifiable vegetation types, a procedure commonly referred to as image classification 

(Kavzoglu et al., 2024). The selection of an appropriate methodology is critical, as it profoundly influences the 

accuracy and efficiency of vegetation identification (Lu et al., 2024). In this study, optical satellite images 

classification methods are reviewed, focusing on reliable techniques for identifying and classifying vegetation 

types. 

Traditional classification methods have historically relied on a pixel-based approach, where each individual pixel 

within an image is classified independently based solely on its spectral signature (Li & Wan, 2015). This method 

proves effective for monitoring broad land use changes over short periods and for applications requiring 

complete data coverage. However, a significant drawback of pixel-based techniques, particularly when applied 

to high spatial resolution images (ranging from 1 to 10 meters), is the emergence of the "salt-and-pepper effect" 
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and the "H-resolution problem" (Anderson, 2020). These issues arise because higher resolution imagery captures 

increased intra-class spectral variability, leading to individual pixels being misclassified relative to their 

neighboring pixels, creating a noisy appearance in the final map (Derksen, 2019). 

To overcome these limitations, Object-based Image Analysis (OBIA), also known as Geographic Object-based 

Image Analysis (GEOBIA), has emerged as a powerful alternative (Blaschke et al., 2014). Instead of classifying 

individual pixels, OBIA groups spatially contiguous pixels into spectrally homogeneous "objects," and then 

performs classification on these objects as the fundamental processing units. This approach effectively reduces 

local spectral variation caused by phenomena such as crown textures, gaps in vegetation, and shadows. It directly 

addresses this challenge by grouping pixels into meaningful, homogeneous objects, thereby enabling the 

effective utilization of spatial and contextual features (Kucharczyk et al., 2020). 

Furthermore, OBIA explicitly leverages not only spectral values but also spatial properties, including the size 

and shape of objects, as features for classification, leading to substantial improvements in accuracy (Jafarbiglu, 

2023). The typical OBIA workflow encompasses image segmentation (often using techniques like the Fractal 

Net Evolution Approach - FNEA), followed by feature generation and selection, and finally, classification using 

methods such as nearest neighbor algorithms (Rajbhandari, 2019). 

MATERIALS AND METHOD 

In this study, optical satellite images classification methods are reviewed, focusing on reliable techniques for 

identifying and classifying vegetation types.  A systematic literature review was conducted, utilizing Google 

Scholar as the primary search engine. The search was initially customized to retrieve publications from the past 

eight years; this is from 2018 to date. Forty- two studies were obtained within this time frame. However, few 

earlier studies i.e. five studies, were included where relevant. This approach enabled the identification of the 

most informative spectral bands and vegetation indices for vegetation identification. 

Supervised and Unsupervised Classification 

Within the realm of land use classification from satellite images, two primary methodological categories are 

recognized: supervised and unsupervised classification (Talukdar et al., 2020). Supervised classification 

involves the user providing training samples areas with known class labels, to guide the classification algorithm 

(Richards & Richards, 2022). This method offers greater precision and control over the output but can be time-

intensive due to the need for careful training data selection and refinement. It requires the analyst to delineate 

expert-defined areas of known vegetation types, which are then used to train and calibrate the classification 

algorithms (Moraes et al., 2024). In contrast, unsupervised classification employs clustering algorithms, to 

identify natural groupings or classes within the data, without requiring prior user input. This approach offers 

greater flexibility and is particularly valuable for exploratory data analysis, as it can reveal unexpected patterns. 

While it may sometimes yield lower accuracy compared to supervised methods, its automated nature can be 

advantageous when time is a constraint (Wu, 2018). An advanced form of unsupervised clustering is the Iterative 

Self-Organizing Data Analysis Technique (ISODATA), which dynamically adjusts the number of clusters 

through split or merge operations and is widely applied in agricultural remote sensing for distinguishing crop 

types (Rivera Rivas et al., 2022). 

Machine Learning Algorithms 

Machine learning models have demonstrated superior applicability and achieved higher classification accuracy 

in vegetation research when compared to traditional quantitative approaches (Kasahun & Legesse, 2024). These 

algorithms offer robust solutions for handling complex datasets and intricate patterns inherent in remote sensing 

imagery (Miao et al., 2024). 

• Support Vector Machines (SVM): SVMs are extensively utilized for high-dimensional datasets and 

image classification. They exhibit strong performance even with limited training sets by identifying a 

hyperplane that maximizes the margin between different classes. SVMs effectively manage noise and 

outliers and frequently outperform other methods such as maximum likelihood classifiers (Chang et al., 
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2025). However, challenges persist in optimal parameter selection and difficulties in interdisciplinary 

application. 

• Random Forest (RF): RF is a powerful machine learning technique that constructs an ensemble of 

numerous decision trees. It is widely applied for image classification and land cover extraction due to its 

proficiency in managing high-dimensional and large datasets, thereby effectively mitigating the risk of 

overfitting (Jarocińska et al., 2023). Despite its strengths, RF can suffer from a lack of interpretability 

and sensitivity to parameter tuning (Luo et al., 2019). 

• Artificial Neural Networks (ANN): ANNs have played a significant role in remote sensing 

classification for many years (Giuffrida et al., 2020). The Spectral Characteristics and Artificial Neural 

Network (SCANN) method, which leverages specific spectral reflectance characteristics, demonstrated 

an impressive accuracy exceeding 94% for vegetation species determination (Chaity & van Aardt, 2024). 

• Maximum Likelihood (ML): A long standing and fundamental method in remote sensing, ML operates 

under the assumption that spectral signatures adhere to a normal distribution. It is effective for classifying 

land cover and vegetation, particularly in agricultural contexts (El-Omairi & El Garouani, 2023). 

However, its effectiveness hinges on accurate estimates of class means and covariances, which can be 

challenging with limited or noisy training data. Among common classification methods, ML generally 

exhibits the lowest median overall accuracy (approximately 86.00%) but can achieve high accuracy 

(95.93%) when used with RGB sensors (Cai & Koide, 2023). 

• K-Nearest Neighbors (K-NN): K-NN is a straightforward yet effective method that classifies data points 

by assigning them to the majority class of their nearest neighbors. Its performance is contingent on the 

chosen 'k' value and distance metric, and it can be computationally intensive for very large datasets. K-

NN demonstrated a median accuracy of 90.19% in relevant studies (Cunningham & Delany, 2021; 

Zhang, 2021). 

• Decision Tree (DT): DT algorithms construct a hierarchical, tree-like structure to recursively partition 

the feature space, offering both interpretability and operational efficiency. A notable drawback is its 

susceptibility to overfitting, especially when dealing with noisy or high-dimensional data (Azam et al., 

2023; Li et al., 2024). 

Deep Learning Architectures 

Deep learning methods are at the forefront of remote sensing analysis, offering high predictive accuracy by 

autonomously learning relevant data features in an end-to-end manner. These approaches have proven highly 

effective in extracting complex, nonlinear feature representations from high-dimensional data (Han et al., 2023). 

Convolutional Neural Networks (CNN): CNNs are exceptionally effective in capturing spatial patterns and 

extracting a diverse range of vegetation properties from remote sensing imagery. They consistently outperform 

traditional shallow machine learning methods, particularly by exploiting the intricate spatial patterns present in 

very high spatial resolution data. CNNs have revolutionized image processing and represent a pivotal direction 

in deep learning research for remote sensing applications (Khan et al., 2018). It excels at learning complex spatial 

patterns from high-resolution data (Alzubaidi et al., 2021). 

U-Net and ResNet Architectures: 

• U-Net: This architecture is a fully convolutional network built upon an encoder-decoder structure, widely 

adopted in remote sensing image segmentation due to its clear segmentation logic and high efficiency 

(Khan & Jung, 2024). U-Net can effectively delineate polygonal and fragmented forest areas, achieving 

high overall classification accuracy (e.g., 94.7% for forest vegetation classification) (Wagner et al., 

2019). However, its capacity to extract deep abstract information from hyperspectral images can be 

limited, leading to issues such as uneven edges and misclassification (Bidari et al., 2024). 

• Res-UNet: This architecture enhances the U-Net by incorporating residual connections, which  
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significantly improves the network's feature learning capability by allowing for deeper network layers 

without degradation (Maqsood et al., 2025). This design facilitates superior integration of global features 

while preserving high-resolution semantic information, thereby improving the accuracy of edge 

segmentation for ground objects (Tan et al., 2024). 

• ResNet-18: This specific deep learning model utilizes linear spectral mixture analysis and spectral 

indices to extract pixels, demonstrating effective overall classification accuracy in Landsat 8 OLI images 

(Singh & Tyagi, 2021). 

Stacked Autoencoders (SAE) and Deep Belief Networks (DBN): 

• Stacked Sparse Autoencoder (SAE): SAEs offer robust learning performance for extracting abstract 

and high-level feature representations from both spectral and spatial domains (Yan & Han, 2018). For 

instance, an SAE classifier trained for African land-cover mapping achieved an overall accuracy of 

78.99%, surpassing the performance of Random Forest (RF), Support Vector Machine (SVM), and 

Artificial Neural Network (ANN) (Li et al., 2016). 

• Deep Belief Networks (DBN): DBNs are a widely studied deep learning architecture that emulates the 

hierarchical structure of the human brain, progressively extracting features from lower to higher levels 

of abstraction. DBN-based methods have been shown to outperform other approaches, yielding more 

homogeneous mapping results with well-preserved shape details (Ji et al., 2014). 

Comparative analysis of various machine learning and deep learning algorithms commonly employed for 

vegetation classification from optical satellite imagery is presented in table 1. Their mechanistic approaches, 

strengths, limitations, typical accuracy ranges, and key applications are highlighted. In addition to the citations 

made in the discussion so far, De Kok et al., (1999) and Wang et al., (2023) also made some analyses in this 

regard. 

Table 1: Comparison of Key Vegetation Classification Algorithms 

Algorithm 

Type 

Mechanistic 

Approach 
Strengths Limitations 

Typical 

Accuracy 

Range (OA) 

Key 

Applications 

K-means 

Unsupervised 

clustering, identifies 

patterns based on 

statistical similarities. 

Flexible, good for 

exploratory data 

analysis, identifies 

unexpected patterns. 

Sensitive to 

noise/outliers, 

determining 

optimal K is 

crucial. 

Lower 

accuracy than 

supervised. 

General 

classification, 

exploratory 

data analysis. 

ISODATA 

Enhanced K-means; 

dynamically 

determines cluster 

numbers through 

split/merge operations. 

More flexible than K-

means, widely used for 

distinguishing crop 

types. 

Can be combined 

with ML for 

refinement. 

- 

Agricultural 

remote sensing, 

crop type 

distinction. 

SVM 

Supervised, maximizes 

margin between 

classes in high-

dimensional space. 

Strong performance 

even with small 

training sets, handles 

noise/outliers well. 

Parameter 

selection 

challenges, 

interdisciplinary 

application 

difficulties. 

High (often 

outperforms 

ML). 

High-

dimensional 

datasets, image 

classification, 

land cover 

extraction. 

RF 

Supervised, aggregates 

numerous decision 

trees. 

Robust, handles high-

dimensional/large 

Lack of 

interpretability, 

sensitivity to 

High (76.03% 

to 98%). 
Image 

classification, 
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datasets, mitigates 

overfitting. 

parameter 

selection. 

land cover 

extraction. 

ANN/NN 

Supervised, learns 

features through 

interconnected layers. 

Revolutionized 

classification, effective 

feature extraction. 

Initial weight 

selection, slow 

convergence. 

Highest 

median 

(92.55%), up 

to 93.02% with 

multispectral. 

Agricultural 

identification, 

general 

classification. 

ML 

Supervised, assumes 

spectral signatures 

follow normal 

distribution. 

Effective for land 

cover/vegetation 

classification. 

Requires accurate 

class 

means/covariances, 

challenging with 

limited/noisy data. 

Lowest median 

(86.00%), up 

to 95.93% with 

RGB sensors. 

Land cover, 

vegetation 

classification 

in agriculture. 

K-NN 

Supervised, classifies 

based on majority 

class of nearest 

neighbors. 

Simple yet effective. 

Performance 

depends on K and 

distance metric, 

computationally 

costly for large 

datasets. 

Median 

90.19%. 

General 

classification. 

DT 

Supervised, 

recursively partitions 

feature space into tree-

like structure. 

Interpretability, 

operational efficiency. 

Prone to 

overfitting with 

noisy/high-

dimensional data. 

- 
General 

classification. 

CNN 

Deep learning, learns 

hierarchical spatial 

patterns through 

convolutional layers. 

Highly effective for 

spatial patterns, 

extracts wide array of 

properties, 

outperforms shallow 

ML. 

Requires 

substantial labeled 

data. 

High accuracy. 

Semantic 

segmentation, 

high-resolution 

data analysis. 

U-Net 

Deep learning, 

encoder-decoder 

structure for semantic 

segmentation. 

Concise logic, 

excellent efficiency, 

identifies 

polygonal/fragmented 

areas. 

Limited deep 

abstract 

information 

extraction from 

hyperspectral, 

uneven edges. 

High (e.g., 

94.7%). 

Remote 

sensing image 

segmentation, 

forest 

vegetation 

classification. 

Res-UNet 

Deep learning, U-Net 

with residual 

connections. 

Enhanced feature 

learning, deeper layers, 

integrates global 

features, improves 

edge segmentation. 

- - 

Hyperspectral 

image 

vegetation 

classification. 

SAE 

Deep learning, learns 

abstract, high-level 

features from 

spectral/spatial 

domains. 

Strong learning 

performance. 
- 

78.99% for 

land-cover 

mapping. 

Large-scale 

land-cover 

mapping. 

DBN 

Deep learning, mimics 

hierarchical brain 

structure for feature 

extraction. 

Produces 

homogeneous mapping 

results with preserved 

shape details. 

- 

Outperforms 

SVM, NN, 

SEM. 

Urban LULC 

mapping, 

remote sensing 

image 

classification. 
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CONCLUSION 

Overall, Neural Networks (NN) generally demonstrate the highest median overall accuracy (92.55%) 

(Adejumobi et al., 2024) and lower variability among common classification methods, proving particularly 

effective in agricultural identification. They achieve optimal performance when applied to multispectral sensors, 

with a median accuracy of 93.02% (Hassan et al., 2024). 

The selection of classification methodology is increasingly influenced by the specific characteristics of the data, 

such as resolution and dimensionality, and by the unique requirements of the application, rather than a singular 

"best" method (Du et al., 2020). While deep learning models, including Neural Networks and Convolutional 

Neural Networks, frequently achieve superior overall accuracy (Li et al., 2021), traditional machine learning 

algorithms like Random Forest and Support Vector Machines remain widely adopted and deliver satisfactory 

results in many contexts. The distinction between supervised classification, favored for its precision, and 

unsupervised classification, valued for exploratory analysis (Fazil et al., 2023), further underscores this adaptive 

approach. Moreover, evidence suggests that different algorithms may perform optimally in specific scenarios, 

and the inherent modularity within contemporary deep learning frameworks allows for significant flexibility in 

adapting architectures to diverse problems (Panzer & Gronau, 2024). This indicates that a universally superior 

method does not exist. Instead, the most effective approach is determined by the intrinsic properties of the data 

(e.g., high-dimensional hyperspectral data may benefit more from specialized deep learning architectures like 

U-Net, whereas simpler tasks might be adequately addressed by RF or SVM) and the precise objectives of the 

classification endeavor (e.g., prioritizing speed over accuracy, or the need for model interpretability) (Haidarh 

et al., 2025). This trend highlights a growing emphasis on developing tailored solutions and integrating hybrid 

approaches to leverage the strengths of various methodologies. 
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