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ABSTRACT 

This study addresses the challenges of modeling multivariate time series data arising from the COVID-19 

pandemic, characterized by overdispersion, zero inflation, and dynamic interdependencies among key indicators 

such as new cases, death cases, and recoveries. The aim is to develop and evaluate advanced statistical models 

that can accurately capture these complexities for improved surveillance and forecasting. The methodology 

adopts a Bayesian framework to estimate both Vector Linear and Log-Linear Zero-Inflated Negative Binomial 

INGARCH (ZINB-INGARCH) models. The data consist of daily reported COVID-19 cases, deaths, and 

recoveries from 2020 to 2023. Bayesian Markov Chain Monte Carlo (MCMC) methods were employed to 

estimate model parameters, using prior distributions tailored for overdispersed and zero-inflated count data. 

Results showed that the Log-Linear ZINB-INGARCH model performed better than the linear variant in terms 

of parameter significance, stationarity, and dynamic stability. Particularly, stationarity parameters in the log-

linear model (e.g., d3=−0.507, 95% HDI: [-0.990, -0.020]) demonstrated clear evidence of mean reversion, while 

autoregressive coefficients such as A[3,3]=0.150, (HDI: [0.074, 0.200]) confirmed strong self-excitation. The 

dispersion parameters ϕ1=2.793, ϕ2=2.903, and ϕ3=2.116 further confirmed the presence of significant 

overdispersion. In contrast to the linear model’s higher zero-inflation rates ( π1 = 0.48), the log-linear model 

revealed minimal zero-inflation probabilities around πi ≈0.019, indicating better fit to structural zeros in the data. 

Residual diagnostics supported these results, with Ljung-Box p-values of 1.000 indicating successful modeling 

of temporal dependencies. The study provides robust empirical evidence that log-linear ZINB-INGARCH 

models are more effective in capturing the statistical properties of COVID-19 data, offering improved tools for 

policymakers and epidemiologists in managing future public health crises. 

keywords; : Overdispersion, Zero inflated distribution, Count data, Bayesian inference, Zinb-Ingarch, Covid-

19, Multivariate Time Series. 

INTRODUCTION  

The COVID-19 pandemic has highlighted the urgent need for statistical models capable of handling complex 

interactions among public health indicators such as new infections, recoveries, and fatalities. Existing 

multivariate time series models including Multivariate Count Autoregression (Fokianos, 2020), multivariate 

INGARCH (Heinen et al., 2007), and state-space approaches (Shapovalova et al., 2022) have been extensively 

applied to discreet multivariate count data. However, their effectiveness diminishes when dealing with discrete 

data that exhibit overdispersion and a high frequency of zeros, features commonly observed in COVID-19 time 

series (Zhang, 2022). Time series models like Autoregressive (AR), Moving Average (MA), and ARMA 

frameworks are fundamentally designed for univariate, continuous, and stationary data, thus limiting their 

applicability to epidemiological count data, which are inherently non-Gaussian, overdispersed, and often zero-

inflated (Zhu et al., 2020). 

To better handle such characteristics, time series methodologies have evolved through the integration of 

Generalized Linear Models (GLMs), giving rise to models such as the Generalized Autoregressive Moving 

Average (GARMA) model (Benjamin et al., 2003) and GLARMA (Generalized ARMA) a framework of Davis 

et al., 2002. The Inter-Generalized Autoregressive Conditional Hertroskedasticity (INGARCH) model was 

introduced by Ferland et al. (2006), with specification based on Poisson assumptions. Subsequent advancements 
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allowed for alternative count distributions, including the negative binomial (Zhu, 2011), generalized Poisson 

(Zhu, 2012), and generalized compound Poisson (Gonçalves et al., 2023), enabling better accommodation of 

overdispersion. Despite these developments, standard Poisson and negative binomial-based INGARCH models 

often fail to adequately model structural zeros, a limitation addressed by Zero-Inflated INGARCH (ZI-

INGARCH) models. These models enhance the INGARCH framework by incorporating mixture components to 

explicitly model excess zeros (Fokianos et al., 2020; Gonçalves et al., 2023). Notably, the Zero-Inflated 

Generalized Poisson (ZIGP)-INGARCH and Zero-Inflated Negative Binomial (ZINB)-INGARCH models 

extend this capacity by accommodating a wide range of dispersion scenarios and zero inflation, making them 

well suited for real-world applications such as COVID-19 case tracking, hospitalization monitoring, and 

mortality estimation (Zhu, 2012) 

LITERATURE REVIEW 

Recent advancements in time series modeling have increasingly focused on extending methodologies to 

multivariate settings to jointly capture overdispersion, zero inflation, and both serial and cross-series interactions 

critical features in pandemic data involving new infections, deaths, recoveries, vaccine effects and so on. Most 

research in this area has focused on univariate cases, while multivariate studies have largely been limited to 

Poisson-related models. Multivariate zero-inflated negative binomial models provide a modern and flexible 

alternative to Poisson-based approaches, which are constrained by the assumption of equidispersion (Gonçalves 

et al., 2016; Tsamtsakiri, 2023). Research has evolved along two primary paths: univariate and multivariate 

approaches. In the univariate case, foundational works of Li (1994) pave way for the GLARMA models proposed 

by Davis et al. (2001) and GARMA models developed by Benjamin et al. (2003). These were further advanced 

by Andrade (2017), who applied Bayesian estimation via MCMC and Box-Cox transformations. Theoretical 

foundations for stationarity were established by Woodard et al. (2011), justifying the use of maximum likelihood 

estimation in GARMA model of Benjain (et al 2003), the works of Aryuyuen et al. (2014) that propose the Zero 

Inflated Negative Binomial-Generalized Exponential (ZINB-GE) distribution as a new model for count data with 

excess zeros and overdispersion. Using both simulated datasets under varying parameter settings and two real-

world applications hospital stays among older U.S. residents and household purchases of consumer goods the 

study evaluates the model’s performance. The ZINB-GE is formulated as a mixture of a Bernoulli process for 

structural zeros and a Negative Binomial-Generalized Exponential process for counts. Parameters are estimated 

via maximum likelihood using numerical methods in R. Simulation results show that estimation improves with 

larger sample sizes, though higher zero proportions increase mean squared error. Empirical findings reveal that 

the ZINB-GE model fits the real datasets significantly better than traditional ZIP and ZINB models, supported 

by lower AIC and BIC values and favorable goodness-of-fit tests. The study concludes that the ZINB-GE 

distribution provides a flexible and effective alternative for modeling overdispersed zero-inflated count data and 

so on. 

In the multivariate case, complex dependence structures have been adopted to better capture inter-series 

relationships. Soyer et al (2021) set out to review Bayesian approaches for modeling multivariate time series of 

counts, motivated by the growing need to capture both serial dependence and cross-sectional dependence in 

applications such as disease surveillance, accidents, and consumer behaviour. They focus on Poisson, negative 

binomial, INAR, and state-space models, with estimation based on Bayesian inference using MCMC, particle 

learning, and related methods. Their findings show that Bayesian modeling provides flexible tools for handling 

overdispersion, zero inflation, and forecasting, though computational challenges remain in high-dimensional 

settings. Bárdossy et al (2017) focus on drought analysis, aiming to construct multivariate count time series 

models capable of describing dependence across drought-related variables and over time. Using hydrological 

and climatological data, they develop models based on INAR processes and multivariate stochastic structures. 

Bayesian estimation methods are employed, yielding results that capture the persistence and correlation of 

drought events more realistically than univariate methods. The study concludes that these models improve 

drought risk assessment and provide valuable insights for water resource management. 

Abatan (2013) develops Bayesian methodologies for count time series with the goal of addressing 

overdispersion, serial dependence, and zero inflation in real-world applications. Using both simulated data and 

empirical examples, the dissertation advances generalized INAR processes, regression models, and hierarchical 
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state-space formulations. Estimation relies on MCMC algorithms with Gibbs sampling and Metropolis–

Hastings, often supported by data augmentation. Results demonstrate robust parameter recovery and strong 

predictive performance, leading to the conclusion that Bayesian modeling is an effective and coherent framework 

for analyzing count time series, though improvements in computational efficiency remain an area for future 

work. Also worthy to mention is the Time-varying correlation models introduced by Tse et al. (2002), while the 

copula-based models were developed by Heinen and Rengifo (2007) and further extended by Alzaatreh et al. 

(2022) and Safari-Katesari et al. (2020). Tsionas et al. (2019) introduced Bayesian copula-VARs for high-

dimensional settings using MCMC. Comparative evaluations of copula-based and state-space models using 

particle MCMC and QMLE were presented by Shapovalova et al. (2021). More recently, Zheng et al. (2022) 

proposed hybrid GARMA-GARCH models, and Qiu et al. (2018) introduced Bayesian Structural Time Series 

(BSTS) models with spike-and-slab priors. Tsamtsakiri (2023) further advanced this line of work with Bayesian 

multivariate INGARCH and CARR models using Sarmanov copulas, highlighting persistent computational 

challenges and the ongoing need for flexible zero-inflated modeling frameworks. 

A significant gap emerges in multivariate Negative Binomial INGARCH models capable of handling zero 

inflation, particularly for applications like COVID-19 data where excess zeros, overdispersion, and complex 

inter-series dependencies coexist. Existing multivariate count models either neglect zero inflation (e.g., standard 

INGARCH) or fail to combine it with Negative Binomial distributions’ dispersion flexibility (e.g., copula 

approaches). The nature of COVID-19 surveillance data with its spatial-temporal patterns and abundance of zero 

counts (whether from surveillance gaps or true absence of cases) calls for analytical methods that can 

concurrently account for (1) multivariate dependence via parsimonious INGARCH structures, (2) overdispersion 

through Negative Binomial marginals, (3) zero inflation via a degenerate mixture component, and (4) 

computational feasibility for high-dimensional public health surveillance. No current framework integrates all 

these features, presenting a clear opportunity for research. To address this, the present study applies Bayesian 

Vector Linear and Log-Linear Zero-Inflated Negative Binomial INGARCH (ZINB-INGARCH) models to 

COVID-19 data. 

MATERIALS AND METHODS 

The data consists of daily COVID-19 new cases, death cases, and recoveries in Nigeria. key epidemiological 

indicators with complex temporal and cross-variable dynamics. The proposed  

Zero- Inflated Negative Binomial INGARCH model 

The Vector Zero-Inflated Negative Binomial INGARCH model was introduced by Zhu (2011), Chen et al. 

(2016) examined a Negative Binomial overdispersed model with a time-varying conditional autoregressive 

mean, treating both the shape and scale parameters as unknown, and estimated them using Bayesian MCMC 

methods. 

Yi,t = {
πi,t + (1 − πi,t). NB(0; ri, λi,t)          if y = 0

(1 − πi,t). NB(𝑦; ri, λi,t)                     if y > 0
 (1) 

where in  𝒀𝒊,𝒕 a time series, 𝒓𝒊,𝒕 =
𝒓𝒊

𝒓𝒊+𝝀𝒊,𝒕
  ensures 𝑬[𝒀𝒊,𝒕] = 𝝀𝒊,𝒕. 

𝑃(Yi,t = 𝑦) = (
𝑦 + 𝑟 − 1

𝑦
) (

𝑟

𝜆 + 𝑟
)

𝑟

(
𝜆

𝑟 + 𝜆
)

𝑦

 

The Mean and Variance for ZINB 

𝐸[𝑋𝑌] = (1 − πi,t)𝝀𝒊,𝒕,                  𝑉𝑎𝑟[𝑌] = (1 − πi,t)𝝀𝒊,𝒕 (
1

𝑟
+ πi,t)  

Hence the conditional density for Linear Vector-INGARCH Model structures is that of VARMA model is 

represented as  
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𝒀𝑖𝑡/𝓕𝑡−1 ∼ 𝑍𝐼𝑁𝐵(𝝅𝑡, 𝒓𝑖, 𝝀𝑖,𝑡)   

𝝀𝒕  =  𝒅 +  𝑨𝒀𝒕−𝟏  +  𝑩𝝀𝒕−𝟏                                                                                             (2)                                                                       

Given three variables   Y1𝑡,   Y2𝑡, and   Y𝑡2  as New Cases, Death Cases and Recovery respectivelyof COVID-19 

variable the  

linear model is given as 

λi,t = di + ∑ Ai,jYj,t−i + ∑ Bi.jλj,t−i

3

i=1

                              i, j =  1,2,3                                                   (3)

3

j=1

 

λ1,t = d1 + A11Y1,t−1 + A12Y2,t−1 + A13Y3,t−1 + B11λ1,t−1 + B12λ2,t−1 + B13λ3,t−1 

λ2,t = d2 + A21Y1,t−1 + A22Y2,t−1 + A23Y3,t−1 + B21λ1,t−1 + B22λ2,t−1 + B23λ3,t−1 

λ3,t = d3 + A31Y1,t−1 + A32Y2,t−1 + A33Y3,t−1 + B31λ1,t−1 + B32λ2,t−1 + B33λ3,t−1 

Matrix form is given as;  

(

𝝀𝟏,𝒕

𝝀𝟐,𝒕

𝝀𝟑,𝒕

) = (
𝒅𝟏

𝒅𝟐

𝒅𝟑

) + (
𝑨𝟏𝟏 𝑨𝟏𝟐 𝑨𝟏𝟑

𝑨𝟐𝟏 𝑨𝟐𝟐 𝑨𝟐𝟑

𝑨𝟑𝟏 𝑨𝟑𝟐 𝑨𝟑𝟑

) (

𝒀𝟏,𝒕−𝟏

𝒀𝟐,𝒕−𝟏

𝒀𝟑,𝒕−𝟏

) + (
𝑩𝟏𝟏 𝑩𝟏𝟐 𝑩𝟏𝟑

𝑩𝟐𝟏 𝑩𝟐𝟐 𝑩𝟐𝟑

𝑩𝟑𝟏 𝑩𝟑𝟐 𝑩𝟑𝟑

) (

𝝀𝟏,𝒕−𝟏

𝝀𝟐,𝒕−𝟏

𝝀𝟑,𝒕−𝟏

) 

The linear model assumes that the linear dependence of 𝝀𝒊,𝒕 on 𝝀𝒋,𝒕−𝟏and 𝒀𝒋,𝒕−𝟏  𝒊, 𝒋 =  𝟏, 𝟐, 𝟑 where (𝑨𝒋)𝒒, 𝒋 =

𝟏, (𝑩𝒊)𝒑  𝒊 = 𝟏 are 𝒅 × 𝒅 unknown matrices and all the elements of 𝝅, (𝑨𝒋)𝒒 𝒋 = 𝟏, (𝑩𝒊)𝒑 𝒊 = 𝟏 are positive 

such that 𝝀𝒊,𝒕 > 0. for all i and t, Tsamtsakiri et al. (2023) for the matrix form of the equation.  

The Log-linear relationship is given as: 

𝐘𝑖𝑡 |𝓕𝑡−1 ∼ 𝑍𝐼𝑁𝐵(𝜋𝑡, 𝑟𝑖, 𝜆𝑖,𝑡)  

𝐯t  =  𝐝 +  𝐀𝐯t−1  +  𝐁log (𝐘t−1 + 𝟏d)      

vi,t = di + ∑ Ai,jlog (Yj,t−i + 1) + ∑ Bi.jvj,t−i

3

i=1

           i, j =  1,2,3                  (4)        

               

3

j=1

 

where 𝜈𝑡  ≡  𝑙𝑜𝑔𝜆𝑡 is defined component wise (i.e.𝒗𝑖,𝑡 =  𝑙𝑜𝑔 𝝀𝑖,𝑡) and 𝟏𝑝 denotes the p-dimensional vector 

which consists of ones (Tsamtsakir,.2023).  𝒅 > 0 is a p-dimensional vector and A, B are d × d unknown 

matrices. The elements of d, A and B are assumed to be positive such that 𝝀𝑖,𝑡 >  0 

log (λ1,t) = d1 + A11log (Y1,t−1 + 1) + A12log (Y2,t−1 + 1) + A13log (Y3,t−1 + 1) + B11log (λ1,t−1)
+ B12log (λ2,t−1) + B13log (λ3,t−1)  

log (λ2,t) = d2 + A21log (Y1,t−1 + 1) + A22log (Y2,t−1 + 1) + A23log (Y3,t−1 + 1) + B21log (λ1,t−1)
+ B22log (λ2,t−1) + B23log (λ3,t−1)  

log (λ3,t) = d3 + A31log (Y1,t−1 + 1) + A32log (Y2,t−1 + 1) + A33log (Y3,t−1 + 1) + B31log (λ1,t−1)
+ B32log (λ2,t−1) + B33log (λ3,t−1)  

therefore the log-linear Vector ZIGP model (Fokianos et.al., 2020) in matrix form is given as; 
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(

𝒍𝒐𝒈 (𝝀𝟏,𝒕)

𝒍𝒐𝒈(𝝀𝟐,𝒕)

𝒍𝒐𝒈 (𝝀𝟑,𝒕)

) = (
𝒅𝟏

𝒅𝟐

𝒅𝟑

) + (
𝑨𝟏𝟏 𝑨𝟏𝟐 𝑨𝟏𝟑

𝑨𝟐𝟏 𝑨𝟐𝟐 𝑨𝟐𝟑

𝑨𝟑𝟏 𝑨𝟑𝟐 𝑨𝟑𝟑

) (

𝒍𝒐𝒈 (𝒀𝟏,𝒕−𝟏 + 𝟏)

𝒍𝒐𝒈 (𝒀𝟐,𝒕−𝟏 + 𝟏)

𝒍𝒐𝒈 (𝒀𝟑,𝒕−𝟏 + 𝟏)

) + (
𝑩𝟏𝟏 𝑩𝟏𝟐 𝑩𝟏𝟑

𝑩𝟐𝟏 𝑩𝟐𝟐 𝑩𝟐𝟑

𝑩𝟑𝟏 𝑩𝟑𝟐 𝑩𝟑𝟑

) (

𝒍𝒐𝒈 (𝝀𝟏,𝒕−𝟏)

𝒍𝒐𝒈 (𝝀𝟐,𝒕−𝟏)

𝒍𝒐𝒈 (𝝀𝟑,𝒕−𝟏)

)   

ANALYSIS  

Bayesian statistics provides a framework for estimating parameters by updating prior beliefs with observed data. 

This is done using Bayes' theorem, which allows us to derive the posterior density of the parameter 

vector θ given the data y. hence the prior is given as  

Prior distribution for the parameter to be estimated 𝜙𝑖,𝑡~𝐺𝑎𝑚𝑎 (2,1) == (
𝑏𝑎

Γ(𝑎)𝑥𝑎−1
)𝑒−𝑏𝑥 

𝜋~𝐵𝑒𝑡𝑎 (2,2) =  
1

𝐵(𝑎,𝑏)
𝑥𝑎−11 − 𝑥𝑏−1,       𝐴𝑖~ℎ𝑎𝑙𝑓𝑁(0,1) =

1

𝜎√2𝜋
𝑒

(
−𝑥2

2𝜎2)
 

𝐵𝑖~ ℎ𝑎𝑙𝑓𝑁(0,1) =
1

𝜎√2𝜋
𝑒

(
−𝑥2

2𝜎2)
,                  𝑑𝑖~ ℎ𝑎𝑙𝑓𝑁(0,1) =

1

𝜎√2𝜋
𝑒

(
−𝑥2

2𝜎2)
 

 

The joint likelihood for all time points 𝑡 = 1, … , 𝑇 and series𝑖 = 1,2,3 is: 

𝐿(𝑌𝑖𝑡/𝜃) = ∏ ∏ 𝑝(𝑌𝑖𝑡/𝜆𝑖𝑡(𝜃), 𝑟𝑖, 𝜋𝑖)

3

𝑖=1

𝑇

𝑡=1

=  ∏ ∏[𝜋𝑖
𝐼(𝑌𝑖𝑡=0)

. (1 − 𝜋)𝐼(𝑌𝑖𝑡>0). 𝑁𝐵(𝑌𝑖𝑡/𝜆𝑖𝑡, 𝑟𝑖)

3

𝑖=1

𝑇

𝑡=1

 

Posterior Distribution is given as 

𝑝( 𝛩 ∣∣ 𝑌𝑖𝑡 )𝛼 𝑝(𝜃) × 𝐿(𝑌𝑖𝑡/𝜃) 

The Hierarchical structure 

Observation layer 𝒀𝑡 ∼ 𝑍𝐼𝑁𝐵(  𝜆𝑡, 𝜙𝑘, 𝜋𝑘),  The latent process  

𝝀𝑡 = exp ( 𝐝 +  𝐀log (𝐘t−1 + 𝟏d)  +  𝐁Log 𝛌t−1) 

𝐿(𝜃/𝑌) = ∏ 𝜋it𝐼𝑦𝑘𝑡=0
+ (1 −  𝜋it)𝑁𝐵(𝑌𝑖,𝑡/𝜙𝑖,𝑡, 𝜋it, 𝜆𝑖,𝑡) =

𝛤(𝑦 + 𝜙𝑖,𝑡)

𝛤(𝜙𝑖,𝑡)𝑦!
(

(𝜙𝑖,𝑡)

𝜙𝑖,𝑡 + 𝜆𝑖,𝑡
)

𝜙𝑖,𝑡

(
𝜆𝑖,𝑡

𝜙𝑖,𝑡 + 𝜆𝑖,𝑡
)

𝑌𝑖,𝑡

)

3

𝑡=1

 

Posterior distribution 

𝑃(𝜃/𝑦) 𝛼 𝐿(𝜃/𝑦𝑘𝑡) × 𝑃(𝐴𝑘) × 𝑃(𝐵𝑘) × 𝑃(𝜙𝑘) × 𝑃(𝜋𝑘) × 𝑃(𝑑𝑘) 

Where 𝜃 = (𝐴, 𝐵, 𝑑, 𝜙, 𝜋) 

The posterior Estimate for log linear vector ZINB-INGARCH model is described as fellows 

Log-likelihood for MCMC 

𝐿𝑜𝑔 𝐿 = ∑[𝕀(𝑌𝑖𝑡 = 0) log( 𝜋𝑖 + (1 −  𝜋𝑖)𝑁𝐵(0) + 𝕀(𝑌𝑖𝑡 > 0)  𝐿𝑜𝑔(1 −  𝜋𝑖) + log 𝑁𝐵(𝑌𝑖𝑡))]

𝑡,𝑖

 

For 𝑌𝑖𝑡 = 0,          𝐿𝑜𝑔(𝜋 + (1 − 𝜋) ⋅ 𝑒𝑥𝑝(𝜙𝑙𝑜𝑔𝜙 − 𝜙𝑙𝑜𝑔(𝜆𝑡 + 𝜙)) 
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For 𝑌𝑖𝑡 > 0,     𝑙𝑜𝑔(1 − 𝜋) + 𝑙𝑜𝑔𝛤(𝑦 + 𝜙) − 𝑙𝑜𝑔𝛤(𝜙) − 𝑙𝑜𝑔𝛤(𝑦 + 1) + 𝜙𝑙𝑜𝑔𝜙 − 𝜙𝑙𝑜𝑔(𝜆𝑡 + 𝜙) + 𝑦𝑙𝑜𝑔𝜆𝑡 −
𝑦𝑙𝑜𝑔(𝜆𝑡 + 𝜙) 

Log priors 

Log prior for (𝐴, 𝐵, 𝑑)~𝑁(0,0.5) 

 log 𝑃 (𝐴, 𝐵, 𝑑) = −
1

2
𝐿𝑜𝑔(2𝜋 .0.25) −

(𝑑−0)2

2 .0.25
.  𝐴, 𝐵 ≥ 0 𝑎𝑛𝑑  𝑑 ∈ ℝ ℎ𝑒𝑛𝑐𝑒 𝑑 𝑟𝑒𝑡𝑎𝑖𝑛 𝑛𝑜𝑟𝑚𝑎𝑙 𝑝𝑟𝑖𝑜𝑟 

For 𝜙~ 𝐺𝑎𝑚𝑚𝑎(1,1), Log P(𝜙) = −𝜙 + 0. 𝑙𝑜𝑔𝜙 

For 𝜋 Beta(1,1),   Log P(𝜋) = 0 

Log Posterior Distribution 

Log𝑃(𝜃/𝑦)  = 𝑙𝑜𝑔𝐿(𝜃/𝑦𝑘𝑡) + 𝑙𝑜𝑔𝑃(𝐴𝑘) + 𝑙𝑜𝑔𝑃(𝐵𝑘) + 𝑙𝑜𝑔𝑃(𝜙𝑘) + 𝑙𝑜𝑔𝑃(𝜋𝑘) + 𝑙𝑜𝑔𝑃(𝑑𝑘) + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝐿𝑜𝑔𝑃(𝜃/𝑦) = ∑ ∑ 𝐿𝑜𝑔𝑃(𝑌𝑘𝑡 = 𝑦𝑘𝑡/𝜆𝑘𝑡, 𝜙𝑘, 𝜋𝑘) +  ∑ [𝐿𝑜𝑔𝑝(𝐴𝑘𝑖) +  𝐿𝑜𝑔(𝐵𝑘𝑖) + 𝑙𝑜𝑔𝑃(𝑑𝑘)]

3

𝑘,𝑖,𝑗=1

3

𝑘=1

𝑇

𝑡=1

+ ∑[𝐿𝑜𝑔 𝑝(𝜙𝑘) + 𝑙𝑜𝑔𝑃(𝜋𝑘)] + 𝐶

3

𝑘=1

  

𝐿𝑜𝑔𝑃(𝜃/𝑦)

= ∑ ∑ {
𝐿𝑜𝑔(𝜋 + (1 − 𝜋) ⋅ 𝑒𝑥𝑝(𝜙𝑙𝑜𝑔𝜙 − 𝜙𝑙𝑜𝑔(𝜆𝑡 + 𝜙))                                                                                                  𝑖𝑓 𝑦𝑘𝑡 = 0

𝑙𝑜𝑔(1 − 𝜋) + 𝑙𝑜𝑔𝛤(𝑦 + 𝜙) − 𝑙𝑜𝑔𝛤(𝜙) − 𝑙𝑜𝑔𝛤(𝑦 + 1) + 𝜙𝑙𝑜𝑔𝜙 − 𝜙𝑙𝑜𝑔(𝜆𝑡 + 𝜙) + 𝑦𝑙𝑜𝑔𝜆𝑡 − 𝑦𝑙𝑜𝑔(𝜆𝑡 + 𝜙), 𝑖𝑓𝑦𝑘𝑡 > 0
 

3

𝑘=1

𝑇

𝑡=1

+ ∑ [
𝐴𝑘𝑖

2

2.0.25
− log(0.5√2𝜋)]

3

𝑘,𝑖,𝑗=1

𝕀𝐴𝑘𝑖>0 + ∑ [
𝐵𝑘𝑖

2

2.0.25
− log(0.5√2𝜋)]

3

𝑘,𝑖,𝑗=1

𝕀𝐵𝑘𝑖>0

+ ∑ [
𝑑𝑘𝑖

2

2.0.25
− log(0.5√2𝜋)]

3

𝑘,𝑖,𝑗=1

+ ∑[−𝜙𝑘 + 0. 𝐿𝑜𝑔𝜙𝑘 − 𝐿𝑜𝑔Γ(1)] +

3

𝑘=1

∑[0]

3

𝑘=1

+ 𝐶 

Posterior Sampling via MCMC 

We use the No-U-Turn Sampler (NUTS) to draw samples from the posterior: 

Step 1: Initialize parameters 𝜃(0) = (𝛼(0), 𝛽(0), 𝑑(0), 𝜙(0), 𝜋(0)) 

Step 2: For each MCMC iteration 𝒔 = 1, … , 𝑆 

Step 3: Propose new parameters 𝜃∗ using Hamiltonian dynamics: 

Step 4: Simulate trajectories in parameter space, guided by gradients of 𝑙𝑜𝑔𝑃(𝜃 ∣ 𝑦). 

Step 5: Accept/Reject 𝜃∗  based on the Metropolis-Hastings ratio: 

𝑟 =
𝑝(𝜃∗ ∣ 𝑦)

𝑝(𝜃(𝑠−1) ∣ 𝑦)
 

Step 6: Store 𝜃(𝑠) = 𝜃∗  if accepted, else 𝜃(𝑠) = 𝜃(𝑠−1) 

Output: Posterior samples {𝜃(1), … , 𝜃(𝑠)}. 
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Gradient Calculation: 

Compute 𝛻𝜃𝑙𝑜𝑔 𝑝(𝜃 ∣ 𝑦) for NUTS using automatic differentiation (JAX in Python). 

o Example gradient for α: 

𝜕𝑙𝑜𝑔 𝑝(𝜃 ∣ 𝑦)

𝜕𝑦𝑘𝑡
= ∑

𝜕𝑙𝑜𝑔 𝑃(𝑌𝑡 = 𝑦𝑡/𝜃)

𝜕𝜆𝑡

𝑇

𝑡=0

.
𝜕𝜆𝑡

𝜕𝑦𝑘𝑡
 

2. Conditional Mean (𝝀t ) Gradient: 

𝜕𝝀t

𝜕𝐴
=

𝝀t ⋅ 𝑙𝑜𝑔 (1 + 𝑦𝑡−1)

1 + 𝐴𝑙𝑜𝑔 (1 + 𝑦𝑡−1) + 𝐵𝑙𝑜𝑔 (𝜆𝑡−1)
. 

 MCMC (e.g., Random Walk Metropolis) suffers in high dimensions but HMC uses gradient information to 

propose more efficient moves 

HMC Algorithm (Hoffman & Gelman, 2014): 

Augment with momentum𝒓 ∼ 𝑁(0, 𝑴) 

Hamiltonian dynamics is given as 

𝐻(𝜃, 𝑟) = −log (𝜃/𝒀) +
1

2
𝑟𝑇𝑀−1𝑟 

Leapfrog integrator (discretized dynamics) 

𝒓(𝑡+𝜖/2) = 𝒓(𝑡) +
𝜖

2
∇𝜃 log (𝜃(𝑡)/𝒀) 

𝜃(𝑡+𝜖) = 𝜃(𝑡) + 𝜖𝑴−1𝑟(𝑡−𝜖/2) 

𝒓(𝑡+𝜖) = 𝒓(𝑡+𝜖/2) +
𝜖

2
∇𝜃 log (𝜃𝑡+𝜖)/𝒀) 

Metropolis acceptance: 

𝛼 = min (1, exp (𝜃(𝑡), 𝒓(𝑡) − 𝐻(𝜃∗, 𝒓∗))) 

RESULTS 

Table 1: Descriptive Statistics of COVID-19 Variables  

Variable Count Mean Std Dev Min 25% Median 75% Max Skewness Kurtosis 

NEW 

CASES 

1187 229.09 363.47   0.0 15.5   79.0 289.0 4006.0      3.113 15.207 

DEATH 

CASES 

1187 2.616   5.589   0.0    0.0    0.0 3.0 93.0       7.259 95.104 

RECOVERY 1186 201.99 459.79   0.0    4.0    48.5 224.0 8228.0       7.774 98.262 

 

The descriptive statistics in Table 1 demonstrate that new cases exhibit a mean of (229) substantially higher than 

the median (79), indicating strong positive skewness. This is further supported by the skewness coefficient (3.1) 
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and high kurtosis (15.2), suggesting a heavily right-skewed distribution with extreme outliers (maximum value 

of 4006 cases). These patterns reflect periodic spikes in COVID-19 cases, likely corresponding to outbreak 

waves. 

 

Figure 1: Plot of New Cases of COVID-19 2020 – 2023 from 2020 - 2023 

 

Figure 2: Time Plot of Death Cases of COVID-19 From 2020 – 2023 from 2020 - 2023 

Figure 3: Time Plot for Recovery of COVID-19 from 2020 – 2023 

Table 3: Posterior Estimate for Vector Linear ZINB INGARCH 

Parameter Mean Std Dev 5% HDI 95% HDI R-hat 

A[1,1] 0.06 0.05 0.00 0.14 1.00 

A[1,2] 0.10 0.09 0.00 0.23 1.00 

A[1,3] 0.06 0.06 0.00 0.12 1.00 

A[2,1] 0.01 0.01 0.00 0.02 1.00 

A[2,2] 0.06 0.06 0.00 0.14 1.00 

A[2,3] 0.01 0.01 0.00 0.03 1.00 

A[3,1] 0.09 0.08 0.00 0.20 1.00 

A[3,2] 0.11 0.10 0.00 0.25 1.00 
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A[3,3] 0.08 0.08 0.00 0.19 1.00 

B[1,1] 0.67 0.11 0.50 0.85 1.00 

B[1,2] 0.12 0.10 0.00 0.26 1.00 

B[1,3] 0.44 0.13 0.24 0.65 1.00 

B[2,1] 0.02 0.01 0.00 0.04 1.00 

B[2,2] 0.07 0.07 0.00 0.16 1.00 

B[2,3] 0.02 0.02 0.00 0.05 1.00 

B[3,1] 0.43 0.10 0.26 0.59 1.00 

B[3,2] 0.10 0.09 0.00 0.23 1.00 

B[3,3] 0.21 0.15 0.00 0.42 1.00 

d[1] 0.67 0.33 0.12 1.21 1.00 

d[2] 0.25 0.25 -0.17 0.62 1.00 

d[3] 0.12 0.48 -0.68 0.91 1.00 

φ[1] 0.89 0.24 0.52 1.27 1.00 

φ[2] 2.46 1.25 0.74 4.26 1.00 

φ[3] 0.71 0.20 0.36 1.01 1.00 

𝜋[1] 0.48 0.06 0.39 0.59 1.00 

𝜋[2] 0.45 0.08 0.31 0.59 1.00 

𝜋 [3] 0.46 0.07 0.36 0.57 1.00 

HDI (Highest Density Interval), R-hat (̂R) (Gelman-Rubin statistic) 

1. Estimated Parameters 

𝜙 = [0.89, 2.46, 0.71] 𝜋 = [0.48 ,    0.45,   0.46] 

Matrix form is given as;  

(

λ1,t

λ2,t

λ3,t

) = (
0.67
0.25
0.12

) + (
0.06 0.10 0.06
0.01 0.06 0.01
0.09 0.11 0.08

) (

Y1,t−1

Y2,t−1

Y3,t−1

) + (
0.67 0.12 0.44
0.02 0.02 0.07
0.45 0.10 0.21

) (

λ1,t−1

λ2,t−1

λ3,t−1

) 

𝜆1,𝑡 =  0.67 +  0.06𝑌1,𝑡−1 + 0.10𝑌2,𝑡−1 + 0.06𝑌3,𝑡−1 +  0.67𝜆1,𝑡−1 + 0.12𝜆2,𝑡−1 + 0.44𝜆3,𝑡−1 

𝜆2,𝑡 =  0.25 +  0.01𝑌1,𝑡−1 + 0.06𝑌2,𝑡−1 + 0.01𝑌3,𝑡−1 +  0.02𝜆1,𝑡−1 + 0.07𝜆2,𝑡−1 + 0.02𝜆3,𝑡−1 

𝜆3,𝑡 =  0.12 +  0.09𝑌1,𝑡−1 + 0.11𝑌2,𝑡−1 + 0.08𝑌3,𝑡−1 +  0.43𝜆1,𝑡−1 + 0.10𝜆2,𝑡−1 + 0.21𝜆3,𝑡−1 

In Table 2, the Vector Linear ZINB-INGARCH model reveals strong short-term dependence for New Cases, 

especially B[1,1]=0.67 and B[1,3]= 0.44, indicating high influence from its own past and from Recovery. 

Recovery also shows notable dependence: B[3,1]=0.43 and B[3,3]=0.21. Vector Autoregressive effects are 

relatively weak across all series. Overdispersion is most in Death Rate (ϕ2=2.46), suggesting high variability. 

Zero-inflation is consistently high across series (π1=0.48, π2=0.45, π3=0.46), confirming frequent structural 

zeros. All R-hat values equal 1.00, reflecting excellent MCMC convergence. Overall, the model captures strong 

MA dynamics and overdispersion, particularly for Death Rate 
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Figure 4: Residual Analysis for Linear Vector ZINB INGARCH Model 

The Q-Q plots for New Cases, Death Rate, and Recovery shows deviations from normality, particularly in the 

tails, suggesting non-Gaussian residuals plot. The Residuals vs. Fitted plots show potential heteroscedasticity, 

with variance increasing at higher fitted values. The ACF plots reveal lingering autocorrelation in New Cases 

and Death Rate, signaling some unaccounted temporal dependencies. For all variables, ACF decays, but 

Recovery decays faster, suggesting a better model fit for that series. These findings are supported by Albarracín 

et al. 2019. Mathew et al. (2022) and However, the results contrast with Andreassen (2013) – who assumed 

stronger autoregressive influence in multivariate negative binomial frameworks without allowing for ZINB 

structure or heavy MA dependence. 

Table 3: Posterior Estimate for Log-Linear Vector ZINB INGARCH Model  

Parameter Mean Std Dev HDI 3% HDI 97% R-hat 

d[1] -0.416 0.263 -0.924 0.061 1.0 

d[2] -0.399 0.260 -0.875 0.090 1.0 

d[3] -0.507 0.259 -0.990 -0.020 1.0 

A[1,1] 0.112 0.059 0.009 0.200 1.0 

A[1,2] 0.116 0.053 0.026 0.200 1.0 

A[1,3] 0.141 0.044 0.062 0.200 1.0 

A[2,1] 0.109 0.063 0.000 0.200 1.0 
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A[2,2] 0.115 0.053 0.025 0.200 1.0 

A[2,3] 0.136 0.047 0.051 0.200 1.0 

A[3,1] 0.119 0.058 0.017 0.200 1.0 

A[3,2] 0.125 0.053 0.032 0.200 1.0 

A[3,3] 0.150 0.041 0.074 0.200 1.0 

B[1,1] 0.051 0.036 0.000 0.114 1.0 

B[1,2] 0.051 0.034 0.000 0.110 1.0 

B[1,3] 0.054 0.036 0.000 0.117 1.0 

B[2,1] 0.052 0.036 0.000 0.115 1.0 

B[2,2] 0.050 0.035 0.000 0.112 1.0 

B[2,3] 0.053 0.034 0.000 0.112 1.0 

B[3,1] 0.055 0.036 0.000 0.118 1.0 

B[3,2] 0.055 0.036 0.000 0.116 1.0 

B[3,3] 0.056 0.037 0.000 0.120 1.0 

φ[1] 2.793 1.496 0.686 5.694 1.0 

φ[2] 2.903 1.530 0.660 5.681 1.0 

φ[3] 2.116 1.463 0.211 4.750 1.0 

𝜋[1] 0.019 0.014 0.000 0.043 1.0 

𝜋 [2] 0.019 0.014 0.001 0.044 1.0 

𝜋 [3] 0.019 0.013 0.001 0.044 1.0 

 

HDI (Highest Density Interval), R-hat (̂R) (Gelman-Rubin statistic) 

2. Estimated Parameters 

𝜙 = [2.793, 3.993, 2.116], 𝜋 = [0.019, 0.016, 0.019] 

(

log (λ1,t)

𝑙𝑜𝑔(λ2,t)

log (λ3,t)
) = (

−0.416
−0.399
−0.507

) + (
0.051 0.051 0.054
0.052 0.050 0.053
0.055 0.055 0.056

) (

log (Y1,t−1 + 1)

log (Y2,t−1 + 1)

log (Y3,t−1 + 1)
)

+ (
0.211 0.161 0.219
0.142 0.123 0.137
0.221 0.166 0.247

) (

log (λ1,t−1)

log (λ2,t−1)

log (λ3,t−1)
) 

Log-Linear ZINB INGARCH Model Equations 

 Conditional Mean Equations  

𝑙𝑜 𝑔(𝜆1,𝑡) =  − 0.416 +  0.112𝑙𝑜 𝑔(𝑌1,𝑡−1 + 1) + 0.116𝑙𝑜 𝑔(𝑌2,𝑡−1 + 1) + 0.141𝑙𝑜 𝑔(𝑌3,𝑡−1 + 1)

+  0.051 𝑙𝑜𝑔 (𝜆1,𝑡−1)⏟ + 0.051𝑙𝑜𝑔 (𝜆2,𝑡−1) + 0.054𝑙𝑜𝑔 (𝜆3,𝑡−1) 

log(𝜆2,𝑡) =  − 0.399 +  0.109 log(𝑌1,𝑡−1 + 1) + 0.115 log(𝑌2,𝑡−1 + 1)  + 0.136 log(𝑌3,𝑡−1 + 1)

+  0.052 log(𝜆1,𝑡−1) + 0.050 log(𝜆2,𝑡−1)  + 0.053 log(𝜆3,𝑡−1) 
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𝑙𝑜𝑔 (𝜆3,𝑡) =  − 0.507 +  0.119𝑙𝑜𝑔 (𝑌1,𝑡−1 + 1) + 0.125𝑙𝑜𝑔 (𝑌2,𝑡−1 + 1) + 0.150𝑙𝑜𝑔 (𝑌3,𝑡−1 + 1)
+  0.055𝑙𝑜𝑔 (𝜆1,𝑡−1) + 0.055𝑙𝑜𝑔 (𝜆3,𝑡−1) + 0.056𝑙𝑜𝑔 (𝜆3,𝑡−1) 

Table 3 shows that parameter estimates reveal distinct dynamic patterns across the three epidemiological series. 

The diagonal dominance in autoregressive parameters (A[0,0]= 0.112, A[1,1]= 0.115, A[2,2}= 0.150) indicates 

strong self-excitation effects, consistent with the transmission dynamics described in Held et al. (2005). Cross-

component parameters show meaningful, though weaker, interactions—particularly between New Cases and 

Recovery (A[0,2]= 0.141, B[0,2] = 0.054) mirroring the lagged New cases - Recovery relationships observed by 

Chen et al. (2021) in their U.S. COVID-19 time-series analysis. 

The model’s stationarity was mathematically confirmed through eigenvalue analysis, with the spectral radius 

𝜌(𝛼 + 𝛽) having a posterior mean of 0.438 (95% HDI: [0.372, 0.512]), satisfying the stationarity and stability 

conditions for INGARCH-type models derived by Fokianos et al. (2009). The dispersion parameters ϕ exhibited 

series-specific patterns that align with theoretical expectations. For New Cases and Recovery (ϕ1=2.793, 

ϕ3=2.116. Collectively, these findings validate the model's specification against the dispersion spectrum 

framework proposed by Zhu (2012), which emphasizes tailoring distributional assumptions to match observed 

variance characteristics in count data. 

Table 4: Residual Diagnostics and Model Fit Assessment for log linear ZINB INGARCH Model  

Series Mean Residual Std. Dev. Normality Tests Autocorrelation Test 

Case Couns (1) -0.1091 0.0962 SW:W=0.353(0.001) 

KS: D=0.296 (0.001) 

LB(10): p=1.000 

Death Rates (2) -0.0922 0.0996 SW:W=0.393(0.001) 

KS: D=0.294(0.001) 

LB(10): p=1.000 

Recoveries (3) -0.1006 0.0870 SW:W=0.116(0.001) 

KS: D=0.454(0.001) 

LB(10): p=1.000 

 

Figure 5: Residual Analysis for Log-linear Vector Zigp Ingarch 
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However, the strong non-normality implies that: Prediction intervals should rely on the model’s native discrete 

distribution rather than normal approximations. The quadratic approximation used in Laplace-based inference 

remains appropriate, given the large sample size (n > 1000). Together, these results validate the model's capacity 

to represent both the first moment (mean) and second moment (autocovariance structure) while highlighting the 

necessity of using flexible count distributions for accurate uncertainty quantification and credible interval 

estimation 

DISCUSSION  

Based on the comparison of the two models, the Log-Linear Vector ZINB-INGARCH model provides a better 

overall fit and more reliable parameter estimates than the Vector Linear ZINB-INGARCH model. The log-linear 

model demonstrates stronger evidence of stationarity, with negative and statistically meaningful d parameters, 

while the linear model exhibits non-stationarity and wider uncertainty intervals. The autoregressive structure in 

the log-linear model is more robust, as indicated by its A matrix coefficients having narrow credible intervals 

that exclude zero, whereas the linear model shows weak or uncertain dependence across many parameters. 

Additionally, the log-linear model better captures overdispersion in the data through higher and more varied 

dispersion estimates (ϕ), while its low zero-inflation probabilities (π) suggest that it avoids unnecessary 

complexity when excess zeros are minimal. Both models show good convergence diagnostics, but the overall 

statistical and structural performance favors the log-linear formulation. Therefore, the Log-Linear Vector ZINB-

INGARCH model is more appropriate and effective for estimating the data. 
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