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ABSTRACT 

Parkinson’s disease (PD) is a gradually worsening neurological disorder that mainly affects motor functions due 

to the decline of dopamine-producing neurons in the substantia nigra. Early and precise diagnosis is often 

difficult because traditional tools like MRI, PET scans, or neurological tests tend to be costly, subjective, and 

not widely available. Handwriting analysis has emerged as a non-invasive, cost-efficient biomarker, capable of 

revealing early-stage motor abnormalities such as micrographia, tremors, and bradykinesia. This literature 

survey systematically reviews recent advancements in the automatic detection of PD using handwriting patterns, 

leveraging machine learning (ML) and deep learning (DL) algorithms. It highlights methodologies involving 

Convolutional Neural Networks (CNNs), Long Short-Term Memory networks (LSTMs), hybrid CNN-RNN 

models, and transfer learning approaches applied to both static images and dynamic time-series handwriting 

data. The review also explores data preprocessing strategies, augmentation techniques, and handcrafted as well 

as learned feature extraction methods. Studies report diagnostic accuracies often exceeding 90%, with some 

achieving over 98% using optimized architectures. Explainable Artificial Intelligence (XAI) frameworks, such 

as LIME, have further improved clinical trust in model predictions. Despite these achievements, challenges 

remain in data diversity, generalizability, and deployment on low-power edge devices, prompting the need for 

future research focused on scalable and interpretable diagnostic systems. 

Keywords: Parkinson’s Disease, Deep Learning, Handwriting Biomarkers, Early Diagnosis, Convolutional 

Neural Networks. 

INTRODUCTION 

Parkinson’s disease (PD) is a long-term degenerative condition that impacts more than 10 million individuals 

globally. It primarily impairs motor functions due to the gradual loss of dopamine-producing neurons in the 

substantia nigra region of the brain. Characteristic symptoms include resting tremors, bradykinesia, rigidity, and 

postural instability. Non-motor symptoms such as cognitive decline, sleep disorders, and speech impairments 

may also occur. Although PD typically manifests in older adults, early-stage detection remains critical for 

implementing timely therapeutic interventions that can delay progression and improve quality of life. 

 

Fig. I. 1 Common Symptoms of Parkinson Disease 
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Diagnosis commonly involves tools like the UPDRS scale and neuroimaging techniques such as MRI, PET 

scans, and DaTscan. However, these methods are often costly, time-consuming, and subjective, limiting their 

accessibility—particularly in under-resourced healthcare systems. 

In recent years, handwriting analysis has emerged as a viable digital biomarker for PD detection. The motor 

deficits associated with PD are often reflected in handwriting anomalies, such as micrographia, tremor-induced 

irregularities, and reduced pen pressure. These motor impairments can be quantified through both offline (static 

image-based) and online (dynamic, signal-based) handwriting data. 

With the advancement of artificial intelligence (AI), machine learning (ML), and deep learning (DL), researchers 

have developed automated systems that analyze handwriting patterns to assist in early PD detection. These 

models can identify subtle variations in spatial, temporal, and kinematic features that may not be apparent to 

clinicians. 

 

Fig. I.2 PD Detection Techniques 

This literature survey seeks to bring together and analyze recent research focused on detecting Parkinson’s 

disease using handwriting patterns. It investigates the processes followed for data gathering, preprocessing, 

feature selection, and classification. The review also compares machine learning and deep learning models—

including Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) networks, and combined 

approaches—and evaluates their effectiveness across multiple datasets. Additionally, it examines the influence 

of transfer learning, data augmentation, and explainable artificial intelligence in improving model precision and 
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interpretability. By outlining the advantages, drawbacks, and unresolved issues in current techniques, this review 

offers guidance for designing scalable, explainable, and clinically applicable tools for Parkinson’s diagnosis. 

RELATED WORK 

The exploration of handwriting as a biomarker for Parkinson’s disease (PD) has significantly advanced, 

transitioning from traditional machine learning (ML) methods to more sophisticated deep learning (DL) 

architectures. Early research efforts primarily employed manual feature engineering approaches. Features such 

as pen pressure, stroke velocity, acceleration, and jerk were extracted from dynamic handwriting sequences and 

used with classical classifiers like Support Vector Machines (SVM), Random Forest (RF), AdaBoost, and K-

Nearest Neighbors (KNN). Although these approaches are fundamental, they typically lack objectivity, rely 

heavily on domain knowledge, and often fail to generalize well across different datasets. 

The emergence of Convolutional Neural Networks (CNNs) marked a paradigm shift, enabling automatic feature 

learning from raw static images of handwriting. Researchers began converting temporal handwriting signals into 

spiral, wave, or meander patterns to leverage CNN-based models. Notably, Ranade et al. applied VGG-19 with 

fine-tuning strategies, achieving 88–94% accuracy on different spiral and wave datasets. Santhosh et al. 

introduced SpiralDrawNet, a CNN-based architecture applied to spiral drawings, achieving a validation accuracy 

of 84.6%. 

Performance on small datasets has been notably improved through the use of transfer learning approaches.  

Saravanan et al. proposed a VGG19-Inception hybrid model achieving 98.45% accuracy while integrating LIME 

for explainable AI (XAI). Huang et al. extensively tested VGG, ResNet, and ViT models using AugMix and 

PixMix augmentations, reporting up to 96.67% accuracy on spiral and wave drawings. Wachiracharownong et 

al. compared pretrained networks like EfficientNetB0, InceptionV3, and ResNet50 on spiral drawings, 

confirming EfficientNetB0’s superior performance at 89% accuracy. 

For dynamic handwriting analysis, where pen movement, timing, and pressure are recorded, Recurrent Neural 

Networks (RNNs) and Long Short-Term Memory (LSTM) networks have proven effective. Wang et al. 

introduced a lightweight LSTM-CNN hybrid with just 0.084M parameters, achieving 96.2% accuracy on the 

DraWritePD dataset while maintaining real-time inference efficiency. Allebawi et al. combined BLSTM with 

beta-elliptical feature extraction and fuzzy perceptual detectors, demonstrating over 93% accuracy across 

multiple datasets. Diaz et al. and Kasab et al. also contributed with Convolutional Autoencoders and GRU-based 

systems targeting sequential handwriting features. 

Explainability, a growing concern in clinical AI, is addressed in several works. LIME was employed by 

Saravanan et al. and others to improve model interpretability and facilitate clinician trust. Additionally, Bhat and 

Szczuko analysed the impact of preprocessing techniques like Canny edge detection, revealing it could reduce 

model performance—underscoring the need for thoughtful pipeline design. 

Collectively, this body of work demonstrates the efficacy of deep neural models, augmented by transfer learning, 

data augmentation, and interpretability techniques, in detecting early PD symptoms from handwriting. However, 

the limited size and diversity of available datasets remain a constraint. These insights lay the groundwork for 

future multi-modal, explainable, and deployable PD diagnostic tools. 

METHODOLOGY 

Identifying Parkinson’s disease (PD) using handwriting relies on a systematic workflow that includes data 

collection, preprocessing, feature extraction, selecting and training models, and interpreting results. The specific 

methods vary among studies depending on the nature of the data (online or offline), the chosen architecture 

(conventional ML or deep learning), and the intended purpose—such as classification, predicting severity, or 

enabling real-time use. 
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Fig. III. Methodology Pipeline for Parkinson’s Disease Detection via Handwriting Analysis 

Experimental Setup 

The experimental procedures referenced in the reviewed studies were typically executed on computational 

environments equipped with high-performance configurations. A standard setup includes an Intel Core i7 CPU, 

16GB of RAM, and an NVIDIA GTX 1080Ti GPU, enabling efficient training of deep learning models. The 

development platforms primarily involved Python 3.8, utilizing popular machine learning libraries such as 

TensorFlow, Keras, and scikit-learn. Execution was carried out using Jupyter Notebook on a Windows 10 

operating system. To enhance computational speed, CUDA and cuDNN were employed for GPU-accelerated 

operations, which is essential for training deep neural networks on large handwriting datasets. 

Data Collection and Sources 

Data is sourced in two primary forms: 

 Datasets like NIATS and the Kaggle Parkinson’s Drawings consist of scanned static spiral and wave 

drawings created manually by participants. 

 Online datasets like PaHaW, DraWritePD, and NewHandPD, which collect time-series signals (x-y 

coordinates, timestamp, pressure, azimuth, and altitude) using digitising tablets or smart pens. 

These datasets capture both motor impairments and temporal variations indicative of PD symptoms. 

Benchmark Datasets 

The literature references both offline and online benchmark datasets specifically designed for Parkinson’s disease 

detection through handwriting analysis. Offline datasets generally comprise scanned images of spiral or wave 
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drawings collected from diagnosed individuals, available through public repositories like Kaggle or NIATS. In 

contrast, online datasets—such as PaHaW, NewHandPD, and DraWritePD—contain temporal handwriting data 

recorded via digital tablets or smart pens. These datasets include variables such as spatial coordinates (X, Y), pen 

pressure, speed, and timestamp sequences. 

Each dataset is annotated with binary labels distinguishing Parkinson's patients from healthy control participants. 

These publicly accessible datasets have been widely adopted as standard benchmarks, enabling consistent 

evaluation and comparison across different experimental frameworks. Their inclusion supports the reproducibility 

and generalizability of model performance metrics, thus validating the diagnostic effectiveness of the proposed 

methodologies. 

 

Fig. 3.1.1 Spiral and wave samples from healthy and PD subjects 

Preprocessing and Augmentation 

Preprocessing standardises data to improve model performance: 

 Resizing (e.g., to 128×128 or 224×224), 

 Grayscale conversion (removing color artifacts), 

 Normalisation (0–1 pixel scaling or Min-Max for signals), 

 Filtering (e.g., Chebyshev type II for denoising), 

 Forward difference operations and velocity/acceleration derivation enhance motion pattern analysis for 

online data. 

Data augmentation methods help to overcome limited dataset sizes and enhance the model’s ability to generalize. 

 Basic techniques include rotation, flipping, shifting, and zooming. 

 Advanced methods like AugMix and PixMix probabilistically combine transformed samples to enhance 

diversity. 

 Online-specific augmentations involve manipulating writing angle, magnitude ratio, and baseline 

inclination to simulate motor variability. 
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Feature Extraction 

Feature engineering follows two major approaches: 

 Handcrafted features (mainly in ML-based methods): Statistical attributes (mean, RMS, skewness), 

Histogram of Oriented Gradients (HoG), and curvature-based indicators are extracted from static 

drawings. 

 Model-derived features (in DL-based methods): CNNs automatically learn spatial hierarchies; for 

sequential data, techniques such as the Beta-elliptical model (combining geometric and kinematic 

analysis) and fuzzy perceptual detectors effectively characterise motor dynamics. 

Model Architectures 

A variety of models are employed: 

 Convolutional Neural Networks (CNNs) like VGG16/19, ResNet (18/50/101), EfficientNet, and 

SpiralDrawNet process image data. 

 Recurrent architectures (RNNs, LSTM, BiGRU, BLSTM) handle temporal sequences in dynamic 

handwriting. 

 Hybrid models, such as LSTM-CNN, merge spatial and temporal features, achieving superior accuracy 

with reduced complexity. 

 Autoencoders (CAE) are utilised for unsupervised dimensionality reduction, followed by classification 

layers. 

 Vision Transformers (ViT) segment drawings into patches for global attention-based learning. 

 Traditional ML classifiers (e.g., RF, SVM, Adaboost, XGBoost) serve as baselines or in ensemble 

frameworks. 

Transfer learning—especially with pre-trained models from ImageNet—remains critical in low-data scenarios, 

with some studies performing “multi-stage fine-tuning” (e.g., VGG19 on MNIST before PD-specific tasks). 

Training and Optimisation 

Training configurations vary: 

 Loss functions include Binary Cross-Entropy (for classification) and MSE (for reconstruction tasks). 

 Optimisers: Adam and RMSprop dominate, often used with Cosine Annealing Schedulers for dynamic 

learning rates. 

 Validation strategies: K-fold stratified cross-validation (typically 5- or 10-fold) ensures performance 

robustness. 

Batch sizes range from 32 to 128, and early stopping is applied to mitigate overfitting. 

Explainable AI (XAI) 

To foster interpretability, LIME (Local Interpretable 

Model-agnostic Explanations) is applied. It highlights superpixels or data segments influencing decisions, 

enhancing clinical trust in the diagnostic outcome. This step is crucial to overcome the "black box" limitation of 

DL models and supports regulatory transparency in medical applications. 

EXPERIMENTAL RESULTS 

Experimental assessments are essential in measuring the diagnostic capabilities of both machine learning (ML) 

and deep learning (DL) approaches applied to handwriting-based Parkinson’s disease (PD) identification. This 

section provides a comparative synthesis of empirical findings from recent studies involving both offline (static) 

and online (dynamic) handwriting data sources. 
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The evaluated models range from traditional supervised algorithms to sophisticated deep learning frameworks, 

including CNNs, RNNs, LSTMs, and integrated CNN-LSTM architectures. Many recent investigations 

employed transfer learning by fine-tuning pretrained architectures such as VGG19, ResNet, and EfficientNet to 

improve performance on Parkinson-specific datasets with limited samples. 

These models are typically evaluated using common performance metrics, including classification accuracy, 

validation accuracy, and the Area Under the ROC Curve (AUC). Researchers further examined how advanced 

augmentation methods (such as AugMix and PixMix), optimization algorithms, and adaptive learning rate 

strategies like cosine annealing influence the model performance. Evaluation protocols like k-fold cross-

validation were also used in several studies to ensure robustness and generalizability of results. 

Furthermore, the reported outcomes reflect not only model architecture but also training conditions, dataset 

characteristics, and preprocessing strategies, all of which collectively contribute to the observed variances in 

diagnostic accuracy. Cross-dataset evaluations—including those on PaHaW, DraWritePD, NewHandPD, and 

Kaggle spiral drawing sets—demonstrate that diagnostic accuracy is influenced by both the format and 

complexity of the input data, especially when distinguishing early-stage PD from control samples. 

To strengthen reproducibility, several studies documented experimental configurations including hardware 

setups, software frameworks, and training epochs. In addition, explainability tools such as LIME were integrated 

to interpret classification decisions, which is vital for clinical applicability. 

Table I offers a consolidated presentation of findings from ten pivotal studies focusing on PD detection through 

handwriting. It outlines key details such as the year, contributing authors, applied methodologies, and the 

performance outcomes of each approach. This table enables quick comparison across methods and highlights 

promising directions for future research. By bridging algorithmic advancements with dataset-driven evaluations, 

the section aims to facilitate the identification of reliable diagnostic pipelines suitable for real-world deployment. 

TABLE I 

Year Author(s) Model / Method Used Accuracy / AUC 

2023 A. Malathi et al. Adam – EfficientNet 98.3% 

  CNN-BLSTM 89.4% 

  BiGRU 93.3% 

  Optimum-path forest + K-means 98% 

  EfficientNetB3 99.03% 

  CNN, SVC, KNN, EML, RFC 91% 

2023 M. Kasab et al. CAE + supervised classifier 73.83% (val), 60% (overall) 

2023 S. Saravanan et al. VGG19 + GoogleNet Hybrid 98.45% 

  ResNet-50 + diff. learning rates 98.3% 

2023 Wachiracharownong et al. InceptionV3 (pretrained CNN) 82% 

  EfficientNetB0 (pretrained CNN) 89% 

  VGG16 (pretrained CNN) 72% 

  ResNet50 (pretrained CNN) 61% 

2023 Atharva Ranade et al. VGG-19 (Set-1, fine-tuned) 88% 

  VGG-19 (Set-2, fine-tuned) 89% 

2023 X. Wanga et al. LSTM-CNN on DraWritePD 96.2% 

  LSTM-CNN on PaHaW 90.7% 

2023 Thakur et al. Restricted Boltzmann Machine 95.32% 

2024 Dr. Santhosh S et al. SpiralDrawNet (CNN) 84.6% (val) 

2024 Yingcong Huang et al. VGG19 + CosineAnneal 96.67% 

  VGG19 (Wave, aug.) 96.67% 

  VGG19 (Spiral, aug.) 90% 

  ResNet18 (aug. wave) 92.67% 

  ResNet50 (aug. wave) 87.33% 
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  ResNet101 (aug. wave) 94% 

  ViT (PixMix, spiral) 86.67% 

2024 M.F. Allebawi et al. BLSTM + ellipse detector 93.33% 

2025 Sameer Bhat et al. DT + AdB on DS0 AUC 0.92 

  RF, XGB, SVM on DS2 AUC 0.97 

  KNN on DS2 92% 

  KNN on DS1 82% 

DISCUSSION 

The application of artificial intelligence (AI) in neurodegenerative disease diagnostics has opened new avenues 

for early-stage identification of Parkinson’s disease (PD). This discussion distills key observations from reviewed 

literature focused on the analysis of handwriting to detect PD symptoms using machine learning (ML) and deep 

learning (DL) algorithms. It provides insight into data types, modeling techniques, performance metrics, and the 

current challenges that influence the deployment of these systems in practical settings. 

Handwriting Input Types and Their Implications 

The structure and modality of handwriting datasets—whether static or dynamic—play a decisive role in 

determining the choice of models and the granularity of captured features. Static data typically includes scanned 

images of hand-drawn spirals or waveforms. These are compatible with visual processing networks, primarily 

convolutional neural networks (CNNs). However, such datasets do not capture the temporal dynamics like stroke 

velocity or pressure variations, which are vital indicators of motor dysfunction in PD. 

Dynamic or online datasets, collected using digital tablets or smart pens, provide time-stamped records of motion 

including pen trajectory, speed, tilt, and pressure. These richer datasets are better suited for time-sequence models 

such as Long Short-Term Memory (LSTM) networks or Gated Recurrent Units (GRUs). As a result, online 

handwriting enables a more nuanced interpretation of motion-related anomalies, leading to improved model 

accuracy in real-time symptom tracking. 

Modeling Approaches and Evaluation 

Convolutional models have dominated image-based handwriting analysis due to their strength in identifying 

spatial hierarchies. Pretrained CNN architectures, including VGG19, ResNet-50, and EfficientNetB3, achieved 

classification accuracies well above 95%, with some approaching 99%, especially when data augmentation and 

transfer learning were applied. The use of hybrid models, combining CNNs with LSTM layers, was particularly 

effective in processing dynamic handwriting signals by capturing both spatial and temporal aspects. One such 

example is a low-resource CNN-LSTM model that attained 96.2% accuracy on the DraWritePD dataset and 

90.7% on PaHaW, while consuming minimal computation, proving its suitability for embedded systems. 

In contrast, some studies utilized autoencoder-based architectures, such as convolutional autoencoders (CAEs), 

which, while useful for unsupervised feature learning, faced issues of overfitting. These findings suggest that 

careful architecture design, regularization methods like dropout or batch normalization, and model complexity 

control are necessary to maintain generalizability. 

Preprocessing Techniques and Augmentations 

Preprocessing and augmentation strategies significantly affect model robustness. Standard techniques such as 

resizing, rotation, and contrast normalization were frequently employed to make models invariant to writing 

variations. More advanced techniques like PixMix and AugMix allowed for blending of multiple augmentations 

to introduce statistical variability while preserving label consistency. 

For temporal handwriting data, augmentations such as random noise injection in stroke trajectory, speed warping, 

and pressure scaling helped mimic natural variability observed among PD patients. On the other hand, some 
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image-processing techniques, like Canny edge detection, degraded model performance by eliminating subtle 

stroke deformations that carry diagnostic value, as evidenced in certain comparative studies. 

Feature Representation and Explainability 

Deep models, by contrast, learned representations directly from raw inputs. In CNNs, early layers captured edge-

like features, while deeper layers identified complex textures and structural anomalies. In online handwriting 

analysis, Beta-elliptical curve fitting and fuzzy perceptual modeling were used to quantify curvature and 

irregularity patterns in handwriting loops and arcs, offering robust descriptors of neuromotor dysfunction. 

Interpretability remains crucial in medical applications. Tools like Local Interpretable Model-Agnostic 

Explanations (LIME) have been integrated to visualize which handwriting regions most influenced classification 

outcomes. These tools promote clinical transparency and facilitate trust in AI-generated decisions. 

Practical Challenges in Clinical Settings 

Although model performance has significantly improved, various real-world barriers still hinder implementation. 

Many systems demonstrate high sensitivity for early PD stages but show limited effectiveness in detecting 

advanced conditions or differentiating PD from other motor disorders. This limits their diagnostic scope. 

Furthermore, sophisticated models such as ResNet101 and Vision Transformers (ViTs) demand large memory 

and computational resources, which pose a barrier to deployment in mobile or low-resource environments. 

Lightweight models, although more efficient, may compromise on accuracy if not optimized carefully. 

Dataset limitations are another concern. Most studies rely on relatively small, demographically narrow datasets, 

often sourced from single institutions. This lack of diversity may introduce bias and restrict generalizability across 

populations with different linguistic and cultural handwriting characteristics. 

Toward Generalization and Future Integration 

The absence of rigorous cross-dataset validation is a recurring limitation. While many models perform well within 

their training sets, they struggle to maintain accuracy on external datasets due to differences in data acquisition 

tools and protocols. This highlights the importance of building large-scale, standardized benchmark datasets with 

diverse demographic representation and handwriting conditions. 

Another promising direction lies in the fusion of handwriting with other modalities such as speech analysis, gait 

assessment, or neuroimaging. This multi-modal integration could enhance sensitivity to both motor and non-

motor symptoms, offering a more holistic assessment of PD. 

Longitudinal analysis—tracking handwriting over time—could further assist in understanding disease 

progression and the impact of therapeutic interventions. Additionally, models that adapt to variations in symptom 

expression and severity grading will be essential for personalized care and continuous monitoring. 

CONCLUSION 

Using Machine Learning (ML) and Deep Learning (DL) to analyze handwriting and sketches has demonstrated 

strong potential for early identification of Parkinson’s Disease (PD). Multiple studies highlight that both 

traditional ML and advanced DL models are effective in identifying motor symptoms caused by PD, while also 

exposing critical limitations and offering valuable guidance for future research. 

Summary of Key Findings 

The reviewed studies demonstrated high diagnostic performance and computational efficiency across multiple 

modeling approaches: 

 The VGG19-INC hybrid model achieved a peak classification accuracy of 98.45%, demonstrating the 

effectiveness of transfer learning combined with data augmentation and scheduling techniques. 
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 ResNet-50 exhibited similarly strong results with an accuracy of 98.3%, confirming the robustness of 

residual learning architectures. 

 A compact LSTM-CNN framework achieved an accuracy of 96.2% on DraWritePD and 90.7% on 

PaHaW, while maintaining low computational demand (0.084M parameters, 0.59M FLOPs), making it 

well-suited for deployment in real-time clinical environments. 

 In the case of Arabic handwriting tasks, the model achieved 93.33% accuracy in ellipse tracing, 

outperforming conventional methods in motor control-sensitive tasks. 

 Spiral drawings consistently provided higher predictive value than wave or meander patterns across 

datasets. 

 The application of mediator datasets, such as MNIST for pretraining, significantly improved fine-tuning 

results on smaller PD datasets. 

 Explainable AI (XAI) tools like LIME played a vital role in enhancing model interpretability, identifying 

critical regions in handwriting patterns that influenced classification outcomes. 

 Random Forest (RF) maintained a consistent memory footprint (61 KB), whereas complex models like 

SVM and KNN exhibited increased memory and computational demands with larger datasets. 

Identified Limitations 

Despite promising advancements, several challenges persist: 

 Data Limitations: The small size of publicly available handwriting datasets limits model generalization 

and increases the risk of overfitting. In some cases, augmenting the data led to only marginal 

improvements. 

 Overfitting Concerns: Deep models like CAE and VGG19 showed signs of overfitting, with low training 

loss but significantly higher validation loss, highlighting the importance of regularization and architectural 

tuning. 

 Preprocessing Pitfalls: Contrary to expectations, Canny edge detection with Hessian filtering 

consistently degraded model accuracy, raising questions about universally applied preprocessing 

pipelines. 

 Symptom Variability: The reliance on handwriting alone may not capture the full spectrum of PD 

symptoms, especially non-motor symptoms and late-stage variations. Additionally, symptom overlap with 

other conditions complicates differentiation. 

 Stage Sensitivity: Several models demonstrate improved performance in detecting early Parkinson’s 

cases (Hoehn and Yahr stages 1–2) or differentiating them from healthy subjects, but show reduced 

effectiveness when applied to later disease stages. 

 Bias-Variance Trade-off: Balancing generalization and complexity remains a key challenge, especially 

when working with augmented or noisy datasets. 

Scope for Future Work 

To overcome these limitations and enhance the clinical utility of AI-based PD detection systems, future work 

should focus on the following areas: 

Model Optimization 

 Incorporate regularization methods (e.g., dropout, L1/L2) to reduce overfitting. 

 Explore hybrid architectures, such as combining Autoencoders with Transformers or attention 

mechanisms. 

 Improve fine-tuning strategies and leverage multi-step transfer learning for better adaptation to domain-

specific data. 

 Investigate emerging theoretical approaches, including Hamilton-Jacobi-Bellman (HJB)-based 

optimization. 
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Data and Feature Expansion 

 Develop or integrate larger, more diverse datasets that represent various languages, age groups, and PD 

stages. 

 Future tools should integrate handwriting data with other sources such as gait analysis, speech signals, or 

MRI scans to form a more comprehensive diagnostic system. 

 Examine the impact of higher feature counts on memory usage and inference speed. 

Clinical Implementation 

 Develop real-time mobile or web-based platforms that can be easily deployed within standard clinical 

routines. 

 Conduct longitudinal studies to monitor handwriting changes over time, improving disease staging and 

progression modeling. 

 Ensure scalability and cross-cultural validation across diverse populations. 

Advanced Evaluation 

 Analyze model behavior through bias-variance trade-offs, prediction calibration, and per-patient 

longitudinal analysis. 

 Reassess preprocessing assumptions by exploring why certain filters degrade performance, guiding better 

feature preservation methods. 

By addressing these gaps, the next generation of AI-driven diagnostic tools can move closer to real-world 

deployment, enhancing early detection capabilities and ultimately improving patient outcomes in Parkinson’s 

Disease care. 
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