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ABSTRACT 

Logistic regression is widely used to model binary outcomes but the traditional maximum likelihood estimation 

performs poorly in small samples, rare events and in cases of correlated predictors. This simulation study 

compared the MLE, the Firth’s bias-reduced and the ridge-penalized logistic regression across diverse sample 

sizes (n = 20, 100, 1000), event rates (5%, 20%, 50%) and predictor correlations (ρ = 0.1, 0.5, 0.8). The key 

performance metrics were estimation bias, calibration slope and bootstrap-based coefficient variability. Results 

show that MLE suffers extreme bias and instability in small samples with rare events but recovers well at n = 

1000 thus achieving nearly perfect calibration with slope approximately 1. The Firth’s method mitigates bias 

and complete-separation issues in small samples though it also introduces severe calibration distortion (slopes 

>50). Ridge regression on the other hand provide the most stable coefficient estimates from the bootstrap SDs 

significantly lower than those of MLE but shows inconsistent calibration especially under sparse conditions. 

Overall, the Firth is recommended for inference in sparse data, the ridge for prediction in high-dimensional and 

multicollinear settings and the MLE for large and well-powered datasets. This study demonstrates the 

significance of aligning estimation methods with those of data characteristics to ensure accuracy and robustness 

of logistic regression modeling. 

Key Words: Logistic Regression, Maximum Likelihood Estimation, Firth Regression, Ridge Regression and 

Model Evaluation.  

INTRODUCTION 

Logistic regression is a foundational statistical technique for modeling binary outcomes across disciplines such 

as medicine to predict disease presence or absence, social sciences to model survey response behavior such as a 

member churning or renewing and machine learning for spam detection. Logistic regression appeal stems from 

its interpretability, ease of implementation and the ability to yield insights towards the relationships between 

predictors or independent variables and binary outcomes (Hosmer et al., 2013). 

However, the logistic regression based on the traditional maximum likelihood estimation (MLE) faces notable 

limitations under challenging data conditions. In small-sample clinical studies with rare outcomes such as rare 

side effects of a treatment, MLE estimates can be greatly biased or even non-existent due to separation. Also 

with high-dimensional omics data or survey datasets with multicollinearity the MLE may produce unstable 

estimates with high variance. In highly imbalanced datasets such as fraud detection the MLE can overestimate 

coefficients thereby leading to miscalibrated probabilities. 

These issues can be mitigated through alternative estimation approaches such as Firth’s Logistic model. Firth's 

bias-reduced logistic regression model adjusts the score equations with a penalization derived from the Jeffreys 

prior to offer finite and stable estimates even in the presence of complete or quasi-complete separation (Firth, 

1993; Heinze & Schemper, 2002). This is particularly useful in rare event modeling such as the genetic 

association studies and uncommon surgical complications. Firth’s model key strength lies in production of 

unbiased coefficients and valid inference for small samples (Kosmidis & Firth, 2009). However, this method 

may yield less optimal classification performance in cases of high-dimensional spaces when compared to 

shrinkage-based approaches (Hastie et al., 2009). 
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Ridge logistic regression, on the other hand seems to address these problems of overfitting and multicollinearity 

by penalizing the size of regression coefficients through the use of a L2 norm (Cessie & Houwelingen, 1992). 

This approach is advantageous in applications like credit scoring or electronic health record modeling with many 

predictors are present are available in the datasets. Ridge offers improved prediction stability and reduced 

variance in data with collinear or high-dimensional covariates. Nevertheless, the interpretability of its 

coefficients is reduced due to the shrinkage and selection of tuning parameter (λ) requires computationally 

intensive cross-validation (Sokolova et al., 2006). 

In contrast, the MLE is most reliable in large-sample contexts with balanced event rates and with its asymptotic 

properties thereby ensuring efficiency and unbiasedness (Agresti, 2013). As an example the national survey data 

or large insurance databases often provide the ideal conditions under which MLE performs optimally (Harrell, 

2015). However, in smaller studies and when data separation occurs such in rare disease modeling, the MLE can 

fail with severe consequences by producing infinite estimates (Heinze & Schemper, 2002). The increasing 

demand for robust, interpretable and well-calibrated models in high-stakes applications like clinical risk 

prediction, policy evaluation and business analytics necessitates the evaluation of these methods systematically 

(Pavlou et al., 2016). This simulation study conducts a comparative analysis of MLE, Firth and ridge logistic 

regression across three key perspectives: bias in parameter estimates, calibration of predicted probabilities and 

stability across samples. By examining these diverse scenarios, the study aim to inform evidence-based method 

selection tailored to specific data and research contexts.  

Problem Statement 

Logistic regression models estimated via maximum likelihood occasionally suffer from instability, bias and 

convergence failures in data-constrained and structurally complex scenarios like rare event modeling, small-

sample studies and/or multicollinear predictor spaces. These challenges stem from the theoretical limitations of 

MLE under finite-sample conditions and the sensitivity to separation and imbalance. As a result, practitioners 

and researchers face compromised inference, poor calibration and unreliable predictive performance. This study 

intervenes by systematically comparing the MLE, Firth and Ridge logistic regression methods through 

simulation across the key performance criteria of bias, calibration and stability hence offering empirical guidance 

for selecting robust estimation techniques suited to real-world data conditions. 

General Objective 

The general objective of this study is to systematically compare the performance of maximum likelihood 

estimation, Firth’s bias-reduced logistic regression and ridge-penalized logistic regression based bias, calibration 

and stability under varying data conditions using a simulation-based framework. 

Specific Objectives 

To compare bias in coefficient estimates across MLE, Firth and ridge methods under varying sample sizes and 

data structures. 

To evaluate the calibration of predicted probabilities using calibration slope metrics under each method. 

To assess the stability of estimates and predictions using bootstrap variability across methods. 

To identify optimal use conditions for each method and provide practical guidelines for method selection. 

Theoretical Background and Model Formulations 

Maximum Likelihood Estimation (MLE) 

The MLE is the standard approach for estimating logistic regression parameters. Let yi ∈ {0, 1} be the binary 

response and a vector of predictors Xi, then logistic regression model that specifies the log-odds of the 

probability, πi = P(yi = 1|Xi) is given by equation (1);  

https://rsisinternational.org/journals/ijrias
https://rsisinternational.org/journals/ijrias
http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN APPLIED SCIENCE (IJRIAS) 

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS |Volume X Issue VII July 2025 

 

 

 

 

 

www.rsisinternational.org 
Page 840 

  

 

  

 

logit(πi) = log (
πi

1 − πi
) = Xi

Tβ … Equation [1] 

Considering that the study considers a single trial, the Bernoulli distribution is adhered to. The likelihood 

function for a sample of size n is given by equation (2);  

L(β) = ∏(πi)
yi

n

i=1

(1 − π1)1−yi … Equation [2] 

With the continuous variables considered then the corresponding log-likelihood function is given in equation 

(3);  

l(β) = ∑[yi log(πi) + (1 − yi) log(1 − πi)]

n

i=1

… Equation [3] 

The MLE estimates β̂ are obtained by solving the score equations and equating them to zero as shown in equation 

(4); 

dl(β)

dβ
= XT(y − π) = 0 … Equation [4] 

where is X is the design matrix and π is the vector of predicted probabilities. 

The MLE possesses strong asymptotic properties with respect to consistency, efficiency and normality (Hosmer, 

Lemeshow & Sturdivant, 2013). However with respect to small-sample contexts and in presence of separation 

and/or multicollinearity, the MLE can yield biased and unstable estimates and in some extreme cases there is 

failure in convergence (Albert & Anderson, 1984).  

Firth’s Logistic Regression 

Firth’s logistic regression modifies the conventional likelihood function that aid reduce the small-sample bias 

and to provide finite estimates even for data that shows presence of complete of uasi-complete separation. The 

method adjusts the score function by incorporating a penalty derived from the Jeffreys' invariant prior; a non-

informative prior distribution that is invariant under the reparameterization and proportional to the square root 

of the determinant of Fisher’s information matrix (Jeffreys, 1946; Kass & Wasserman, 1996). This penalization 

corresponds to a correction term that involves the observed Fisher’s information matrix (Firth, 1993). 

The penalized likelihood function is given by equations (5).  

l∗(β) = l(β) +
1

2
log|I(β)| … Equation [5] 

with l(β) been the regular log-likelihood while I(β) as the Fisher information matrix. The added term is a penalty 

that shrinks extreme estimates and eliminate the infinite predictor values. 

The modified score equations for Firth’s estimator is given by equation (6). 

U∗(β) = U(β) + A(β) = 0 … Equation [6] 

where A(β) = −I(β) ∗ b(β) and b(β) is the first order bias for MLE. This results in an implicit correction in the 

standard score function by directly countering the bias term ensuring that the adjusted score function has an 

expected value of zero up to order 0(n−1). Computationally, this is implemented through modifying the Fisher 

scoring algorithm in equation (7) to incorporate bias adjustment at each level of iteration involving the hat matrix 

and the leverage values derived from the design matrix and Fisher information (Kosmidis & Firth, 2009). 
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β(t+1) = βt + [I(βt)]−1 U∗(βt) … Equation [7] 

With the modified score function given in equation (8).  

U∗(β) = XT(y − π) + XT(h − 0.5) … Equation  [8] 

With W = diag(πi(1 − πi)) and the vector of leverages diagonal elements of the hat matrix, H =

W1/2X(XTWX)−1XTW1/2. The term XT(h − 0.5) represents bias adjustment derived from the trace of the 

influence of each observation thereby aligning the score with Jeffreys' prior penalty (Kosmidis & Firth, 2009). 

The Firth’s method therefore yields estimates with reduced first-order bias and performs well under small sample 

sizes, imbalanced outcome distributions and complete or quasi-complete separation (Heinze & Schemper, 2002). 

The method also retains interpretability similar to MLE through enhanced numerical stability. However, it is 

computationally more intensive due to the inclusion of the bias correction term and lacks a closed-form solution 

therefore requires iterative estimation procedures. 

Ridge Logistic Regression 

Ridge logistic regression introduces an penalty L2 to the likelihood function to prevent overfitting and also 

improve the stability in presence of multicollinearity among predictors. he penalized likelihood function is given 

by equation (9).  

𝑙𝑟𝑖𝑑𝑔𝑒(𝛽) = 𝑙(𝛽) −
𝜆

2
𝛽𝑇𝛽 … 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 [9] 

where 𝜆 ≥ 0 is the regularization parameter that controls the amount of shrinkage applied to the regression 

coefficients. 

The penalized score equations take the form presented in equation (10). 

𝑈𝑟𝑖𝑑𝑔𝑒(𝛽) = 𝑋𝑇(𝑦 − 𝜋) − 𝜆𝛽 = 0 … 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 [10] 

which do not generally have closed-form solutions hence requiring iterative optimization. The Newton-Raphson 

update for the penalized objective is as in equation (11).  

𝛽(𝑡+1) = 𝛽(𝑡) + [𝐼(𝛽(𝑡)) + 𝜆𝐼𝑝]
−1

[𝑋𝑇(𝑦 − 𝜋) − 𝜆𝛽(𝑡)] … 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 [11] 

Where 𝐼(𝛽) = 𝑋𝑇𝑊𝑋 is the Fisher information matrix and 𝐼𝑝 is the identity matrix. 

Theoretically the ridge regression balances between bias and variance to minimize the mean squared error of the 

model’s estimates. Through introduction of the penalty, ridge regression reduces coefficient variance thus 

enhancing the generalization in predictive settings. In Bayesian interpretation the ridge regression corresponds 

to the Gaussian prior 𝛽~𝑁(0,   𝜏2𝐼), where 𝜆 = 1/𝜏2 offers principled shrinkage mechanism (Hoerl & Kennard, 

1970). 

Despite its advantages in reduction of overfitting and management of collinearity the ridge regression 

compromises interpretability due to the shrinkage and thereby necessitates cross-validation and/or information-

theoretic criteria for optimal 𝜆 selection (Hastie et al., 2009). 

Simulation Design and Evaluation Framework 

Data Generating Process (DGP) 

The data generating DGP assumes a true underlying logistic regression model presented in equation (12). 
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𝑙𝑜𝑔𝑖𝑡(𝜋𝑖) = 𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + 𝛽𝑝𝑋𝑖3 + 𝛽𝑝𝑋𝑖4 … 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 [12] 

Where 𝜋𝑖 = 𝑃(𝑦𝑖 = 1|𝑋𝑖) is the probability of success and 𝑋𝑖𝑗~𝑁(0, 1) for 𝑗 = 0,1,2,3, … , 𝑝. The predictors 

correlations was introduced via the multivariate normal distributions based on a Toeplitz correlation matrix 𝛴 as 

shown in equation [13].  

𝛴𝑖𝑗 = 𝜌|𝑖−𝑗| … 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 [13] 

Where 𝜌𝜖 {0.1, 0.5, 0.8} corresponds to low, moderate and high levels of correlation between model’s predictors. 

The binary outcome 𝑦𝑖 was then generated from a Bernoulli distribution based on the linear predictor highlighted 

in equation [14].  

𝑦𝑖~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜋𝑖) … 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 [14] 

To ensure meaningful effects, the true regression coefficients were selected to reflect moderate associations. 

There were four predictor variables in the study; 𝑋1, 𝑋2, 𝑋3 𝑎𝑛𝑑 𝑋4 with the corresponding logit co-efficients 

𝛽1 = 0.5, 𝛽2 = −0.5, 𝛽3 = 1.1 & 𝛽4 = −1.1. The intercept 𝛽0 was adjusted to achieve specific outcome event 

rates (5%, 20%, 50%) through marginal logit transformation of the average predicted probability. The calibration 

ensured comparison of estimation methods under the conditions of rare, moderate and balanced events.  

The simulations were conducted across a comprehensive grid of design factors of sample sizes, predictor 

correlations and the event rates;  

Sample sizes: 𝑛 = 20, 100, 1000 

Predictor correlations: 𝜌 = 0.1, 0.5, 0.8 

Event rates: 5%, 20%, 50% 

These combinations yielded 27 distinct data-generating scenarios (3 × 3 × 3). In each scenario data was simulated 

1000 replications for ensured robust estimation of performance metrics. 

Evaluation Metrics 

The performance of the three logistic regression estimation method: MLE, Firth and Ridge was evaluated across 

the three essential statistical dimensions: bias, calibration and stability.  

Bias of Coefficient Estimates 

The bias refers to the average deviation of estimated regression coefficients from their true values across 

simulation replications. For a given coefficient 𝛽𝑗, the bias is computed as in equation [15].  

𝐵𝑖𝑎𝑠(𝛽𝑗̂) =
1

𝑅
∑ (𝛽𝑗̂

(𝑟)
− 𝛽𝑗)

𝑅

𝑖=1

… 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 [15] 

Where: 𝛽𝑗̂

(𝑟)
  is the estimate of βj in the rth simulation, βj is the true value of the parameter and R is the number 

of simulation replications (R=1000 in this study). 

Low or near-zero bias shows an unbiased estimator while large positive or negative values indicate systematic 

over-estimation or under-estimation. 
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Calibration of Predicted Probabilities 

Calibration assesses the extent to which the predicted probabilities and observed outcomes are in agreement. A 

well-calibrated model yields predicted risks that directly match the actual observed event proportions. The 

calibration slope, γ, is obtained by fitting a logistic regression of observed outcomes Yij on the log-odds of the 

predicted probabilities πî as in equation [16].  

logit(Yij = 1) = α + γ ∗ logit(πî) … Equation [16] 

Where: A slope γ=1 indicates perfect calibration, slope γ<1 suggests overfitting or predictions are too extreme 

and a slope γ>1 indicates excessive shrinkage or underfitting. 

Stability of Coefficient Estimates (Bootstrap SD) 

Stability reflects to the sensitivity of model estimates to sample variation. This is quantified by the bootstrap 

standard deviation (SD) of estimated coefficients.  

For a coefficient βj, the bootstrap-based standard deviation is defined in equation [17].  

SDboot(βĵ) = √
1

B − 1
∑ (βĵ

∗(b)
− βĵ

∗
)

2
B

b=1

 … Equation [17] 

Where: B is the number of bootstrap replicates (B=100 for this), βĵ
∗(b)

 is the estimate from the bth bootstrap 

sample and βĵ
∗
 is the mean of the bootstrap estimates.  

The Smaller the SDs the more stable or less variable the estimates are. 

Simulation Analysis and findings 

Bias Comparison of Logistic Regression Methods 

Table 1: Bias Comparison of Logistic Methods 
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Figure 1: Bias of Coefficients by Sample Size and Event Rate 

 

Figure 2: Bias of Logistic Coefficients by Method and Scenario 

This simulation study evaluated the bias in logistic regression coefficients estimated by the MLE, the Firth’s 

penalized likelihood and the Ridge regression across varying sample sizes, event rates and predictor correlation 

structures. The findings were summarized in Table 1 and visualized using Figures 1 and 2, revealing significant 

differences in performance across the methods more so under challenging conditions like small samples (n=20) 

and rare events (p=0.05). 
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MLE showed severe instability in small samples with bias and its average values reaching magnitudes as high 

1012 highlighting complete separation and estimation breakdown. In contrast, the Firth’s regression showed 

remarkable resilience under similar conditions averaging biases typically within ±0.5. The ridge regression 

similarly performed well demonstrating moderate and consistent bias reduction from its L2 regularization. As 

sample sizes increased to n = 100 the bias of MLE decreased substantially with some instability persisting under 

low event rates while that of the Firth and Ridge remained stable. At large sample size; n = 1000, it was 

demonstrated that all three methods yielded bias near zero thereby aligning them with their theoretical 

asymptotic properties. These findings suggest that with small-sample and/or low-event-rate scenarios the 

penalized methods, especially the Firth give more reliable estimation while in well-powered settings all methods 

perform comparably. 

Evaluation of Calibration Performance Using Calibration Slope Across Estimation Methods 

Table 2: Calibration Performance Metrics 

 
n=20, 

p=0.05, 

r=0.1 

n=20, 

p=0.05, 

r=0.5 

n=20, 

p=0.05, 

r=0.8 

n=20, 

p=0.2, 

r=0.1 

n=20, 

p=0.2, 

r=0.5 

n=20, 

p=0.2, 

r=0.8 

n=20, 

p=0.5, 

r=0.1 

n=20, 

p=0.5, 

r=0.5 

n=20, 

p=0.5, 

r=0.8 

MLE 1.0445 1.0498 1.0528 1.0220 1.0214 1.0215 1.0115 1.0073 1.0028 

Firth 51.2390 53.5977 73.0605 23.272

2 

18.8788 21.3450 6.6044 3.3233 2.7222 

Ridge 226.244 234.2875 119.6356 958.23

6 

174.3931 98.2613 91.7362 114.8836 74.0821 

 
n=100, 

p=0.05, 

r=0.1 

n=100, 

p=0.05, 

r=0.5 

n=100, 

p=0.05, 

r=0.8 

n=100, 

p=0.2, 

r=0.1 

n=100, 

p=0.2, 

r=0.5 

n=100, 

p=0.2, 

r=0.8 

n=100, 

p=0.5, 

r=0.1 

n=100, 

p=0.5, 

r=0.5 

n=100, 

p=0.5, 

r=0.8 

MLE 1.0003 1.0019 1.0030 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Firth 1.1913 1.5152 1.7422 1.0912 1.0884 1.0856 1.0776 1.0735 1.0713 

Ridge 36.0741 84.9469 59.0560 4.6380 23.3928 25.7325 1.3754 6.6045 14.7098 

 
n=1000, 

p=0.05, 

r=0.1 

n=1000, 

p=0.05, 

r=0.5 

n=1000, 

p=0.05, 

r=0.8 

n=100

0, 

p=0.2, 

r=0.1 

n=1000, 

p=0.2, 

r=0.5 

n=1000, 

p=0.2, 

r=0.8 

n=1000, 

p=0.5, 

r=0.1 

n=1000, 

p=0.5, 

r=0.5 

n=1000, 

p=0.5, 

r=0.8 

MLE 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Firth 1.0127 1.0116 1.0101 1.0083 1.0080 1.0077 1.0073 1.0071 1.0070 

Ridge 1.1050 1.3419 30.6990 1.1101 1.1153 3.2216 1.1129 1.1207 2.0147 

  

https://rsisinternational.org/journals/ijrias
https://rsisinternational.org/journals/ijrias
http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN APPLIED SCIENCE (IJRIAS) 

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS |Volume X Issue VII July 2025 

 

 

 

 

 

www.rsisinternational.org 
Page 846 

  

 

  

 

 

 

https://rsisinternational.org/journals/ijrias
https://rsisinternational.org/journals/ijrias
http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN APPLIED SCIENCE (IJRIAS) 

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS |Volume X Issue VII July 2025 

 

 

 

 

 

www.rsisinternational.org 
Page 847 

  

 

  

 

 

Figure 3: Calibration Slope across Correlation Coefficients 

Presentations in Table 2 and Figures 3 shows the calibration slope results from the simulation study by assessing 

how well the predicted probabilities align with the observed outcomes across three estimation methods: MLE, 

Firth’s penalized likelihood and ridge regression. 

The MLE demonstrated strong calibration performance across most of the conditions more so in moderate to 

large sample sizes. In sample sizes of n=100 and n=1000, the calibration slopes were consistently close to 1.0 

thereby giving a reflection of well-calibrated predictions. Although, under the most challenging scenarios of 

small samples (n=20) with very low event rates (p=0.05) MLE showed slight deterioration with the calibration 

slopes marginally exceeding 1.04. The findings thereby reaffirm the asymptotic properties of MLE, suggesting 

its suitability majorly when adequate sample sizes are available. 

The Firth’s penalized likelihood method even though known for its ability in bias reduction in small samples 

showed substantial overestimation in the calibration slope under low-information conditions. In scenarios with 

n=20 and p=0.05, the slopes ranged between 51 and 73 demonstrating extreme overfitting and miscalibration. 

Although Firth’s method showed improvement with larger sample sizes the slope values remained above 1.0 

even at n=1000 especially when the predictor correlations were high. These results highlight that while Firth 

regression mitigates separation and improve coefficient stability it can compromise calibration particularly under 

sparse data conditions. 

The ridge regression demonstrated the most unstable calibration behavior across the methods. In small samples 

(n=20) with low event rates (p=0.05) the calibration slopes exceeded 900 in certain conditions thus highlighted 

significant overfitting. Similarly, in moderate samples (n=100), the ridge calibration was still inconsistent and 

often poor. Even though, the performance improved at n=1000 the slopes remained above the ideal levels of 

around 1 more so with increase in predictor correlation. The findings thus imply that although that ridge 

regression provides regularization, it requires careful tuning in achieving reliable calibration under varying data 

complexities. 

 

 

 

https://rsisinternational.org/journals/ijrias
https://rsisinternational.org/journals/ijrias
http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN APPLIED SCIENCE (IJRIAS) 

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS |Volume X Issue VII July 2025 

 

 

 

 

 

www.rsisinternational.org 
Page 848 

  

 

  

 

Assessment of Stability of Estimates and Predictions Using Bootstrap Variability Across Methods 

Table 3: Co-efficients Standard Deviations 

Coefficient MLE Firth Ridge 

Beta1 0.3114 0.2852 0.2343 

Beta2 0.4232 0.3871 0.3043 

Beta3 0.4390 0.3966 0.3477 

Beta4 0.4339 0.3887 0.3264 

 

Figure 4: Bootstrap SD of Coefficient Estimates by Method 

 

Figure 5: Bootstrap Coefficient SDs Across Methods 
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Figure 6: Bootstrap Distribution of AUC 

 

Figure 7: Bootstrap Distribution of Brier Score 

Objective 3 is addressed by assessing the stability of coefficient estimates and predictions using bootstrap 

variability. The bootstrap procedure with 100 replicates per scenario was employed for each of the three 

estimation methods: MLE, Firth’s penalized likelihood and Ridge regression. Stability was evaluated using the 

standard deviation (SD) of the regression coefficients across the bootstrap samples and the variability in 

predictive metrics of Area Under the Curve (AUC) and Brier score. 

The results, summarized in Table 3, provide a comprehensive overview of the bootstrap standard deviations for 

all regression coefficients (X1 to X4) under combinations; sample size (n = 20, 100, 1000), event rate (5%, 20%, 
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50%) and predictor correlation (ρ = 0.1, 0.5, 0.8). Figure 4 visualizes the coefficient SDs by estimation method 

that clearly shows that the Ridge regression yields the most stable estimates especially in small-sample scenarios. 

In contrast, the MLE shows extreme variability in cases of small samples with the coefficient SDs sometimes 

exceeding 300. The Firth regression performs better than the MLE but does not consistently match the Ridge in 

terms of its stability. 

The inspection of how bootstrap variability responds to changes in design factors was presented in Figure 5. 

This stratifies the coefficient SDs by method, sample size, event rate and predictors correlation. This visual 

evidence reaffirms that all the methods show improved stability with increasing sample sizes, with the Ridge 

regression highlighting the lowest SDs consistently across diverse settings. By n = 1000 all the regression 

methods largely converge thereby confirming that large samples lessened the differences in estimation 

variability. 

In terms of prediction performance, the bootstrap distributions for AUC and Brier scores are shown in Figure 6 

and Figure 7 respectively shows that despite the large disparities in coefficient SDs and calibration metrics these 

figures reveal that the AUC and Brier score distributions remain relatively stable across the methods. Despite 

the ridge regression producing slightly narrower distributions under challenging conditions, the differences in 

the measures of central tendency among the three methods are consistently minimal. This highlights a key insight 

that shows that while estimation instability and calibration issues may arise, the discrimination and overall 

predictive accuracy as measured by AUC and Brier score are comparatively robust to the decision of estimation 

method. 

These findings demonstrate that the ridge regression offers superior coefficient stability, particularly in small 

samples and high-correlation contexts. However, the MLE’s performance improves dramatically with increased 

sample size and its predictive metrics remain solid when the coefficient estimates are unstable. The Firth 

regression shows moderate variability though its use may be limited by pertinacious calibration challenges. The 

use of bootstrap methods thereby offers an essential insight towards the estimator reliability, thus guiding method 

selection for both simulation and applied research contexts. 

DISCUSSION OF FINDINGS 

The simulation results for Objective 1 reveal a clear pattern in bias estimation across different estimation 

methods and scenarios. The MLE produced highly unstable and severely biased coefficient estimates in small 

samples with rare events (n=20, p=0.05) with some bias values reaching astronomical magnitudes due to variable 

separation. In contrast, the Firth’s penalized likelihood demonstrated robustness by maintaining bias values close 

to zero even under the most challenging conditions. Similarly, the ridge regression offers improved stability over 

ML by exhibiting moderate and consistently bounded bias. As sample sizes increased, especially at n=100 and 

n=1000, all the three methods converged toward negligible bias thus aligning it with the asymptotic properties 

(Agresti, 2013).  

Under Objective 2, the calibration performance was evaluated using Calibration Slope demonstrated significant 

differences across the methods. The MLE showed a near-perfect calibration in moderate to large samples with 

slopes very close to the ideal of 1.0 and intercepts near to zero, thus reaffirms its strong asymptotic behavior in 

well-powered datasets (Harrell, 2015). However, with small samples the Firth and Ridge regression exhibited 

extreme slope inflation like slope > 900 for Ridge at n=20), thus indicating cases of severe overfitting and/or 

shrinkage distortions. Notably while Firth corrects for bias it also introduces calibration bias under sparse data 

conditions (Heinze & Schemper, 2002) and despite the Ridge having stable coefficients, it frequently under-

corrects or over-corrects the probabilities Cessie & van Houwelingen, 1992). These findings reveal that 

calibration performance, especially slope behavior remains a key limitation for penalized methods in low-

information contexts. 

For Objective 3, the bootstrap analysis of coefficient standard deviations provided clearer insights into the 

stability of estimation and prediction. In cases of small samples, the  MLE and Firth displayed substantial 

coefficient variability  with some SDs exceeding 600 in some settings whereas the ridge regression consistently 

yielded the lowest SDs thus demonstrating superior stability (Sokolova et al., 2006). Despite differences in 
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coefficient variability and calibration, AUC and Brier score distributions across methods were relatively stable. 

This aligns with findings by Pavlou et al. (2016), suggesting that discrimination metrics like AUC may remain 

robust even when coefficient estimates are unstable. Ridge offers the best stability in extreme conditions while 

the MLE is preferable when calibration accuracy is essential and with adequacy in sample size. 

CONCLUSION 

i. Maximum Likelihood Estimation (MLE) is best suited for large sample sizes with balanced event rates. The 

MLE delivers accurate, well-calibrated and unbiased estimates when sufficient data are available. However, it 

becomes unreliable in small samples and when events are rare due to bias and convergence issues. 

Firth Regression is the most appropriate for small samples and when datasets are of rare events. The Firth 

logistic regression effectively addresses bias and separation problems, offering stable coefficient estimates. 

Nonetheless, the Forth may lead to poor calibration especially when data are sparse. 

Ridge Regression is found to be ideal for scenarios with high predictor correlation and/or many covariates. It 

provides the most stable estimates and handles multicollinearity well. Though despite its stability, it occasionally 

suffers from calibration issues in low-information contexts. 

RECOMMENDATIONS 

The selection of logistic regression estimation methods should be based on study design especially the sample 

size, event rate and predictor correlation. In small samples (n=20) with low event rates (≤5%), MLE is highly 

unstable thus producing extreme bias with unreliable estimates. In such contexts, the Firth’s method is 

recommended based on its bias reduction capabilities while Ridge regression offers superior stability of predictor 

coefficients and predictive consistency making it suitable for prediction-oriented models even compromised 

calibration. 

For moderate sample all the methods improve in model’s reliability but caution is needed under the low event 

rates. The Ridge remains as the most stable method whereas the Firth ensures finite estimates in borderline 

separation settings. The MLE becomes competitive especially with recalibration. For datasets with large samples 

(n=1000), the MLE is an optimal choice as it consistently delivers minimal bias, excellent calibration and stable 

performance metrics without the need for penalization. 

Practitioners should evaluate method choice not only based on model convergence but also through calibration 

slope, and the bootstrap variability. Where stability is crucial or data are sparse, penalized methods are valuable. 

However, for well-powered studies, MLE remains the gold standard. To support robust inference, researchers 

should routinely report calibration and variability diagnostics alongside standard performance metrics such as 

AUC and Brier scores. 
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