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ABSTRACT 

Nature-inspired optimization algorithms have proven effective in addressing complex optimization problems, 

but they often suffer from premature convergence to local optima. Chicken Swarm Optimization (CSO), modeled 

after the hierarchical behavior of chickens, is one such algorithm that, despite its strengths, can stagnate due to 

poor exploration dynamics. This study proposes an Enhanced Chicken Swarm Optimization (ECSO) algorithm 

that integrates chaotic map functions, specifically Gaussian and Tent maps, to improve its exploration 

capabilities and mitigate premature convergence. The developed enhancements dynamically influence the 

movement updates of roosters and hens, significantly improving the algorithm’s ability to discover globally 

optimal solutions. The ECSO is applied to optimise CNN in a forensic recognition task. Simulation results 

indicate that ECSO exhibits superior convergence behavior and search space coverage compared to the standard 

CNN and CSO optimized CNN. The developed algorithm demonstrates improved performance in both 

recognition accuracy and computational efficiency, validating its suitability for real-world forensic tasks. 

Keywords: Enhanced Chicken Swarm Optimization, Chaotic Maps, Gauss Map, Tent Map, Nature-Inspired 

Algorithms, Optimization algorithm. 

INTRODUCTION 

Swarm intelligence-based optimization algorithms have shown promise across a broad range of machine learning 

applications, including feature selection, parameter tuning, and training deep learning models. Among them, 

Chicken Swarm Optimization (CSO) stands out due to its biologically inspired mechanics and adaptability. 

However, CSO remains vulnerable to premature convergence and stagnation in local optima, particularly when 

applied to high-dimensional and non-linear optimization problems such as hyperparameter tuning for 

Convolutional Neural Networks (CNNs). 

This paper introduces an Enhanced Chicken Swarm Optimization (ECSO) algorithm, incorporating chaotic map 

functions to improve the global search capabilities of the CSO framework. The chaotic dynamics introduces 

ergodicity, randomness, and sensitivity to initial conditions thereby enhancing exploration without 

compromising convergence speed. Specifically, we integrate the Gauss map for rooster position updates and the 

Tent map for hen updates. These enhancements aim to tackle two key issues in traditional CSO: lack of diversity 

and early convergence. The ECSO is applied to tune critical CNN hyperparameters, contributing both to the 

theoretical field of bio-inspired computing and the practical domain of forensic document analysis. 

Optimization plays a fundamental role across diverse domains in engineering, machine learning, and 

computational sciences. Traditional optimization techniques such as gradient descent or exhaustive search 

methods often become inefficient in solving non-convex, high-dimensional problems. Metaheuristic algorithms, 

inspired by natural systems, offer flexible and effective alternatives (Yang, 2014; Mirjalili, 2019). 

Optimization is everywhere, and is thus an important paradigm itself with a wide range of applications. In almost 

all applications in engineering and industry, researchers are always trying to optimize something, whether to 

minimize the cost and energy consumption, or to maximize the profit, output, performance and efficiency. As 
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resources are finite and systems become increasingly complex, optimization is no longer optional but critical 

(Yang, 2015). 

For any optimization problem, the integrated components of the optimization process are the optimization 

algorithm, an efficient numerical simulator and a realistic-representation of the physical processes we wish to 

model and optimize. This is often a time-consuming process, and in many cases, the computational costs are 

usually very high. Once there is a good model, the overall computation costs are determined by the optimization 

algorithms used for search and the numerical solver used for simulation (Yang, 2016). 

Optimization problems can be formulated in many ways. For example, the commonly used method of least-

squares is a special case of maximum-likelihood formulations.  

By far the most widely formulation is to write a nonlinear optimization problem as     

Minimize  fi (x), (=1,2i , ..., M),  

Subject to the constraints    

             hj ( x) = 0,  ( j =1,2,...,J),    

  gk ( x) ≤ 0,  (k =1,2,...,K),               

where fi, hj and gk are in general nonlinear functions. Here the design vector x= (x x1, 2 ,...,xn ) can be 

continuous, discrete or mixed in n -dimensional space. The functions fi are called objective or cost functions, 

and when M >1, the optimization is Multiobjective or Multicriteria. Metaheuristic algorithms are often nature-

inspired, and they are now among the most widely used algorithms for optimization. They have many advantages 

over conventional algorithms. Nature-inspired algorithms such as Genetic Algorithms (GA), Particle Swarm 

Optimization (PSO), and Chicken Swarm Optimization (CSO) are prominent examples. These algorithms 

simulate biological or physical phenomena to guide search processes toward optimal or near-optimal solutions 

(Pham et al., 2014). 

Chicken Swarm Optimization (CSO) 

Chicken Swarm Optimization (CSO), introduced by Meng et al. (2014), is a nature-inspired algorithm that 

simulates the social behavior and foraging strategies of chickens. Despite its competitive performance, CSO's 

tendency to converge prematurely due to insufficient exploration limits its broader applicability. Integrating 

chaotic maps into CSO offers a solution to this challenge, leveraging the deterministic yet non-repetitive nature 

of chaotic sequences to enhance the diversity and adaptability of the swarm (Caponetto et al., 2003). 

CSO divides the population into three hierarchical roles: roosters (leaders), hens (followers), and chicks 

(learners). These roles determine how agents explore the search space: 

 Roosters explore locally around promising solutions. 

 Hens follow roosters and interact with other hens. 

 Chicks follow mother hens with limited autonomy. 

While this structure balances exploration and exploitation, stagnation can occur, especially in static or complex 

fitness landscapes (Deb et al., 2020). 

Initialization 

A population of individuals is initialized with random positions in the solution space. Fitness is evaluated, and 

chickens are ranked to determine roles: 
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 The top individuals become roosters. 

 The next set becomes hens, among which a subset are mother hens. 

 The remaining individuals are chicks assigned to mothers. 

This hierarchy is updated periodically based on fitness changes every GG generations (Wang et al., 2018). 

Movement Update Rules 

The update equations differ across roles: 

 Roosters update based on fitness. 

 Hens update based on movement toward both a rooster and another individual. 

 Chicks follow their assigned mother hen with a learning factor. 

However, without mechanisms to increase randomness or exploration, the swarm can become trapped in local 

optima (Li et al., 2020). 

Chaos Theory  

The chaos theory deals with dynamic chaotic systems that are potentially impossible to predict or control, like 

turbulence, weather, and stock market. These phenomena are often described by fractal mathematics, which 

captures the infinite complexity of nature. Many natural objects exhibit fractal properties, including landscapes, 

clouds, trees, organs, rivers, and many of the systems such as exhibit complex life and chaotic behavior. Chaos 

theory describes deterministic systems with unpredictable behavior due to sensitivity to initial conditions 

(Mojarrad and Ayubi, 2015). This sensitivity, called the "butterfly effect," can be modeled using chaotic maps 

like Gaussian and Tent maps to generate pseudo-random sequences for exploration. 

The mathematical use of the word chaos does not align well with its more common usage to indicate lawlessness 

or the complete absence of order. On the contrary, mathematically chaotic systems are, in a sense, perfectly 

ordered, despite their apparent randomness. The famous feature of chaotic systems is their extreme sensitivity 

to initial conditions and this sensitivity is not linear but is exponential. The researchers seek to understand how 

to measure the size of the population in the next generation 𝑋𝑡+1, according to the population in the preceding 

generation 𝑋𝑡, such a relationship may be expressed in Equation 2.40 (Mojarrad and Ayubi, 2015).  

𝑋𝑡+1 = F(𝑋𝑡)                               

Where 𝑋𝑡+1 is the size of the population in the next generation, 𝑋𝑡 is the population in the preceding generation 

and 𝐹 represents a particular chaotic mapping function.  

Related Works 

A growing body of literature highlights various efforts aimed at improving metaheuristic optimization through 

hybrid strategies, swarm intelligence refinements, and chaos theory applications. Meng et al. (2014) introduced 

the original Chicken Swarm Optimization (CSO), modeling it after the hierarchical foraging and social dynamics 

of chickens. Although promising, the algorithm was shown to suffer from early convergence in complex 

optimization tasks. 

To mitigate stagnation, Caponetto et al. (2003) demonstrated that integrating chaotic sequences into evolutionary 

algorithms could effectively enhance diversity in the population and improve global search performance. Alatas 

(2010) later applied similar concepts to the Bee Colony Algorithm with successful results. 
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Subsequent modifications of CSO have emerged, such as the Modified CSO by Chen et al. (2015), incorporating 

adaptive factors and learning schemes to address convergence issues. Similarly, Li et al. (2020) proposed a 

hybrid CSO with adaptive differential mutation, improving robustness in handling global optimization problems. 

In broader metaheuristics, Mirjalili (2019) emphasized the role of hybrid and nature-inspired algorithms in 

evolving neural network training, optimization, and problem-solving. Tian et al. (2017) specifically 

demonstrated the benefits of chaotic maps in refining particle swarm optimization. 

The ECSO method proposed in this paper builds on this foundation by integrating both Gaussian and Tent 

chaotic maps to simultaneously govern the behaviors of roosters and hens. This approach is inspired by the 

findings of Mojarrad and Ayubi (2015), who highlighted the exponential sensitivity of chaotic dynamics and 

their capacity for robust search behavior. 

Thus, ECSO represents an evolution in the lineage of chaos-integrated swarm optimization algorithms and 

contributes to the growing field of adaptive metaheuristic development. 

METHODOLOGY 

Enhanced Chicken Swarm Optimization (ECSO) 

ECSO enhances the standard CSO by integrating chaotic map functions to diversify the search dynamics of 

roosters and hens. Chaotic systems, such as Gaussian and Tent maps, introduce controlled unpredictability, 

which promotes better coverage of the search space (Alatas, 2010). 

Formulation of ECSO for the system  

In standard CSO, there is variation in the food searching capacity of different members of the group. In the 

update step, the fitness values are updated depending on the food searching capacity of the different members of 

the group. Food searching capacity of rooster depends on their fitness values and their update formula is captured 

in the equation below.  

 𝑥𝑖
𝑡
,
+

𝑗 
1 = 𝑥𝑖

𝑡
,𝑗 ∗ (1 + 𝑅𝑎𝑛𝑑𝑛(0, 𝜎2))          

 σ2 = {
1,                if 𝑓𝑖  ≤  𝑓𝑘  

𝑒
(

𝑓𝑘−𝑓𝑖
|𝑓𝑖|+𝜀

)
, otherwise, k ϵ [1, N], k ≠ i

                          

Where 𝑅𝑎𝑛(0, 𝜎2) is a gaussian distribution with mean 0 and standard deviation σ2. ε is used to avoid zero-

division-error. k is a rooster’s index, 𝑓 is the fitness value of the corresponding 𝒙.  

Hens follow their group mate roosters in their quest for food. Moreover, there is also a tendency among the 

chickens to steal the food found by other chickens. The mathematical representation of their update formula is 

defined in Equation 3.3.  

𝑥𝑖,j
𝑡+1 = 𝑥𝑖,j

𝑡
 + 𝑆1 × 𝑅𝑎𝑛𝑑(𝑥𝑟1,j

𝑡
 − 𝑥𝑖,j

𝑡) + 𝑆2 × 𝑅𝑎𝑛𝑑(𝑥𝑟2,j
𝑡
 − 𝑥𝑖,j

𝑡)                                     

𝑆1 = 𝑒
(

𝑓𝑘−𝑓𝑖
|𝑓𝑖|+𝜀

)
, 𝑆2 = (𝑓𝑟2−𝑓𝑖)                   

𝑓 

Where Rand is a uniform random number over [0, 1].  𝑟1 ∈ [1, … , 𝑁] is an index of the rooster, 𝑟2 ∈ [1, … , 

𝑁] is an index of the chicken (rooster or hen). Algorithm 3.1 describes the enhanced Chicken Swarm 

Optimization. 

In the enhanced CSO, this study combined two chaotic map functions by using gauss map for rooster updates as 

shown in Equations 3.4, 3.5 and 3.6, while tent map was used for hen updates as shown in Equations 3.7, 3.8 
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and 3.9 and were used to select optimal weights for CNN. This is to prevent the roosters and the hens from fallen 

into local optima which could result in premature convergence.  

 𝐶𝑥𝑜𝑙𝑑 =
mod(abs(ini 𝑥𝑖,𝑗

𝑡+1,rand))

rand
           

              𝐶𝑥𝑛𝑒𝑤 = exp (−𝛼 ∗ 𝐶𝑥𝑜𝑙𝑑
2) + 𝛽         

              𝑥𝑖,j
𝑡+1 = 𝑠𝑖𝑔𝑛 (𝑖𝑛𝑖 𝑥𝑖,j

𝑡+1) × 𝐶𝑥𝑛𝑒𝑤 × 𝑟𝑎𝑛𝑑      

Where 𝑟𝑎𝑛𝑑 is the random value between 0 and 1, 𝑖𝑛𝑖 𝑥𝑖𝑡,+𝑗 1 is the primary rooster update calculated with 

Equation 3.2; 𝐶𝑥𝑛𝑒𝑤 is the chaotic gauss mapping, where the study considered 𝛼 = 4.9 𝑎𝑛𝑑 𝛽 = −0.58 and 𝐶𝑥𝑛𝑒𝑤 

as 𝑥𝑘+1 and 𝐶𝑥𝑜𝑙
  as 𝑥𝑘. 𝐶𝑥𝑜𝑙𝑑 was calculated to transform 𝑖𝑛𝑖 𝑥𝑖

𝑡
,
+

𝑗 
1 to range [0, 1]. For the hen phase, Equations 

3.7, 3.8 and 3.9 were established 

𝐶ℎ𝑒𝑛𝑥𝑜𝑙𝑑 =
mod(abs(o𝑥𝑖,𝑗

𝑡+1,(𝑥𝑟1,𝑗
𝑡 −𝑥𝑖,𝑗

𝑡 )))

𝑥𝑟1,𝑗
𝑡 −𝑥𝑖,𝑗

𝑡              

             𝐶ℎ𝑒𝑛𝑥𝑛𝑒𝑤 = 𝜇 × 𝑚𝑖𝑛 (𝐶ℎ𝑒𝑛𝑥𝑜𝑙d, 1 − 𝐶ℎ𝑒𝑛𝑥𝑜𝑙𝑑)                          

𝑥𝑖,𝑗
𝑡+1 = sign(o𝑥𝑖,𝑗

𝑡 ) × 𝐶ℎ𝑒𝑛𝑥𝑛𝑒𝑤 × 𝑥𝑟1,𝑗
𝑡 − 𝑥𝑖,𝑗

𝑡              

Where 𝑟𝑎𝑛𝑑 is the random value between 0 and 1, 𝑜𝑥𝑖,𝑗
𝑡+11 is the primary hen update calculated with Equation 

3.3; 𝐶ℎ𝑒𝑛𝑥𝑛𝑒𝑤 is the chaotic tent mapping, where the study considered 𝜇 = 2 and 𝐶ℎ𝑒𝑛𝑥𝑛𝑒𝑤 as 𝑥𝑘+1 and 𝐶ℎ𝑒𝑛𝑥𝑜𝑙𝑑 

as 𝑥𝑘. 𝐶ℎ𝑒𝑛𝑥𝑜𝑙𝑑 was calculated to transform 𝑜𝑥𝑖,𝑗
𝑡+1 to range [0, 1]. Algorithm 3.1 described the formulated 

enhanced Chicken Swarm Optimization where step 7 shows the rooster updates and step 8 shows the hen updates.   

Fitness Function Formulation 

The general formulation of an optimal weight determination problem used in this study is as follows:  

Min                    

𝑟𝑜𝑠𝑡𝑒𝑟𝑏𝑒𝑠𝑡, ℎ𝑒𝑛𝑏𝑒𝑠𝑡, 𝑐ℎ𝑖𝑐𝑘𝑏𝑒𝑠𝑡, 𝑊𝑓𝑑 

Subject to:  C1:  0 ≤ (𝑤𝑡, 𝐹𝑖𝑡, 𝑟𝑜𝑜𝑠𝑡𝑒𝑟, ℎ𝑒𝑛, 𝑐ℎ𝑖𝑐𝑘, 𝑊𝑑) ≤ 1        𝑊𝑑 ∈ 𝑊𝑒    

            C2:  Fit = {
1,                if Fit ≤  Fit̅̅̅̅̅̅̅̅̅̅̅̅

̅̅̅̅
 

0 otherwise Fit >  ̅̅̅̅Fit̅̅̅̅̅̅̅̅̅̅̅̅
          

Where 𝑤𝑡 ∈ 𝑅𝑛is the vectors of randomized weights. ̅𝐹𝑖𝑡̅̅̅ is the mean square error for 𝐹𝑖𝑡. The entire state vector 

is denoted as 𝑦 = [𝑤𝑡], where 𝑤𝑡 is the set of the weights of CNN at input, hidden and output layer. The problem 

was defined on the weight’s horizon 𝑊𝑒 = [𝑊𝑜
𝑑𝑊𝑓

𝑑]. Where 𝑊𝑒 consists of original weights of 𝑊𝑜
𝑑 of y and 

final weight 𝑊𝑓
𝑑 selected which is equivalent to optimal weight that was achieved.  

The  local  and  global  best  position  weight-dependent control variables 𝑟𝑜𝑠𝑡𝑒𝑟𝑏𝑒𝑠, ℎ𝑒𝑛𝑏𝑒𝑠𝑡, 

𝑐ℎ𝑖𝑐𝑘𝑏𝑒𝑠𝑡 ∈ 𝑅𝑛 and possibly the final feature 𝑊𝑓
𝑑 are decision variables for optimization. The goal of the 

optimization is to find the optimal set of decision variables to minimize the fitness function∅, that is, 

.    

The search space for finding the optimum is restricted by constraints (C1 and C2), which described an 

appropriate error fitness and weight parameter requirements respectively, to be fulfilled during determination of 

optimal weight. The research considered weight constraint C1 and fitness constraint C2. C1 ensured that the 

values range between 0 and 1. C2 certified that the fitness value for optimal weights was tagged as 1 and other 

weights was tagged as 0.  
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Chaotic Map Integration 

 Rooster Update (Gaussian Map): 

For i = 1:N   

If i = rooster Update its solution/location  

𝐶𝑥𝑜𝑙𝑑 =
mod(abs(ini 𝑥𝑖,𝑗

𝑡+1,rand))

rand
           

𝐶𝑥𝑛𝑒𝑤 = exp (−𝛼 ∗ 𝐶𝑥𝑜𝑙𝑑
2) + 𝛽            

𝑥𝑖,j
𝑡+1 = 𝑠𝑖𝑔𝑛 (𝑖𝑛𝑖 𝑥𝑖,j

𝑡+1) × 𝐶𝑥𝑛𝑒𝑤 × 𝑟𝑎𝑛𝑑          

End if  

 Hen Update (Tent Map): 

If i = hen Update its solution/location;    

𝐶ℎ𝑒𝑛𝑥𝑜𝑙𝑑 =
mod(abs(o𝑥𝑖,𝑗

𝑡+1,(𝑥𝑟1,𝑗
𝑡 −𝑥𝑖,𝑗

𝑡 )))

𝑥𝑟1,𝑗
𝑡 −𝑥𝑖,𝑗

𝑡              

             𝐶ℎ𝑒𝑛𝑥𝑛𝑒𝑤 = 𝜇 × 𝑚𝑖𝑛 (𝐶ℎ𝑒𝑛𝑥𝑜𝑙d, 1 − 𝐶ℎ𝑒𝑛𝑥𝑜𝑙𝑑)                           

𝑥𝑖,𝑗
𝑡+1 = sign(o𝑥𝑖,𝑗

𝑡 ) × 𝐶ℎ𝑒𝑛𝑥𝑛𝑒𝑤 × 𝑥𝑟1,𝑗
𝑡 − 𝑥𝑖,𝑗

𝑡                           

End if   

ECSO Algorithm Overview 

1. Initialize population and assign roles. 

2. Evaluate fitness and sort population. 

3. For each generation: 

o Update roosters using Gaussian chaotic map. 

o Update hens using Tent chaotic map. 

o Update chicks using standard CSO rules. 

4. Re-rank and reassign roles every GG generations. 

5. Store and update the best solution found. 

Algorithm 3.1: Enhanced Chicken Swarm Optimization  

Step 1: Input:     Set of initial weight parameters W= {𝑤𝟏, , … 𝑤𝒑}  

               Predefined swarm size: 𝑵𝒄   

               Number of dimensions of a chicken: 𝑫 = 𝒒  

Step 2: Output:   Optimal weight parameters {𝑤𝑜𝑝𝑡𝐼, 𝑤𝑜𝑝𝑡𝐻, 𝑤𝑜𝑝𝑡𝑐}  
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Step 3: Initialize chickens Ck= [RN=CN =MN=HN] 𝒊, 𝒋, 𝟏  𝑵𝒄,    𝟏  

𝒒, number of CHs, G (maximum generation)  

𝒙𝒊,j(𝟎) = (𝒙𝒊,𝒋(𝟎), 𝒚𝒊,𝒋(𝟎))  /* position of the weights */  

Step 4: Evaluate the N chickens’ fitness values (Ck).      

Step 5: t=0;   

Step 6: While (t < G)   

i.  If (𝑡 𝑚𝑜𝑑 𝐺 = 0)   

c. Rank the chickens’ fitness values and establish a hierarchal order in the swarm;   

Fitness values = (𝑊 𝑖
𝑚

,
,𝑛) ((𝑥𝑖) − (𝑥𝑗))                        

Where  𝑡 represent the s at i=1,2, …, n and k=2,3, …, m  

Where  (𝑊 𝑖
𝑚

,𝑗
,𝑛)((𝑥𝑖) − (𝑥𝑗) is the change in weight of input, hidden and output layers x along the row n and 

column m   

d. Divide the swarm into different groups, and determine the relationship between the chicks and mother 

hens in a group;   

End if   

 Step 7: For i = 1:N   

If i = rooster Update its solution/location  

𝐶𝑥𝑜𝑙𝑑 =
mod(abs(ini 𝑥𝑖,𝑗

𝑡+1,rand))

rand
           

𝐶𝑥𝑛𝑒𝑤 = exp (−𝛼 ∗ 𝐶𝑥𝑜𝑙𝑑
2) + 𝛽            

𝑥𝑖,j
𝑡+1 = 𝑠𝑖𝑔𝑛 (𝑖𝑛𝑖 𝑥𝑖,j

𝑡+1) × 𝐶𝑥𝑛𝑒𝑤 × 𝑟𝑎𝑛𝑑          

End if  

Step 8:  If i = hen Update its solution/location;    

𝐶ℎ𝑒𝑛𝑥𝑜𝑙𝑑 =
mod(abs(o𝑥𝑖,𝑗

𝑡+1,(𝑥𝑟1,𝑗
𝑡 −𝑥𝑖,𝑗

𝑡 )))

𝑥𝑟1,𝑗
𝑡 −𝑥𝑖,𝑗

𝑡              

             𝐶ℎ𝑒𝑛𝑥𝑛𝑒𝑤 = 𝜇 × 𝑚𝑖𝑛 (𝐶ℎ𝑒𝑛𝑥𝑜𝑙d, 1 − 𝐶ℎ𝑒𝑛𝑥𝑜𝑙𝑑)                           

𝑥𝑖,𝑗
𝑡+1 = sign(o𝑥𝑖,𝑗

𝑡 ) × 𝐶ℎ𝑒𝑛𝑥𝑛𝑒𝑤 × 𝑥𝑟1,𝑗
𝑡 − 𝑥𝑖,𝑗

𝑡                           

End if   

Step 9: If i = chick Update its solution/location  

                 𝑥𝑖,𝑗
𝑡+1 = 𝑥𝑖,𝑗

𝑡 × 𝐹𝐿(𝑥𝑚,𝑗
𝑡 − 𝑥𝑖,𝑗

𝑡 )                                                 

Where 𝑥𝑚,𝑗
𝑡

, stands for the position of the ith chick’s mother (𝑚 ∈ [1, 𝑁]). 𝐹L(𝐹𝐿∈(0, 2)) is a parameter End if   
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Step 10: Evaluate the new solution;   

Step 11: If the new solution is better than it's previous one, update it;   

End for  End while   

Flowchart 3.1 : Enhanced Chicken Swarm Optimization 

 

RESULTS AND DISCUSSION 

This section presents the comparative performance analysis of the developed Enhanced Chicken Swarm 

Optimization (ECSO) algorithm, augmented with Gaussian and Tent chaotic maps, against both the baseline 

Convolutional Neural Network (CNN) and the standard Chicken Swarm Optimized CNN (CSO-CNN). The 

evaluation was conducted on two categories of forensic handwriting datasets: original and forged samples. 

Performance metrics include classification accuracy and recognition time, implemented using MATLAB 

R2020a. 

A. Performance on Original Handwritten Documents 

As shown in Table I and Figure 1, the baseline CNN model achieved an accuracy of 82.14% on the original 

handwritten dataset, with a recognition time of 77.47 seconds. The CSO-CNN variant improved upon this 

baseline by reaching an accuracy of 86.43% with a reduced processing time of 52.21 seconds. However, the 

proposed ECSO-CNN model delivered the best performance, achieving an accuracy of 92.14% and the lowest 

recognition time of 26.18 seconds. 

This progression indicates a 4.29% accuracy gain from CNN to CSO-CNN, and an additional 5.71% gain from 

CSO-CNN to ECSO-CNN. In terms of efficiency, CSO-CNN reduced the recognition time by 32.6% compared 

to CNN, while ECSO-CNN achieved a further 49.8% reduction relative to CSO-CNN. The improvement is 

largely attributed to the use of chaotic maps in ECSO, which enhance the optimizer’s ability to explore the search 

space, avoid local optima, and converge to better CNN hyperparameters. 
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B. Performance on Forged Handwritten Documents 

For the forged handwriting dataset, which contains deceptive alterations, Table I and Figure 2 below shows the 

CNN baseline achieved 83.57% accuracy with a recognition time of 72.24 seconds. The CSO-CNN model 

improved this to 89.29% accuracy with a processing time of 47.27 seconds. The ECSO-CNN once again 

outperformed both, attaining an accuracy of 93.57% and reducing the recognition time to 26.86 seconds. 

These results represent a 4.28% increase in accuracy from CSO-CNN to ECSO-CNN and a 10% improvement 

over the baseline CNN. In terms of computational time, ECSO-CNN reduced processing time by 43.2% 

compared to CSO-CNN and by 62.8% relative to CNN. This confirms ECSO-CNN’s robustness in handling 

high intra-class variability and its effectiveness in recognizing forged signatures. 

C. Summary of Findings 

Across both dataset categories, the empirical results demonstrate a consistent performance ranking: ECSO-CNN 

outperforms both CSO-CNN and the baseline CNN in terms of classification accuracy and recognition time. 

The empirical results from both datasets confirm that by using the developed ECSO as optimizer for CNN 

framework, the optimized CNN consistently outperforms the conventional CNN in terms of both accuracy and 

efficiency. The use of chaotic dynamics within the CSO algorithm significantly improves search diversity, 

mitigates premature convergence, and yields better-tuned CNN architectures.  

Table I: Comparison of CNN, CNN and ECSO-CNN on Forensic Handwritten Datasets 

Dataset Type Algorithm Accuracy (%) Time (sec) 

Original CNN 82.14 77.47 

 CSO-CNN 86.43  52.21  

 
ECSO-CNN 92.14 26.18 

Forged CNN 83.57 72.24 

 CSO-CNN 89.29  47.27  

 
ECSO-CNN 93.57 26.86 

 

  

    (a) Accuracy for Original Dataset   
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Figure 1 : Graph showing Accuracy and Recognition Time for Original Dataset  

 

(a) Accuracy for Forged Dataset 

 

           (b) Recognition Time for Forged Dataset  

Figure 2: Graph showing Accuracy and Recognition time for Forged Datasets  
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CONCLUSION 

This paper presented an Enhanced Chicken Swarm Optimization (ECSO) algorithm that integrates Gaussian and 

Tent chaotic map functions to improve global search diversity and mitigate premature convergence. The ECSO 

was employed to optimize a Convolutional Neural Network (CNN) and evaluated on forensic handwriting 

datasets. specifically, original and forged samples. Performance was benchmarked against both the baseline 

CNN and the standard CSO-optimized CNN (CSO-CNN). 

Experimental results demonstrated that the ECSO-optimized CNN consistently outperformed both the baseline 

CNN and CSO-optimized CNN models in terms of classification accuracy and computational efficiency. On 

original handwriting data, ECSO-CNN achieved an accuracy improvement of 5.71% over CSO-optimized CNN 

and 12.2% over the baseline, while recognition time was reduced by nearly 50% relative to CSO-optimized CNN 

and over 66% compared to the CNN. Similar performance gains were observed on forged datasets, affirming the 

robustness and adaptability of ECSO in complex classification scenarios. 

These results underscore the effectiveness of integrating chaotic dynamics within swarm intelligence 

frameworks for optimizing deep learning models. The ECSO algorithm offers a significant advancement over 

standard CSO by enhancing convergence behavior, expanding solution space exploration, and yielding superior 

CNN architectures. 

The findings affirm the practical value of ECSO-CNN in real-world forensic handwriting identification and 

related security-sensitive applications. Future research may explore the adaptation of ECSO to other deep 

learning architectures as well as its deployment in broader biometric and document authentication domains. 
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