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ABSTRACT 

Group theory plays an important role in mathematics, providing a framework to understand symmetries and 

structures across various fields. This study explores visualization techniques for cyclic, dihedral, and S2, S3,  S4 

symmetric groups. Visual tools such as Circle Representations and Cayley graphs are employed to illustrate and 

analyze group properties, including element orders, inverses, group operations, and subgroup structures. In the 

case of cyclic groups, in addition to Cayley graphs, the circle representation was also used to geometrically 

model the group structure. For more complex groups such as symmetric groups S2, S3, S4 and dihedral groups 

D2n, Cayley graphs were studied to understand how group generators relate to group elements and to visualize 

their structural symmetries and subgroup formations. While Cayley graphs for cyclic, dihedral, and symmetric 

groups have been previously visualized, for instance, through platforms like Group Explorer (Carter, n.d.), there 

remains a lack of algorithms and tools that enable users to perform group operations, compute element orders 

and inverses, and identify subgroup structures directly from these visualizations. For cyclic, dihedral, and 

symmetric groups S4, algorithms were developed to automate tasks such as determining the order and inverse of 

elements, performing group operations, and identifying subgroup elements using Cayley graphs. These 

algorithms were realized through Python-based web applications developed with the Flask framework. The 

applications allow users to interactively explore group visualizations and perform computations related to group 

properties, enhancing both understanding and usability for learners and researchers. The results demonstrate that 

visual representations, when supported by algorithmic analysis, provide powerful tools for grasping abstract 

group theoretic concepts. The developed applications successfully link theoretical foundations with 

computational exploration, offering an effective means for learning, teaching, and further research in abstract 

algebra. This study highlights how visualization bridges intuition and formalism in group theory and contributes 

to educational tools and computational mathematics. 

Keywords: Cayley Diagrams, Circle Representation, Group Visualization, Python Web Application 

INTRODUCTION 

Group theory is a key component of abstract algebra, which is essential for understanding mathematical 

structures and their symmetries. Visualization methods provide us with a unique perspective on group 

properties, offering insights that are often challenging to grasp through algebraic definitions alone. By 

converting algebraic structures into intuitive visual formats, visualization plays a crucial role in both learning 

and research, particularly in understanding complex group dynamics. 

Over the past few decades, there has been growing interest in visualizing mathematical groups as a tool to 

enhance understanding, particularly in educational and research settings. By converting abstract group properties 

into intuitive visual formats, these methods aim to bridge the gap between theory and perception, allowing 

both students and researchers to explore group dynamics without requiring complex algebraic computations. 

The foundation of the circle representation of cyclic groups was established long ago. The idea of representing 

elements of cyclic groups as equally spaced points on a circle has deep historical roots in classical mathematics. 

As early as the 18th and 19th centuries, foundational work by Leonhard Euler and Carl Friedrich Gauss 

contributed significantly to the mathematical idea behind modern circle representations of cyclic groups. Euler 
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studied the n throots of unity: complex numbers of the form e
2πik

n , and established their expression as points 

equally spaced around the unit circle using what is now known as Euler’s formula. This introduced a natural 

angular interpretation of periodic or cyclic behavior. Gauss investigated the division of the circle into n 

equal parts in his work on cyclotomic equations, particularly in the context of constructing regular polygons, 

as detailed in his Disquisitiones Arithmeticae (Gauss, 1801/1966). The visual representation of group elements 

on a circle was not specifically addressed by either Euler or Gauss, but these techniques serve as the foundation 

for modern circle representations, in which each group element represents a distinct angle of the unit circle. 

In addition, Cayley diagrams serve as a powerful tool for visualizing finite groups. The concept of Cayley 

diagrams was first introduced by Arthur Cayley (Cayley, 1878) in 1878 as a way to visualize abstract group 

structures. These diagrams, now widely used in group theory, represent group elements as nodes and group 

operations as colored or directed edges labeled by generators. Cayley’s introduction laid the foundation for many 

modern approaches to visual group theory.  Nathan Carter’s Visual Group Theory (Carter, 2009) elaborates 

on the use of Cayley diagrams for cyclic groups, focusing on the relationship between elements and their 

generators. Also, it elaborates on the use of Cayley diagrams for dihedral groups as well as symmetric groups. 

Nathan Carter’s Group Explorer (Carter, n.d.), offers effective examples of such diagrams of cyclic groups, 

dihedral groups and symmetric groups. 

This study focuses on visualizing cyclic groups Cn , dihedral groups D2n , and symmetric groups S2, S3, and S4, 

utilizing methods such as circle representations and Cayley diagrams. Python Flask based web applications were 

developed to draw Cayley graphs for these groups, compute inverses, determine orders, perform group 

operations, and identify subgroup elements. 

Although current visualization methods are effective for cyclic, dihedral, and small ordered symmetric groups, 

challenges remain in visualizing larger non-abelian groups and higher order symmetric groups like S5 and S6. 

The complexity increases with the size and structure of the group, making simple visual representations 

insufficient. Nevertheless, advancements in computational tools, such as dynamic graph visualization libraries 

and interactive web applications, offer promising directions. Future work could extend these techniques to 

visualize groups such as S5 and S6, multiplicative groups modulo 𝑛, and beyond, combining visual intuition 

with algorithmic automation. 

The objectives of this study are:  

 To explore various visualization techniques for groups, including circle representations and Cayley 

diagrams. 

 To examine how visualization, enhance understanding of group operations, element orders, inverses, and 

subgroups. 

 To analyze methods for identifying group properties directly from visual representations. 

 To develop Python based web applications in which algorithms are written based on visual methods to 

automate the visualization and analysis of group properties for selected groups. 

METHODOLOGY 

Group Selection and Visualization Techniques 

In this research, mainly 3 types of group visualizations were studied. They are cyclic, dihedral, and 

symmetric groups. In symmetric groups only S2, S3, and S4 visualization was studied. Because in the 

symmetric group Sn the order is given by n!, the order will be higher when n is a higher integer. So, if we 

consider n ≥  5, visualization of these groups will be difficult. But for specifically S4visualization was 

studied since it only has 24 elements, but the Cayley diagram of it is a 3-D figure which has a rich 

structure. Cyclic and dihedral groups were also chosen to study, as they are finite, well understood, and have 

a rich structure. 
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There are 2 visualization methods studied in this research. The circle representation is especially useful for 

cyclic groups, as it highlights their cyclic nature and simplifies the understanding of element orders and 

subgroups. One of the most common visualizations is Cayley graphs, which offer a more general framework 

for visualizing groups, providing a clear picture of how elements relate to each other through group 

operations. 

Cyclic Groups 𝐂𝐧 

Consider a cyclic group Cn of order n. In the circle representation, the elements of a cyclic group Cn  =
{g0, g1, . . . , gn−1} are placed as equally spaced points on a circle. Each element gi corresponds to a rotation 

by an angle, 

θi =
 2πi 

n
,       0 ≤ i ≤ n − 1. 

Thus, the group can also be represented as 

Cn  =  {θ0, θ1, . . . , θn−1} 

For example, in the circle representation of the cyclic group C12, the group elements are denoted as 

C12  =  {θ0, θ1, . . . , θ11} 

where each θi represents a rotation by an angle of 

θi =
2πi

12
=  

πi

6
,      for i = 0,1, … , 11 

 

Figure 1: Circle representation of 𝐶12 

Let θa =
2πa

n
 and θb =

2πb

n
 where a, b ∈ ℤn. We define group operation θa + θb  by 

θa + θb =  
2π

n
((a + b) mod n) 

And we denote θa + θb by θa+b (mod n)  

i.e. θa + θb =  θa+b (mod n) 

We can perform the group operation on two elements θa and θb in Cn using the circle representation of Cn. We 

start from one of the elements (without loss of generality), θa, and traverse the elements in the 

counterclockwise direction by taking steps b (where b comes from the other element θb). The element we 

reach is the result of the group operation θa + θb. 
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The inverse of an element θk ∈ Cn =  {θ0, θ1, . . . , θn−1}, where k ∈  Zn is given by θn−k. To find the 

inverse of θk visually, starting from θ0 we go in the clockwise direction by an angle of θk. The element we 

reach is the inverse of θk. 

Another method is starting from θ0, traversing through the elements in the clockwise direction by taking 

k steps (where k comes from element θk). The element we reach is the inverse of θk. 

The order of an element θa in Cn is given by: 

|θa| =  
n

gcd (a, n)
 

We can find the order of an element θa using the circle representation. Starting from θ0, count how many times 

we have to traverse through the elements by step size ‘a’ to return to the identity element θ0. Then that 

count is the order of the element θa. 

By Lagrange’s Theorem, if d | n, then Cn  has a unique subgroup of order 𝑑 given by: 

Hd = 〈θλ〉 = {θ0, θλ, θ2λ, … , θλ(d−1)},     where  λ =
n

d
 

For any θλk in Hd, the associated angle is: 

θλk =
 2πk 

d
   for 0 ≤ k ≤ d − 1 

We can find the elements of subgroups of Cn visually by looking at the diagram. Starting from θ0, if we 

traverse the elements of the diagram counterclockwise, with increments of λ =  
n

d
, yield the elements of 

Hd, which is the subgroup of order d. 

Cayley diagrams provide a different way of representing cyclic groups. In a Cayley diagram for a cyclic group, 

the elements are depicted as vertices of a graph, and the group operations are represented by directed edges 

between these vertices. In a Cayley diagram for a cyclic group, the edges form a simple cycle, which corresponds 

to the generator’s action in generating the entire group. 

Consider the cyclic group Cn =  ⟨g⟩ of order n, generated by a single element g. Then in the Cayley 

graph of Cn, there exist edges from gi to gi+1 for each i ∈  {0, 1, . . . , n −  1}, where indices are taken 

modulo n. 

Since the cyclic group Cn is generated by a single generator g, only one color is needed to represent all the 

edges in its Cayley graph. In this chapter, edges corresponding to multiplication by g are colored Red. 

 

Figure 2: Cayley graph of the cyclic group C12 with generator g. 
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Let ga and gb be elements in Cn  =  ⟨g⟩  =  {e, g, g2, … , gn−1}, where g is the generator of the group. The 

group operation in Cn is defined by: 

ga 
·  g

b 
=  g

a + b  mod n
.
 

We can perform the group operation on two elements ga and gb in Cn using the Cayley diagram. Starting from 

the vertex representing ga, we follow the directed edges labeled by the generator g, ‘b’ times. Since each 

edge corresponds to multiplication by g, the traversal leads to the vertex representing ga+b, which is the result 

of the group operation ga · gb with the exponent taken modulo n. 

The inverse of an element gk ∈ Cn where k ∈  Ζn, is given by gn−k. To find the inverse of gk ∈ Cn using 

the Cayley diagram, we can proceed as follows: 

Starting from the identity element e =  g0, we move along the edges in the clockwise direction (i.e., 

against the direction of the arrows) by taking k steps. The element we reach is gn−k. The order of an 

element ga in Cn is given by:          

|ga| =  
n

gcd(a, n)
 

To find the order of an element ga ∈ Cn using the Cayley diagram, start at the identity element e = ga, and 

repeatedly move along the arrows by steps of size a (i.e., follow every ath arrow as if multiplying by ga). 

Count how many such steps are needed to return back to the identity element e. This count is the order 

of the element ga. 

By Lagrange’s Theorem, if d | n, then Cn = ⟨g⟩ has a unique subgroup of order d, given by: 

                                                       Hd = < gλ > = {e, g, g2λ, … , g(d−1)λ}, where  λ =  
n

d
 . 

Elements of Hd, which is the Subgroup of Cn = ⟨ g ⟩ of order d, can be identified in the Cayley diagram 

by observing the elements generated by powers of gλ, where λ =  
n

d
 and d divides n. 

Starting from the identity element e, Traversing the vertices of the diagram, in the counterclockwise direction 

with step size λ, yields the elements of the subgroup Hd  =  ⟨gλ⟩, which has order d. The vertices we reach 

along the way in each step are the elements of the subgroup. 

Dihedral Groups 𝐃𝟐𝐧 

The Dihedral group D2n is the group of symmetries of a regular n-gon (n ≥  3). It consists of 2n elements: 

n rotations and n reflection. 

The following edges exist in the Cayley graph: 

• From rotation ri to rotation ri+1. 

• From reflection sri to reflection sri+1. 

• Between reflection sri and rotation ri. 

Here, i ∈  {0, 1, . . . , n −  1}. 

Since only two generators are there in D2n, only two colors are enough to color the edges. In here, for generator 

r, blue color is used, and for generator s, green color is used. 
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Figure 3: Cayley Diagram of the Dihedral Group D14. 

There are four types of how we can operate two elements in D2n. 

1. Rotation × Rotation 

The product of two rotations ra and rb is given by: 

  ra 
·  r

b 
=  r

(a + b)  mod n 

We can identify the product of two rotation elements ra and rb using the Cayley graph. We have to start 

from one of the rotation elements (without loss of generality) rb  and traverse through the rotation elements in 

the counterclockwise direction by step a (Here, a is the power of the other rotation element). Then that 

rotation element is the answer of ra · rb 

2. Reflection × Reflection 

The product of two reflections sr a and sr b is given by: 

sra  ·  srb  =  s(ras)rb  =  s ·  sr−a  ·  rb  =  s2r−a+b  =  1 ·  r−a+b =  r(b−a)mod n 

We can identify the product of two reflection elements sra and srb using the Cayley graph. We have to start 

from the second reflection element srb and go to the corresponding rotation element rb. Then traverse through 

the rotation elements in the clockwise direction by step a (Here, a is the power of the first reflection element). 

Then that rotation element is the answer of sra  ·  srb. 

3. Rotation × Reflection 

The product of rotation, ra followed by reflection, rb is given by: 

ra  ·  srb  =  (ras)rb  =  sr−a  ·  rb  =  srb−a  =  sr(b−a)mod n 

We can identify the product of a  rotation element followed by a  reflection element, ra  ·  srb using the 

Cayley graph. We have to start from the reflection element srb and traverse through the reflection elements in 

the clockwise direction by step a (Here, a is the power of rotation element). Then that reflection element is 

the answer of ra  ·  srb. 

4. Reflection × Rotation 

The product of reflection, srb. followed by rotation, rb is given by: 

sra 
·  r

b 
=  sr(a + b)  mod n 
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We can identify the product of a reflection element followed by a rotation element, sra  ·  rb using the Cayley 

graph. We have to start from the reflection element srb and traverse through the reflection elements in the 

counterclockwise direction by step b (Here b is the power of the rotation element). Then that reflection 

element is the answer of sra  ·  rb. 

The order of any reflection element srk is 2. The order of a rotation element rk is given 

by:                                      

|rk| =  
n

gcd(k, n)
 

where k ∈  {0, 1, . . . , n −  1}. To find the order of a rotation element rk  ∈  D2n using the Cayley 

diagram, start at the identity element 1, and repeatedly move along the rotation elements in counter clock wise 

direction by steps of size k (i.e., follow every k th arrow as if multiplying by rk). Count how many such 

steps are needed to return back to the identity element 1. This count is the order of the element rk). 

The inverse of any reflection element srk).  is itself. The inverse of a rotation element rk  is rn−k. We can 

find the inverse of rk by looking at the Cayley graph of the group. To find the inverse of rk, starting from 

1 we traverse through rotation elements in the clockwise direction k times. Then that kth element is the 

inverse of rk. 

There are three types of subgroups in dihedral groups: cyclic subgroups, reflection subgroups (a special case 

of mixed subgroups), and mixed subgroups. 

Cyclic subgroups consist solely of rotations and can be identified by the Cayley graph. For any divisor d 

of n, there exists a subgroup of D2n that contains rotations generated by rd: 

< rd > = {1, rd, r2d, … , rd(
n
d

−1)} 

The order of this subgroup is 
n

d
. If d is a divisor of n, then starting from 1, and traversing the elements of 

the outer circle (rotation elements) in the counterclockwise direction with increments of the size d, yields the 

elements of a subgroup of order 
n

d
. 

For any reflection srk of D2n, the set {1, srk} forms a subgroup of order 2 (reflection subgroups). 

Mixed subgroups are generated by a reflection element and a rotation element. For any divisor d of n, 

⟨r
n

d , sri⟩ is a subgroup of order 2d, where i ∈  {0, 1, . . . , n −  1}. To find the elements of the mixed 

subgroup ⟨r
n

d , sri⟩  of order 2d, we can find the d rotation elements by starting from 1, and traversing the 

elements of the outer circle (rotation elements) in the counterclockwise direction with increments of the 

size 
n

d
. As for the d reflection elements, starting from sri and traverse the elements of the inner circle 

(reflection elements) in the counterclockwise direction with increments 
n

d
  yields those d reflection 

elements. 

Symmetric Groups 𝐒𝐧 

The symmetric group on n elements, denoted by Sn, is the group of all bijective functions (permutations) 

from the set {1, 2, . . . , n} to itself. That is, 

Sn  =  {σ ∶  {1, 2, . . . , n}  →  {1, 2, . . . , n} | σ is a bijection}, 

with the group operation being a composition of functions. The identity element is the identity permutation, 

and the inverse of a permutation is its inverse as a function. 
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Symmetric Group of order 2! which is denoted by S2 contains only two elements: identity e = (1)(2) and 

transposition (1 2). 

 

Figure 4: Cayley Graph of S2. 

S3 consists of all permutations of 3 elements, with |S3| = 6. Its elements include: 

• Identity: e =  (1 2 3) 

• Transpositions (2-cycles): (1 2), (1 3), (2 3) 

• 3-cycles: (1 2 3), (1 3 2) 

 

Figure 5: Cayley Graph of S3. 

The Cayley graph of S3 is constructed using the generating set {(1 2 3), (1 2)}. The symmetric group S3 

and the dihedral group D6 are isomorphic as abstract groups. Both groups consist of six elements and share 

the same multiplication table up to relabeling of elements. This means there exists a bijective map between 

the elements of S3 and D6 that respects the group operation. In particular: 

• S3 is the group of all permutations of 3 elements. 

• D6 is the group of symmetries of a regular triangle, including 3 rotations (including identity) and 3 

reflections 

There exists an isomorphism between the two groups: 

S3 ≅  D6  

As a consequence, their Cayley graphs are isomorphic under a suitable choice of generators. 

If we take the generators of S3 to be a transposition and a 3-cycle, for example: 

S3 =  ⟨ (1 2), (1 2 3) ⟩, 

and the generators of D6 to be a reflection s and a rotation r, then the corresponding Cayley graphs are 

structurally identical. 
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Since S3 and D6 are isomorphic, the same methods used to analyze the group structure of D6, such as 

determining the order of elements, finding their inverses, performing group operation among two elements and 

identifying subgroups, can also be applied directly to S3. 

S4 consists of all permutations of 4 elements, with |S4| = 24. Its elements include: 

• Identity: e. 

• Transpositions (order 2): (1 2), (1 3), (1 4), (2 3), (2 4), (3 4) 

• 3-cycles (order 3): (1 2 3), (1 3 2), (1 2 4), (1 4 2), (1 3 4), (1 4 3), (2 3 4), (2 4 3). 

• 4-cycles (order 4): (1 2 3 4), (1 2 4 3), (1 3 2 4), (1 3 4 2), (1 4 2 3), (1 4 3 2). 

• Double transpositions (order 2): (1 2)(3 4), (1 3)(2 4), (1 4)(2 3). 

 

Figure 6: Cayley Graph of S4 - Truncated Cube Version 

The Cayley graph of the symmetric group S4 has been constructed using a layout based on the geometry 

of a truncated cube, which is one of several possible layouts suited for visualizing this group. 

For this visualization, the generators used are (1 3 2) and (0 1). 

S4  =  ⟨(1 3 2), (0 1)⟩ 

• The permutation (0 1) is represented by green edges. 

• The permutation (1 3 2) is represented by red edges. 

In the Cayley diagram of a group, each vertex represents a group element, and each directed edge corresponds 

to the application of a generator. Given a set of generators, an edge sequence for a vertex (i.e., a group element) 

describes a specific sequence of generators that must be applied, starting from the identity element, to reach that 

vertex. 

More formally, for a group G with a generating set {g1, g2 , . . . , gk}, the edge sequence for an element ℎ 𝜖 𝐺 

is an ordered sequence (gi1  , gi2  , . . . , gim  ) such that: 

gi1  ◦  gi2  ◦ · · · ◦  gim  =  h 

and each gij is one of the generators of G. 
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The order of an element h ϵ G is the smallest positive integer k such that 

hk  =  e, 

where e is the identity. To find the order of an element h ϵ G using the Cayley diagram: 

1. Determine an edge sequence of h, i.e., a sequence of generators that leads from the identity to h. Denote 

it as s =  (s1, s2, . . . , sm), where each si ∈ {g, r} 

2. Starting at the identity vertex e, follow the edges labeled by the sequence s to reach h. 

3. Repeat the same edge sequence starting from the current vertex. 

4. Continue repeating the edge sequence until you return to the identity element. 

5. The number of repetitions needed to return to e is the order of the element h. 

To find the inverse of a group element h ϵ 𝑆4 using the Cayley diagram, we use the following graphical method 

based on the concept of edge sequences: 

1. Determine the edge sequence of the element h. This is the ordered list of generator applications (e.g., colors 

or labels like g1, g2) used to reach h from the identity vertex. 

2. Reverse the edge sequence to get the path corresponding to the inverse. If the original edge sequence is s =
 (s1, s2, . . . , sk), the reversed edge sequence is (sk , sk−1, . . . , s1). 

3. Important: When following the reversed edge sequence, you must assume the directions of all edges 

in the Cayley graph are also reversed. This means that if there is an edge from g1 to g2 labeled si, then 

in the reverse process we consider it as an edge from g2 to g1. 

4. Start from the identity element 𝑒 and follow the reversed edge sequence through the reversed graph. 

5. The endpoint reached after traversing the full reversed sequence is the inverse h−1. 

In the symmetric group S4, the group operation is function composition of permutations, applied from right to 

left. That is, given two elements g, h ϵ S4, their composition g ◦  h means applying h first, then g. 

To perform the group operation g ◦  h (i.e., apply h after g) for any two elements in S4, we use a graphical 

method based on the edge sequences in the Cayley diagram: 

1. Select Elements: Choose two elements g, h ϵ S4. We want to compute g ◦  h, which corresponds to first 

applying h, then g. 

2. Obtain Edge Sequence of h: Extract the edge sequence of the element h.  This is the sequence of 

generators (with color and direction) used to reach h from the identity element in the Cayley diagram. 

3. Traverse from g Using h’s Edge Sequence: Starting from the vertex corresponding to g, follow the edge 

sequence of h, using the same generator order, directions, and colors as in the original graph. The endpoint 

of this traversal is the composition g ◦  h. 

We determine the elements of a subgroup H ≤  S4 by tracing paths in the Cayley diagram according to the 

subgroup’s generators. The method differs slightly depending on whether the subgroup has one or two 

generators. 

1. Subgroups with One Generator: These subgroups are cyclic and behave like ⟨g⟩ =  {e, g, g2, . . . }. 
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1 

Step 1: Start from the identity element e. 

Step 2: Identify the generator g and its edge sequence (i.e., the path from e to g using the graph’s colored 

edges). 

Step 3: From g, follow the same edge sequence to reach g2, and from there again to get g3, and so on. 

Step 4: Continue this process until the identity is reached again.  

The set of all such vertices visited forms the cyclic subgroup. 

2. Subgroups with Two Generators: Most subgroups of S4 are generated by two elements. In such cases, 

at least one generator is of order 2; denote this one by g2 and the other generator by g1. 

• Special Cases: 

I. If the generators are g1 =  (1 3 2) and g2 =  (0 1), the subgroup is the group S4. 

II. If the generators are g1 =  (1 3 2) and g2 =  (0 2)(1 3), the subgroup is the alternating group A4, 

consisting of all even permutations (i.e., permutations that can be written as a product of an even number 

of transpositions). 

• General Case: 

Step 1: Begin with the identity e, and include both generators g1 and g2 in the initial set of subgroup 

elements. 

Step 2: Determine the edge sequence of g1, i.e., the ordered set of generator labeled edges used to reach g1 

from the identity in the Cayley diagram. 

Step 3: Starting from g1, follow the same edge sequence to obtain a new element. Add this element to the 

subgroup set. 

Step 4: Repeat this process: from each newly obtained element, apply the same edge sequence of g1 again, until 

the resulting element is already in the subgroup set. Stop this traversal once a repeat is found. 

Step 5: Now, perform the same type of traversal starting from g2: 

I. From g2, follow the edge sequence of g1 to obtain a new element. 

II. From that new element, again apply the edge sequence of g1, and continue this process as before. 

III. Each new element found is added to the subgroup set, until an already discovered element is reached, at 

which point that path is terminated. 

Step 6: The final collection of distinct elements obtained through these steps constitutes the subgroup       

generated by ⟨g1, g2⟩. 

Software Implementation 

As part of this research, three Python-based web applications were developed using the Flask framework 

to visualize and explore the structure of the cyclic group Cn, dihedral group D2n, and symmetric group S4. 

These interactive applications enable users to engage with the algebraic properties of Cn, D2n and S4 

through real-time visualizations and computations presented in a user-friendly web interface. All 

operations are carried out by custom Python algorithms written specifically for this study. The application 

runs every computation in real time: user input is processed by the Flask server, which invokes the Python 

back-end logic to compute results and immediately returns the output via the interface. 
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Cyclic group visualization tool 

The tool is grounded in key concepts from cyclic group theory. It allows users to specify a value for n, 

generate the corresponding group Cn, and perform various operations to understand its structure and subgroups 

better. 

The application supports the following functionalities in real time: 

• Visualization of the Cayley diagram for Cn arranged in a circular layout using a standard generator. 

• Execution of the group operation (modular addition) between any two elements in Cn. 

• Computation of the inverse and the order of a selected element. 

• Identification of the elements in the subgroup generated by a given element. 

To demonstrate the capabilities of the application, the following screenshots of its core functionalities in 

action were included. These visual examples illustrate how users can interact with the tool to explore the 

algebraic structure of cyclic groups dynamically. 

 

Figure 7: Main page of Cn visualization web tool 

Cayley Diagram Visualization 

The application generates the Cayley diagram of Cn when n is given. 

 

Figure 8: Cayley diagram of C15 

Performing Group Operation 

Users can select two elements from Cn and compute their sum modulo n, visualizing the result and its 

position in the cycle. 
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Figure 9: Example of performing g4  ∙  g9  =  g13 in C15 using the group operation tool. 

Finding the Inverse of an Element 

The application allows users to select an element and automatically computes its inverse under modular 

addition. 

 

Figure 10: Displaying the inverse of element  g5  in C16, which is g11 

Determining the order of Elements 

The application allows users to select an element and automatically computes its order. 

 

Figure 11: order of g3 in  C15 which is 5 
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Identifying Subgroup Elements 

The application highlights all elements of the subgroup generated by a selected element in Cn. 

 

Figure 12: Elements of subgroup generated by element g3 in  C12. 

Dihedral group visualization tool 

The tool is grounded in fundamental group theoretic concepts and offers a practical platform for experimentation. 

Users can specify a value for n, generate the corresponding group D2n, and perform a range of operations to 

analyze the group’s structure and subgroups. 

The application offers the following real-time functionalities: 

• Visualization of the Cayley diagram for D2n, constructed using a chosen set of generators 

(typically one rotation and one reflection). 

• Execution of the group operation between any two elements in D2n. 

• Computation of the inverse and the order of a selected group element. 

• Identification of all elements in the subgroup generated by a given set of elements. 

The following screenshots showcase the interactive functionalities of the web tool related to D2n. 

 

Figure 13: Main page of D2n visualization web tool 
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Cayley Diagram Visualization 

The application generates the Cayley diagram for  D2n, using two generators: a rotation r and a reflection 

s. 

 

Figure 14: Cayley diagram of D30 

Performing Group Operation 

Users can choose two elements of D2n and compute their product. The application shows both the operation 

and the resulting group element. 

 

Figure 15: Group operation in D30: computing r8  ·  r9  =  r2. 

 

Figure 16: Group operation in D30: computing r12 · sr5 =  sr8. 
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Finding the Inverse of an Element 

The tool computes the inverse of any selected element in D2n, whether it is a rotation or a reflection, and 

displays the result based on the group’s multiplication rules. 

 

Figure 17: Inverse of  r5 in D30 which is  r10 

 

Figure 18: Inverse of  sr7 in D30 which is  sr7 itself 

Determining Element Orders 

Users can select an element and view its order. 

 

Figure 19: Order of element  r11 in D30 is 15 
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Figure 20: Order of element  sr10  in D30 is 2 

Identifying Subgroup Elements 

The application can optionally highlight elements of a subgroup generated by the chosen elements. 

 

Figure 21: Subgroup generated by e and  sr9 in D30 

 

Figure 22: Subgroup generated by  r3 in D30 
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Figure 23: Subgroup generated by  r5 and  sr4 in D30 

Symmetric group 𝐒𝟒 visualization tool 

The Web interface supports the following functionalities in real time: 

 Visualization of the Cayley diagram for S4 (truncated cube version). 

 Performing the group operation between any two selected elements. 

 Calculating the inverse and the order of a selected element. 

 Identifying subgroup elements generated by given elements. (The generating set has to be chosen by 

the user from a drop-down list) 

The following figures in this section showcase the interactive functionalities of the web tool related to. 

 

Figure 24: Main page of S4 visualization web tool 

Cayley Diagram Visualization 

The tool generates the Cayley diagram of S4 using a given set of generators (0 1) and (1 3 2). 

 

Figure 25: Cayley diagram of S4 with generators (0 1) and (1 3 2). 
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Performing Group Operation 

Users can select two permutations and compute their composition. The result is shown in standard cycle notation, 

and the order of operation is clearly indicated (i.e., function composition from right to left). 

 

 

Figure 26:  Example of group operation:  composing (0 2)(1 3) and (0 1 2) to obtain (0 3 1) 

Finding the Inverse of an Element 

The application allows users to select a permutation and displays (Highlights) its inverse. Since every 

permutation is invertible, this feature supports the conceptual understanding of how inverses behave in S4. 

 

Figure 27: Inverse of permutation (0 3 2 1) is (0 1 2 3). 

Determining Element Orders 

The tool calculates the order of a permutation which is defined as the smallest positive integer k such that 

applying the permutation k times results in the identity. 
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Figure 28: Order of (0 3 1 2) is 4 

Identifying Subgroup Elements 

The application can highlight the elements of a subgroup generated by a selected element or a pair of 

elements. 

 

Figure 29: Subgroup generated by (0 1) and (0 1)(2 3) 

DISCUSSION 

In order to create links between abstract group theory and intuitive graphical representations, this manuscript 

has methodically examined geometric visualization techniques for basic algebraic structures. Basically, two 

visualization methods were studied, which are circle representation (for cyclic groups) and Cayley graphs (for 

cyclic groups, dihedral groups, and symmetric groups). For each group, the basic properties of those groups 

were studied algebraically and visually, and algorithms were created to find element orders, inverses of elements, 

perform group operations, and find elements of subgroups using visualizations. 

While tools such as GAP (The GAP Group, 2023), SageMath (The Sage Developers, 2023), and Group Explorer 

(Carter, n.d.) provide valuable features for exploring group theory, they each exhibit limitations when it comes 

to integrating visual and computational analysis in an interactive and accessible way. GAP (The GAP Group, 

2023) and SageMath (The Sage Developers, 2023) offer powerful computational capabilities, including 

symbolic manipulation of group elements, subgroup construction, and order computations. However, their visual 

interfaces are minimal or require external packages (e.g., GRAPE or XGAP), and they do not support real-time 
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interaction with Cayley diagrams. Group Explorer, on the other hand, emphasizes visualization and provides an 

interactive interface to explore structures such as subgroups and cosets, but it lacks the ability to compute or 

display group properties like element orders, inverses, or perform group operations algorithmically within the 

visualization. 

In contrast, the Python-Flask-based web applications, developed using algorithms created in this study, offers a 

seamless combination of Cayley diagram visualization and algorithm-driven interaction. Users can compute 

element orders, inverses, subgroup memberships, and perform group operations directly through graphical 

interaction with the Cayley diagram, without performing any symbolic calculations manually. The tool supports 

dynamic visualization of cyclic groups Cn, dihedral groups D2n, and the symmetric group S4, with scalability 

for arbitrary positive integers n in Cn and D2n. Although high values of n result in increasingly dense diagrams 

due to screen space limitations, this is a visual constraint that can be optimized in future versions. This level of 

interactive analysis is currently unavailable in existing group theory tools, positioning this system as a novel and 

accessible resource for both research and education. 

Table 1: Comparative Feature Analysis of Existing and Implemented Group Theory Tools 

Feature/ Tool GAP / SageMath Group Explorer This study (Flask Web 

App) 

Group operations (symbolic) Yes Limited (via tables) Visual & algorithmic 

Element order computation Yes (manual/ scripted) No Visual, automatic 

Inverse finding Yes No Visual, automatic 

Subgroup detection Yes (manual) Highlight only Automatic via diagram 

Cayley diagram visualization Minimal / via packages Yes Yes 

Interactivity with diagram No Click-based, limited 

analysis 

Full interaction & 

computation 

Support for Cn, D2n, and S4 Symbolically only Fixed examples Dynamic, parameterized 𝑛 

Handles arbitrary n Yes No Yes (visual limitation 

noted) 

Built for education & 

exploration 

Limited Yes Yes 

This work opens several promising avenues for further investigation across theoretical, computational, and 

educational domains. The visualization framework developed in this study naturally extends to more 

complex group structures and innovative applications. The current visualization techniques for symmetric 

groups up to S4 suggest potential generalizations to higher order symmetric groups S5 and S6, though 

significant challenges emerge due to their increased complexity (120 and 720 elements, respectively). 

These challenges include developing higher dimensional representations that maintain interpretability, 

creating efficient algorithms for pattern recognition in complex graphs, and optimizing computational 

performance for interactive exploration. Beyond symmetric groups, the methodology could be adapted to 

other important non-abelian structures such as quaternion groups, matrix groups, and semidirect products, each 

requiring specialized visualization approaches to capture their unique algebraic properties. Additionally, the 

multiplicative groups of integers modulo 𝑛, (Z/𝑛Z)×, present an interesting test case for visualizing number 

theoretic structures with applications to cryptography and prime number distribution.  
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There are tremendous opportunities to improve group visualization using emerging technology. By facilitating 

interactive theorem demonstration, collaborative learning environments, and three-dimensional manipulation of 

intricate structures, immersive Virtual Reality (VR) and Augmented Reality (AR) interfaces have the potential 

to completely change group exploration. Through automated pattern detection in Cayley graphs, predictive 

modeling of group attributes, and generative systems for producing ideal visual representations, machine 

learning techniques may offer new avenues for group structure analysis. Another exciting avenue is provided 

by topological approaches, specifically through the use of metric space embeddings that maintain algebraic 

interactions, geometric group theory techniques for comprehending large scale patterns, and persistent homology 

to investigate group structures. These innovative techniques might offer fresh perspectives on the overall 

organization of complicated groups. 

The visualization tools developed in this research have significant potential for educational innovation. A 

systematic program of curriculum development could produce visualization-based lesson plans, interactive 

textbooks, and novel assessment tools that leverage graphical representations. Special attention should be given 

to accessibility enhancements, including the creation of tactile representations for visually impaired students, 

multimodal interfaces that accommodate different learning styles, and language independent learning materials 

that make abstract algebra more universally accessible. 

CONCLUSION 

This study highlights the value of geometric visualization in enhancing the understanding of abstract algebraic 

structures. By employing circle representations and Cayley graph constructions for cyclic groups, dihedral 

groups and symmetric group S4, supported by interactive computational tools, we bridge the gap between 

formal algebraic theory and intuitive insight. The proposed framework not only contributes to theoretical 

development but also offers practical relevance in areas such as mathematics education, molecular symmetry, 

cryptography and computational algebra. Future work may expand these methods into broader domains of pure 

mathematics, applied computation, and interdisciplinary learning. Our combination of geometric intuition with 

algebraic thinking provides a promising basis for future work at the interface of computer science, algebra, and 

visualization. 
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